
NL2LTL – A Python Package for Converting Natural Language (NL)
Instructions to Linear Temporal Logic (LTL) Formulas

Francesco Fuggitti1,2, Tathagata Chakraborti3

1 Sapienza University, Rome (Italy)
2 York University, Toronto (Canada)
3 IBM Research, Cambridge (USA)

fuggitti@diag.uniroma1.it, tathagata.chakraborti1@ibm.com

Abstract

This is a demonstration of our newly released Python pack-
age NL2LTL which leverages the latest in natural language
understanding (NLU) and large language models (LLMs)
to translate natural language instructions to linear temporal
logic (LTL) formulas. This allows direct translation to for-
mal languages that a reasoning system can use, while at the
same time, allowing the end-user to provide inputs in natu-
ral language without having to understand any details of an
underlying formal language. The package comes with sup-
port for a set of default LTL patterns, corresponding to pop-
ular DECLARE templates, but is also fully extensible to new
formulas and user inputs. The package is open-source and
is free to use for the AI community under the MIT license.
Open Source: https://github.com/IBM/nl2ltl. Video Link:
https://bit.ly/3dHW5b1

Natural Language and LTL
A host of enterprise applications revolve around the manage-
ment of workflows – this includes data processing pipelines
in AutoML (He, Zhao, and Chu 2021), web service compo-
sition (Lemos, Daniel, and Benatallah 2015), dialogue trees
in conversational systems (Muise et al. 2020), and so on. An
emerging theme in this area is the adoption of natural lan-
guage as a desired input modality (Chakraborti et al. 2022),
aimed at reducing the barrier of entry and expertise required
for users looking to adopt workflow management tools.

One of the scientific advances towards easier authoring
tools for workflow management is the notion of “declarative
specifications”. An important specification language in this
paradigm is LTL (Pnueli 1977), which allows for compila-
tions to many well-known problems in process management
e.g. conformance checking (De Giacomo et al. 2017; De Gi-
acomo 2021), while also admitting translations to specifica-
tions of standard reasoning engines such as automated plan-
ners (more on this later).

While allowing for a declarative design paradigm, LTL
also has a secondary benefit: LTL formulas can be read-
ily described in an easy-to-understand natural language for-
mat. For example, DECLARE templates (Pesic and Van der
Aalst 2006) – a very popular specification language in the

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: NL2LTL components

world of business process management – is readily translat-
able to LTL formulas (De Giacomo, De Masellis, and Mon-
tali 2014); and there exists a variety of tools to generate a
human-readable construct given an LTL formula (Cherukuri,
Ferrari, and Spoletini 2022). In this work, we aim to make
the journey in the opposite direction – from natural language
to LTL. This has two main advantages: 1) unstructured in-
puts to a system can be translated to a form that reasoning
engines can consume; while 2) the interface to the end-user
remains as accessible as possible.

Related Work Existing works fall under two buckets: one
which admits support for a range of LTL formulas but com-
promises on the expressiveness of the input (Hahn et al.
2022; Schmitt 2022; Narizzano et al. 2018; Narizzano and
Vuotto 2017), and the other which admits natural language
inputs but were built for a particular domain like robotics
and are not readily useful as a general purpose package for
practitioners (Wang et al. 2020; Wang 2020; Nikora and Bal-
com 2009; Dwyer, Avrunin, and Corbett 1998; Kim, Banks,
and Shah 2017; Lignos et al. 2015). Furthermore, among
these works, other than (Wang 2020; Narizzano and Vuotto
2017; Schmitt 2022), none have publicly available code and
are therefore not readily usable for practitioners. On the
other hand, there are a couple of code bases that have also
attempted natural language to LTL translation (Head 2015;
Zheng 2020) but they are at a very rudimentary stage with
little to no support or documentation. To the best of our
knowledge, our package is the first one going public with
support for a significant breadth of LTL patterns and an ex-
tensible API to make it usable in different domains.

NL2LTL Overview
NL2LTL is built with a unique focus on extensibility: 1) The
inputs and outputs are domain agnostic so it can be adopted

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

16428



Figure 2: An application of NL2LTL to a real industrial application (Brachman et al. 2022).

DECLARE Template: (ChainResponse Slack Gmail)
English meaning: Every time activity Slack happens, it must be

directly followed by activity Gmail.
Confidence: 0.9999997615814209

DECLARE Template: (ExistenceTwo Slack)
English meaning: Slack will happen at least twice.
Confidence: 1.0441302578101386e-07

DECLARE Template: (RespondedExistence Slack Gmail)
English meaning: If Slack happens at least once then Gmail has

to happen or happened before Slack.
Confidence: 6.342362723898987e-08

Figure 3: Sample output (pretty print) of NL2LTL, illustrat-
ing candidate DECLARE templates suggested by the pack-
age, using the Rasa NLU Engine, for the request: “Send me
a Slack after receiving a Gmail”.

into any domain of choice; and 2) any and all components –
be it the natural language understanding module or the scope
of supported LTL formulas – are extendable or modifiable.

