Feature Decomposition for Reducing Negative Transfer: A Novel Multi-Task Learning Method for Recommender System (Student Abstract)

Jie Zhou, Qian Yu*, Chuan Luo, Jing Zhang

School of Software, Beihang University, China
{zhoujiee, qianyu, chuanluo, zhang_jing}@buaa.edu.cn

Abstract

We propose a novel multi-task learning method termed Feature Decomposition Network (FDN). The key idea of the proposed FDN is to reduce the phenomenon of feature redundancy by explicitly decomposing features into task-specific features and task-shared features with carefully designed constraints. Experimental results show that our proposed FDN can outperform the state-of-the-art (SOTA) methods by a noticeable margin on Ali-CCP.

Introduction

The recommendation system (RS) is an effective tool to help users to handle information overload. It has been widely used in many commercial fields, such as advertising computing, social networks, and e-commerce (Wen et al. 2019). To improve the user experience, the idea of using multi-task learning (MTL) to satisfy user requirements from multiple aspects has become increasingly popular in the RS community. Many deep learning (DL) based MTL models (Ma et al. 2018; Tang et al. 2020) have been proposed for RS. However, there is no explicit constraint to force these experts to extract features as required. As a result, the features captured by different experts may still be a mixture of the task-specific feature and the task-shared feature (as shown in Fig. 1-(a)), which is called feature redundancy phenomenon in this paper and will degrade the effectiveness of the model in handling the issue of negative transfer. In the ideal case (as shown in Fig. 1-(b)), feature spaces should be more pure.

This paper proposes a novel MTL method for recommendation system, named Feature Decomposition Network (FDN). The key idea is to reduce features redundancy by decomposing with explicit constraints. Specifically, we introduce a DeComposition Pair (DCP) to capture task-shared and task-specific features, respectively. We conducted experiments on a public datasets (i.e., Ali-CCP dataset) to demonstrate the effectiveness of our proposed FDN.

Methodology

Preliminaries

As shown in Fig. 2, FDN consists of multiple newly-proposed decomposition pairs (DCPs). For each task, there are M DCP modules. Each DCP module has a pair of experts, i.e. a task-specific expert and a task-shared expert. Task-specific expert, which is denoted by f^p, captures features that are specific for each task. Task-shared expert is denoted by f^s, which extracts features that are potentially shared by all tasks. After extracting the decomposed features, the model then fuses these features and feeds the features into the prediction layer of each task. The process can be represented as follows:

$$f^M_{kT}(X) = \sigma(g_k(f^p(X), f^s(X)))$$ (1)

where $\sigma(\cdot)$ is a fusion function for task k and σ is an activation function.

DeComposition Pair

As explained before, the negative transfer is caused by feature redundancy. To address this problem, our idea is to reduce such redundancy by explicitly decomposing features into task-specific and task-shared features. Such design will make the model recombine features based on the requirements of each task. Three constraints are introduced into the DCP module.

Orthogonal Constraint

To decompose the original features into task-specific features and shared features as much as possible, we add the orthogonal constraint between the extracted features of the two experts. The orthogonal constraint is represented as follows:

$$L_{orth} = \sum_{k=1}^{K} \sum_{m=1}^{M} \left\| (f^s_m)^\top f^p_m \right\|_F^2$$ (2)

where M denotes the number of modules of task k, f^s_m denotes the feature extracted by the m-th task-shared expert.
where \(L \) function of FDN is defined as

\[
L_{aux} = \sum_{k=1}^{K} \sum_{m=1}^{M} L_{k,m}(\hat{y}^k_m, y^k) \tag{3}
\]

\[
\hat{y}^k_m = \sigma(j^k_m(X)) \tag{4}
\]

where \(L_{k,m}(\cdot) \) is the \(k \)-th auxiliary task loss, and \(\hat{y}^k_m \) denotes the prediction result of using the extracted feature of the \(m \)-th task-specific expert.

Task-shared Feature Fusion Constraint: The fusion of task-shared experts in DCPs is equivalent to a constraint, which will induce the model to further learn task-shared features. Once obtaining the decomposed features, the model fuses these features by concatenation (\(g_k(\cdot) \) in Eq. 1), as shown in Fig. 2.

Total Loss and Implementation Details: The final loss function of FDN is defined as

\[
L = L_{task} + L_{orth} + L_{aux}.
\]

Experiments on Ali-CCP Dataset

To demonstrate the effectiveness of the newly proposed FDN, we conducted experiments on “Alibaba Click and Conversion Prediction” (Ali-CCP). The optimization tasks are including CTR and CVR respectively. We compare FDN with the SOTA models, Multi-gate Mixture-of-Experts (MMoE), and Progressive Layered Extraction (PLE).

The experimental results are shown in Table 1. FDN outperforms other models. We also provide the performance of single-task models for comparison. From the results, we can have the following observations: (1) our proposed model achieves the best performance on both tasks; (2) The performance of the MTL model, MMoE, is lower than single-task

<table>
<thead>
<tr>
<th>Model</th>
<th>CTR/AUC</th>
<th>CVR/AUC</th>
<th>#params</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-Task</td>
<td>0.6189</td>
<td>0.6248</td>
<td></td>
</tr>
<tr>
<td>MMoE</td>
<td>0.6175</td>
<td>0.6239</td>
<td>5.75 \times 10^9</td>
</tr>
<tr>
<td>PLE</td>
<td>0.6241</td>
<td>0.6308</td>
<td>7.03 \times 10^9</td>
</tr>
<tr>
<td>FDN (ours)</td>
<td>0.6252</td>
<td>0.6783</td>
<td>5.11 \times 10^9</td>
</tr>
</tbody>
</table>

Table 1: Quantitative Results on Ali-CCP Dataset

models, indicating the hard-sharing architecture can limit the model’s expressivity; (3) Our model is efficient, and it has the least number of parameters.

Conclusion

In this paper, we propose a novel multi-task learning model, termed FDN. The core of FDN is a new feature decomposition module with three constraints. We conduct experiments on Ali-CCP and FDN outperforms the SOTA models.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 62002012, No. 62202025 and No. 62006012).

References

