nBIIG: A Neural BI Insights Generation System for Table Reporting

Yotam Perlitz, Dafna Sheinwald, Noam Slonim, Michal Shmueli-Scheuer

IBM Research
yotam.perlitz@ibm.com, \{dafna, noams, shmueli\}@il.ibm.com

Abstract

We present nBIIG, a neural Business Intelligence (BI) Insights Generation system. Given a table, our system applies various analyses to create corresponding RDF representations, and then uses a neural model to generate fluent textual insights out of these representations. The generated insights can be used by an analyst, via a human-in-the-loop paradigm, to enhance the task of creating compelling table reports. The underlying generative neural model is trained over large and carefully distilled data, curated from multiple BI domains. Thus, the system can generate faithful and fluent insights over open-domain tables, making it practical and useful.

Introduction

BI tools are commonly used in various industries with 48% of all organizations consider them either “critical” or “very important” to their operations¹. Table reports, a natural language summary of the results reported in a table, is a prominent part in BI solutions, and generating these constitutes an important part of the analyst work. Automatic insight generation is often used to enhance this task, by applying various analyses over the table and expressing their outcome in natural language sentences, that represent candidate insights for the analyst, to include in the report. For these insights to be useful, they must satisfy: (1) faithfulness – be consistent with the table; and (2) fluency – be textually fluent. Current commercial products adopt a two-stage method for insight generation (Wang et al. 2019), implemented by two modules: (1) Analytics: applying a set of statistical analyses to the data, resulting in meaning representation, and (2) Template-based surface realization: using templates and rules to transform the analyses from their meaning representation into natural language insights. Due to the deterministic character of the analytics module, these methods excel in their high level of faithfulness, however, their use of template-based surface realization undermines their fluency (see Figure 1) which impairs their usability, as the analyst is required to re-write before any subsequent use. Recently, End-to-End approaches for insights generation have evolved to train a generative language-model to produce insights directly from the table. These methods have shown to generate fluent and diverse texts (Perlitz et al. 2022), but, since these generative models often struggle with numerical operations (Ravichander et al. 2019), they result with low levels of faithfulness (Chen et al. 2020), where every second insight is unfaithful to the underlying data, deeming them unsuitable for commercial applications. Here, we present a neural BI Insight Generation (nBIIG) system, that maintains the above two-stage approach, but replaces the templates and rules of the second stage with a neural model. As shown in our evaluations, this enables the system to satisfy both high levels of fluency and faithfulness. The generative model is trained on a new large-scale data from multiple BI domains to ensure out of domain generalization and wide applicability², and data augmentation is used to support analyses not covered in the original training data. To qualify for practical use, we kept our methods simple, easy for deployment, and computationally modest (a single low-end GPU suffices for maximal performance). Thus, the demonstrated system represents a promising tool to leverage neural models for analysts routine work. To validate our fluency gains over the template-based methods, we showed that experts find nBIIG to produce insights that are more than three times as fluent as the template baseline, while still keeping faithfulness to the data very high. The demo movie is available at https://ibm.biz/BIIG_VIDEO.

Figure 1: nBIIG Vs. Template-based insight generation: Insights were generated automatically using (a) a commercial template-based method and (b) nBIIG. Both insights convey the same information, however, nBIIGs higher level of fluency makes the insight more readable and engaging.

¹https://tinyurl.com/4km4uwme
²Dataset is available at: https://ibm.biz/nBIIG_dataset
System Description and Quality Analysis

nBIIG, illustrated in Figure 3, comprises three modules. **Analytics**: The given table is fed into a suite of 10 common BI analyses including MAX, MIN, SUM, AVERAGE, COMPARE, CORRELATED, RANKED, TREND, etc., using common statistical tools. Each relevant analysis result is cast into an RDF representation. **Neural Surface Realization**: We utilize T5 (Raffel et al. 2020), a transformer-based encoder-decoder generative model, to translate the RDF representation for each analysis into a natural language insight. We fine-tune the model on data created using two different approaches. (1) An extractive approach applied to 100K publicly accessible webpages crawled from statista.com, each containing a table and a summary written by a human expert. From every summary, we extracted each sentence that potentially conveys any of our supported analyses applied to the table, and paired the RDF cast for that analysis with the sentence. We thus obtained 75K sentence/RDF matching pairs, with clear bias towards the simpler analysis types, leaving very few examples for involved types (e.g., RANKED, COMPARE). This scarcity degrades the model performance on these low-prior types. (2) Data augmentation approach addresses that by utilizing GPT-NeoX-20B (Black et al. 2022), a Large Language Model (LLM). For each low-prior analysis type, we selected 2.5K RDFs of that type, that were not paired above, and for each such RDF, generated a matching textual insight with the LLM using a few shot scheme. Specifically, we used a manually composed prompt of 5 pairs of (RDF, textual insight) examples as context, followed by an RDF, for which we wish to obtain a textual insight. The sequence generated by the model, given this input, was then taken to be that textual insight. **Recommender**: To supply the analyst with insight recommendation, for each insight, we combine its faithfulness score obtained using (Dušek and Kasner 2020), a SOTA metric for semantic evaluation, together with a score dependent on user preference logged in previous interactions. This module improves flexibility, control, and explainability, all being key elements for BI solutions. To generate the report we offer an automatic **insights fusion** using rule-based heuristics which were shown useful in previous work, e.g., Project Debater (Slonim et al. 2021).

Quality of Generated Insights

To validate the quality of the generated insights, we conducted an evaluation by three NLP experts. We sampled 66 tables and 529 insights in total. Each insight was evaluated w.r.t faithfulness and fluency. For the 10 supported types, on average 92% were found to be faithful to the table, supporting the practical value of the system. For fluency, we additionally scored a commercial template-based insights generation system, we found that 93% of insights produced by nBIIG were found to be fluent, a substantial gain over the 23% of template-based methods.

Demonstration and Discussion

nBIIG user experience is shown in Figure 2. Users interact with the system by uploading a table (CSV file), short relevant context, and the type of the chart required (line, column, etc.). Next, the user is presented with candidate insights suggested by the system, along with a score indicating the confidence in the faithfulness of the insights. The user can then edit or add new insights. Once ready, the analyst can select insights to be included in the report. Upon selection, a table report is generated, and the user can further edit the report or export it. While the level of faithfulness attained by nBIIG outperforms previous works, a neural model is always prone to some level of errors. By indicating the faithfulness confidence score and facilitating editorial changes to the generated sentences, we enable users to easily correct and customize the insights and the report, via an effective human-in-the-loop approach. In future work we intend to learn from users interactions to further improve the system quality.
Acknowledgments
We thank our colleagues at IBM Cognos Analytics: Obidul Islam, Don Banks, and Alain Chabrier, for valuable insights.

References

