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Abstract

Node attribute forecasting has recently attracted consider-
able attention. Recent attempts have thus far utilized dynamic
graph convolutional network (GCN) to predict future node
attributes. However, few prior works have noticed the com-
plex spatial and temporal interaction between nodes, which
will hamper the performance of dynamic GCN. In this pa-
per, we propose a new dynamic GCN model named meta-
DGCN, leveraging meta spatial-temporal tasks to enhance the
ability of dynamic GCN for better capturing node attributes
in the future. Experiments show that meta-DGCN effectively
models comprehensive Spatio-temporal correlations between
nodes and outperforms state-of-the-art baselines on various
real-world datasets.

Introduction
Node attribute forecasting is crucial in considerable graph
fields such as traffic-flow prediction, disease transmission
control, and web page access detection. The accurate and re-
liable dynamic node attribute forecasting help people control
the development scale of dynamic graph and avoid catas-
trophic consequences. For example, we can provide guid-
ance for vehicles and reduce traffic jams by monitoring the
change in traffic flow on the road map. Similarly, we can
speculate the infection rate according to the number of peo-
ple infected with the disease so as to find the possible trans-
mission path. Thus, exploring the dynamic graph influence
and developing node attribute forecasting methods to reflect
these variations is desired.

Recently, driven by the advances in graph convolutional
network (GCN) (Kipf and Welling 2017), many attempts
adopt GCN for node representation learning and combine
the recurrent neural network (e.g., LSTM or GRU) to encode
temporal evolution of dynamic graph. However, existing dy-
namic GCN methods ignore that the dynamic graph evolves
over the whole time span and has frequent spatial-temporal
interaction between nodes, revealing that the changes of
node attributes are irregular, and these methods can hardly
promise performance on node attribute forecasting in the fu-
ture. To tackle the challenges, we propose meta-DGCN, em-
ploying meta-learning at both spatial and temporal tasks to
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enhance dynamic GCN for forecasting node attributes. Con-
cretely, we design three modules, named encoding layer,
task construction, and meta optimization. The encoding
layer aims to obtain the node embeddings by leveraging
GCN and a gating mechanism. In the task construction mod-
ule, we construct support sets and query sets for both spatial
and temporal tasks. Meta optimization reveals that we uti-
lize the spatial and temporal tasks to update the parameters
of tasks and meta-DGCN to better capture patterns of the
dynamic graph, which enhances the performance of meta-
DGCN to forecast the node attributes.

Main Structural of Our Model
Our model consists of three modules, namely encoding
layer, task construction, and meta-learning.

Encoding Layer. This section introduces how to encode
the dynamic graph and obtain node embeddings. To simplify
and describe the GCN layer, we have

X′ := GCN(X) = D̂−1/2ÂD̂−1/2XΘ, (1)

where Â = A + I denotes the adjacency matrix with in-
serted self-loops and D̂ii =

∑
j=0 Âij its diagonal degree

matrix. X is the initial node attribute matrix, and Θ repre-
sents the multi-layer perceptron (MLP). Then we design a
gating mechanism similar to LSTM to update node embed-
dings. Mathematically, we write

Z := UPDATE(X′,H) = σ(X′ + H), (2)

R := RESET (X′,H) = σ(X′ + H), (3)
H′ := STATE(X′,H,R) = σ(X′+GCN(H∗R)), (4)
H := OUTPUT (Z,H,H′) = Z ∗H+(1−Z) ∗H′, (5)

where we set initial node embeddings H as a zero matrix,
and its shape is the same as X. h represents single node
embedding. σ denotes the activation function such as Relu.

Task Construction. Consider a dynamic graph, a spatial
task Ts involves a support and a query set (Ss,Qs), defined
as

Ts = (Ss = {(u, v) ∈ E} ,Qs = {(p, q) ∈ E})
s.t.Ss ∩Qs = ∅,

(6)

where the support Ss and query Qs contain edges e ran-
domly sampled from the edge set E of the dynamic graph,
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and they are mutually exclusive. In like wise, a temporal task
Tt also includes a support set and a query set (St,Qt), de-
fined as

Tt = (St = {vi ∈ V} ,Qt = {vj ∈ V}) , s.t.St ∩Qt = ∅.
(7)

We randomly select nodes v from the node set V to from the
support St and query Qt, and they are also mutually exclu-
sive. We learn the prior knowledge such that, after updating
by gradient descent w.r.t. the loss on the support set, it opti-
mizes the performance on the query set, which simulates the
possible changes of the space-temporal relationship on the
nodes in the future.