Sample Interactions Figure 3) illustrates the NL2LTL
output – a list of translations, ranked by confidence. Each
candidate translation has two interesting properties: 1) Ex-
planations: Each formula is translated back to English to il-
lustrate how the formal representation interprets it. Depend-
ing on the downstream application, the developer can use
this to explain to the end user to what extent the translation
matches their original request; and 2) Alternative Repre-
sentations: While this example if for DECLARE templates,
each candidate can also be translated to other equivalent rep-
resentations, such as LTLf (De Giacomo and Vardi 2013)
and PPLTL (De Giacomo et al. 2020).

Architecture The primary function of NL2LTL is a trans-
lation function, which is assisted by three different compo-
nents (Figure 1). The first component is a set of supported
patterns, or “templates”, to be identified e.g. DECLARE
templates (Pesic and Van der Aalst 2006). While this cov-
ers a wider range of LTL formulas, a developer can also
add their own templates specific to their application. Sec-
ondly, NL2LTL can be configured with different NLU en-
gines while the API remains exactly the same. At the mo-
ment, NL2LTL comes with two engines pre-configured –
one based on the intent-entity paradigm from Rasa (Bock-
lisch et al. 2017) that is traditionally used for natural lan-
guage understanding, while the other is a language model-

based extraction, tapping into the Open AI API (Brown et al.
2020). Finally, the package also implements a filter func-
tions to post-process for better candidate sets of translations.
This is because the patterns are not independent: 1) two LTL
formulas can conflict with each other when both cannot be
true at the same time; or 2) one LTL formula can be sub-
sumed by another when the latter always implies the former.

Demonstration Logistics
The demonstration will consist of two live components –
first the package itself, and then an illustration of how it can
be employed in a real-world application.

Demonstration of NL2LTL For demonstration of the
package itself, the AAAI audience will be able to inter-
act with a command line interface where they can type
in constraints in English, and explore the resultant LTL-
translations along with the entities detected and what those
translations mean when translated back to English.

Industry Application For the real-world industry-scale
application, we will build on a system demonstration at
AAAI 2022 (Brachman et al. 2022) on a web service compo-
sition task using natural language. Such a system was depen-
dent on code that is specific to the parser in order to look for
specific patterns requested by the user – this means that there
is a significant developer overhead in manually investigating
the parser (Abstract Syntax Representations (Astudillo et al.
2020)) for a set of inputs, writing pattern extraction methods
for it limited to that scope, while eventually that code is not
reusable once the system upgrades to a different parser.

By augmenting the processing pipeline with the NL2LTL
package, we are able to remove all parser-specific code and
instead generate the required patterns with zero maintenance
overhead. The patterns detected using the package, parallel
to the original processing pipeline, are eventually merged for
a singular PDDL input to the automated planner in the end,
using the compilation which receives as input the PDDL
specification generated by the original pipeline along with
the LTL patterns detected by the NL2LTL package, and pro-
duces a compiled PDDL for the planner where the control
rules are enforced (Figure 2). For the LTL to PDDL compila-
tion, we use (De Giacomo, Favorito, and Fuggitti 2022) but
any existing approach (Bacchus and Kabanza 2000; Baier
and McIlraith 2006b,a; Torres and Baier 2015) will suffice.

16429



Acknowledgments
Francesco started and completed most of this work as
an intern at IBM Research. Francesco was also par-
tially supported by the ERC Advanced Grant WhiteMech
(No. 834228), the EU ICT-48 2020 project TAILOR (No.
952215), the PRIN project RIPER (No. 20203FFYLK),
and the JPMorgan AI Faculty Research Award “Resilience-
based Generalized Planning and Strategic Reasoning”.

References
Astudillo, R. F.; Ballesteros, M.; Naseem, T.; Blodgett, A.;
and Florian, R. 2020. Transition-Based Parsing with Stack-
Transformers. arXiv:2010.10669.
Bacchus, F.; and Kabanza, F. 2000. Using temporal logics
to express search control knowledge for planning. Artificial
intelligence, 116(1-2): 123–191.
Baier, J. A.; and McIlraith, S. A. 2006a. Planning with First-
Order Temporally Extended Goals using Heuristic Search.
In AAAI.
Baier, J. A.; and McIlraith, S. A. 2006b. Planning with Tem-
porally Extended Goals Using Heuristic Search. In ICAPS.
Bocklisch, T.; Faulkner, J.; Pawlowski, N.; and Nichol, A.
2017. Rasa: Open Source Language Understanding and Di-
alogue Management. arXiv:1712.05181.
Brachman, M.; Bygrave, C.; Chakraborti, T.; Chaudhary, A.;
Ding, Z.; Dugan, C.; Gros, D.; Gschwind, T.; Johnson, J.;
Laredo, J.; Czasch, C. M.; Pan, Q.; Rai, P.; Ramalingam, R.;
Scotton, P.; Surabathina, N.; and Talamadupula, K. 2022. A
Goal-driven Natural Language Interface for Creating Appli-
cation Integration Workflows. In AAAI Demonstration.
Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J. D.;
Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell,
A.; et al. 2020. Language Models are Few-Shot Learners.
NeurIPS.
Chakraborti, T.; Rizk, Y.; Isahagian, V.; Aksar, B.; and Fug-
gitti, F. 2022. From Natural Language to Workflows: To-
wards Emergent Intelligence in Robotic Process Automa-
tion. In BPM.
Cherukuri, H.; Ferrari, A.; and Spoletini, P. 2022. Towards
Explainable Formal Methods: From LTL to Natural Lan-
guage with Neural Machine Translation. In REFSQ.
De Giacomo, G. 2021. Artificial Intelligence-based Declar-
ative Process Synthesis for BPM. Invited Talk.
De Giacomo, G.; De Masellis, R.; and Montali, M. 2014.
Reasoning on LTL on Finite Traces: Insensitivity to Infinite-
ness. In AAAI.
De Giacomo, G.; Di Stasio, A.; Fuggitti, F.; and Rubin, S.
2020. Pure-Past Linear Temporal and Dynamic Logic on
Finite Traces. In IJCAI, volume 20.
De Giacomo, G.; Favorito, M.; and Fuggitti, F. 2022. Plan-
ning for Temporally Extended Goals in Pure-Past Linear
Temporal Logic: A Polynomial Reduction to Standard Plan-
ning. arXiv:2204.09960.
De Giacomo, G.; Maggi, F.; Marrella, A.; and Patrizi, F.
2017. On the Disruptive Effectiveness of Automated Plan-
ning for LTLf -Based Trace Alignment. In AAAI.

De Giacomo, G.; and Vardi, M. 2013. Linear Temporal
Logic and Linear Dynamic Logic on Finite Traces. In IJ-
CAI.
Dwyer, M. B.; Avrunin, G. S.; and Corbett, J. C. 1998. Prop-
erty Specification Patterns for Finite-State Verification. In
Workshop on Formal Methods in Software Practice.
Hahn, C.; Schmitt, F.; Tillman, J. J.; Metzger, N.; Siber, J.;
and Finkbeiner, B. 2022. Formal Specifications from Natu-
ral Language. arXiv:2206.01962.
He, X.; Zhao, K.; and Chu, X. 2021. AutoML: A Survey of
the State-of-the-Art. Knowledge-Based Systems.
Head, A. 2015. LTLTrans. https://github.com/andrewhead/
LTLTrans. Accessed: 2016-02-09.
Kim, J.; Banks, C. J.; and Shah, J. A. 2017. Collaborative
Planning with Encoding of Users’ High-Level Strategies. In
AAAI.
Lemos, A. L.; Daniel, F.; and Benatallah, B. 2015. Web
Service Composition: A Survey of Techniques and Tools.
ACM Computing Surveys.
Lignos, C.; Raman, V.; Finucane, C.; Marcus, M. P.; and
Kress-Gazit, H. 2015. Provably correct reactive control from
natural language. Autonomous Robots, 38(1): 89–105.
Muise, C.; Chakraborti, T.; Agarwal, S.; Bajgar, O.; Chaud-
hary, A.; Lastras-Montano, L. A.; Ondrej, J.; Vodolan, M.;
and Wiecha, C. 2020. Planning for Goal-Oriented Dialogue
Systems. arXiv:1910.08137.
Narizzano, M.; Pulina, L.; Tacchella, A.; and Vuotto, S.
2018. Consistency of Property Specification Patterns with
Boolean and Constrained Numerical Signals. In NASA For-
mal Methods Symposium.
Narizzano, M.; and Vuotto, S. 2017. Structured Natural
Language To Formal Language. https://github.com/SAGE-
Lab/snl2fl. Accessed: 2018-07-12.
Nikora, A. P.; and Balcom, G. 2009. Automated Identifica-
tion of LTL Patterns in Natural Language Requirements. In
Symposium on Software Reliability Engineering.
Pesic, M.; and Van der Aalst, W. M. 2006. A Declarative
Approach for Flexible Business Processes Management. In
BPM.
Pnueli, A. 1977. The Temporal Logic of Programs. In Sym-
posium on Foundations of Computer Science.
Schmitt, F. 2022. ML2: Machine Learning for Mathematics
and Logics. https://github.com/reactive-systems/ml2. Ac-
cessed: 2022-02-03.
Torres, J.; and Baier, J. A. 2015. Polynomial-Time Reformu-
lations of LTL Temporally Extended Goals into Final-State
Goals. In IJCAI.
Wang, C. 2020. Grounded LTL Parser. https://github.com/
czlwang/grounded LTL parser. Accessed: 2021-04-27.
Wang, C.; Ross, C.; Kuo, Y.; Katz, B.; and Barbu, A. 2020.
Learning a Natural-Language to LTL Executable Semantic
Parser for Grounded Robotics. In Proceedings of Machine
Learning Research.
Zheng, S. 2020. Translation from natural language to Linear
Temporal Logic. https://github.com/suchzheng2/Lang2LTL.
Accessed: 2020-12-12.

16430