Meta Optimization. Meta-learning intends to learn a
form of general knowledge across similar learning tasks so
that the learned knowledge can be quickly adapted to new
tasks (Peng 2020). In our work, we intend to explore the
spatial interaction and temporal change rules of nodes in
the dynamic graph and predict the future value of node at-
tributes through meta-learning under limited current infor-
mation. Concretely, we implement the spatial task to capture
the spatial connections between nodes, formulated as

Ls(ω,Ss) =
∑

(u,v)∈Ss

− lnσ(huhT
v )− lnσ(−huhv′), (8)

where v′ is a negative node sample that is not linked with
u. The learnable parameters ω (i.e., Θ) for both space and
temporal tasks represent meta-knowledge. Then, we design
a temporal task to simulate the change happening on node
attributes, formulated as

Ls(ω,St) =
1

n

∑
vi∈St

(σ(hvi)− y)2, (9)

where y is the target value of the node attribute in the future.
Besides, we combine the spatial and temporal tasks to pro-
vide significant gain for capturing inherent evolving patterns
in the dynamic graph. With the space and temporal adapta-
tions on the query set, we can obtain a more scalable dy-
namic GCN model. The adaptation loss is formulated as

θ ← θ − γ ∂(Ls (Qs) + βLt (Qt))

∂θ
, (10)

where the parameters θ (i.e., Θ ) is optimized to quickly
adapt the model to changes on node attributes in the dynamic
graph. The γ is the learning rate of the model, and β denotes
the balance coefficient between two task losses.

Experiment and Discussion
We conduct experiments on three real-world datasets,
including WikiMaths, EnglandCovid, and PedalMe. We
present a controlled comparison of our model against dy-
namic GCN methods, including GConvGRU, GConvLSTM,
DCRNN, EvolveGCNH, and TGCN. All detailed informa-
tion about datasets and baselines refer to (Rozemberczki,
Scherer, and Yixuan He 2021). We evaluate the test perfor-
mance with the mean squared errors (MSE). We repeat all
experiments with 10 random seeds and report the mean with
standard deviation.

Models
Datasets

WikiMaths EnglandCovid PedalMe

GCN 0.8211±0.03 0.9723±0.06 1.1512±0.09
GConvGRU 0.7931±0.02 0.9412±0.02 1.2016±0.07

GConvLSTM 0.7991±0.02 0.9541±0.03 1.2141±0.06
DCRNN 0.8061±0.01 0.8323±0.06 1.2213±0.05

EvolveGCNO 0.7783±0.02 0.9793±0.03 1.2013±0.09
TGCN 0.7875±0.02 0.8587±0.12 1.2515±0.08

meta-DGCN 0.7650±0.01 0.5411±0.03 1.0106±0.03

Table 1: Forecasting error is given by MSE on three real-
world datasets. The bold denotes the best results.

The results of MSE show that our model performs com-
parably with state-of-the-art methods. We argue that meta-
DGCN provides the fast and best result in node attribute
forecasting for the following three main reasons: 1) We uti-
lize the GCN layer, and a gating mechanism can obtain high-
quality node embeddings, which has laid a good founda-
tion for the calculation of the following meta space-temporal
tasks. 2) The spatial-temporal interaction between nodes can
be captured by the spatial and temporal tasks, which can well
reflect the changes and development trends of the dynamic
graph. 3) Meta optimization mechanism integrates spatial
and temporal tasks into dynamic GCN, enabling the model
to adapt to various dynamic changes.

Conclusions
This paper presents meta-DGCN, which utilizes meta-
learning to enhance dynamic GCN for forecasting node at-
tributes. We innovatively construct support sets and query
sets to integrate spatial and temporal tasks into the dy-
namic GCN learning. Experiments demonstrate the supe-
riority of meta-DGCN over the current advanced methods.
Meanwhile, the research of meta-learning for dynamic GCN
remains in its infancy, and its application in dynamic graphs
is worthy of further exploration.
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