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Abstract

Modern social networks are dynamic in their nature; new
connections are appearing and old connections are disappear-
ing all the time. However, in our algorithmic and complexity
studies, we usually model social networks as static graphs.
In this paper, we propose a new paradigm for the study of
the well-known TARGET SET SELECTION problem, which is
a fundamental problem in viral marketing and the spread of
opinion through social networks. In particular, we use tempo-
ral graphs to capture the dynamic nature of social networks.
We show that the temporal interpretation is, unsurprisingly,
NP-complete in general. Then, we study computational com-
plexity of this problem for multiple restrictions of both the
threshold function and the underlying graph structure and
provide multiple hardness lower-bounds.

Introduction
In this work, we propose a new paradigm for studying the
well-known TARGET SET SELECTION problem (TSS for
short) of Kempe, Kleinberg, and Tardos (2015), which is a
fundamental problem in the area of viral marketing and the
spread of opinion on social networks. Nevertheless, applica-
tions in medicine, social and life sciences, distributed com-
puting, and other areas were found.

The TARGET SET SELECTION problem can be, following
the threshold formulation of Kempe, Kleinberg, and Tardos
(2015), described as follows. We are given a social network
modelled as a simple undirected graph G = (V,E), where
V is a set of agents, a threshold function f : V → N that
represents the resistance of an agent v ∈ V to be influenced
by our marketing, and a budget k ∈ N. An agent v ∈ V is
willing to buy our product if at least f(v) of his neighbours
already have this product. Our goal is to select at most k
agents that initially receive the marketed product (e.g., for
free) to ensure that, in the end, all agents are influenced and
own the product.

We observe that the static graph as a model of a social net-
work is perforce simplistic. Real-life networks are seldom
static; they change quite often over time – new connections
appear and some old ones disappear again; they are sort of
dynamic or time-varying. This forces us to initiate the study
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Figure 1: Example of a temporal graph G with lifetime two
and its underlying graph. In the underlying graph G↓, edges
are labelled with time-labels in which they are active.

of the TARGET SET SELECTION problem in more dynamic
environments, which, according to us, captures the real-life
behaviour of agents and social networks more realistically.

It is worth mentioning that the generalisation of funda-
mental problems from AI, ML, and computer science to
more dynamic settings have occupied the attention of both
theorists and practitioners in the last years; to name at least a
few, see, e.g., recent works of Hamm et al. (2022); Deligkas
and Potapov (2020); Mertzios, Molter, and Zamaraev (2019)
and the references therein.

Temporal Graphs

We model time-varying networks as temporal graphs.
Roughly speaking, a temporal graph is a graph that is subject
to discrete changes over time. Temporal graphs have also
been studied under different names, such as dynamic, evolv-
ing, or time-varying graphs.

Formally, the temporal graph is a pair G = (G↓, λ),
where G↓ = (V,E) is a simple undirected underlying graph
and λ : E → 2N is a time labelling function that assigns to
each edge a set of discrete time-labels in which the edge
is active. In this paper, both the underlying graph and the
sets of time labels are finite. It follows that there exists
ℓ = max{t ∈ λ(e) | e ∈ E} called a lifetime of G. We call
the graph Gi(G) = (V,Ei), where Ei = {e | i ∈ λ(e)}, the
i-th layer of the graph G. We omit (G) if the temporal graph
is clear from the context. For an illustration of a temporal
graph, we refer the reader to Figure 1.
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Figure 2: A running example of the TEMP-TSS influence
process. All agents have threshold 2 and the budget is set
to k = 2. Influenced agents are filled and the agents in T
are depicted as square boxes. In the first round, the bottom
left agent becomes influenced as two of his neighbours are
already influenced. In the second round, there is no addition-
ally influenced agent since v has only one neighbour in this
time-step. In the last round, the agent v becomes finally in-
fluenced.

The Model
We formally capture a notation of TARGET SET SELECTION
in temporal graphs using the TEMPORAL TARGET SET SE-
LECTION problem (TEMP-TSS for short) which is defined
as follows.

The input of the problem is a temporal graph G = (G↓ =
(V,E), λ), a threshold function f : V → N, and a bud-
get k ∈ N. Our goal is to decide whether there is a target-
set T ⊆ V of size at most k such that the following dynamic
process:

P0 = T and Pi = Pi−1∪{v | f(v) ≤ |NGi(v)∩Pi−1|},

where NGi(v) represents a set of neighbours of agent v
in the graph Gi, influences all the vertices in V , that
is, Pℓ = V . For a running example of the process, we refer
the reader to Figure 2.

Our Results
We mainly study the problem from a computational com-
plexity perspective. Since the static TSS problem is notori-
ously hard both from the computational complexity and ap-
proximation algorithms’ perspective, it is not surprising that
the TEMP-TSS problem is also computationally hard.

In particular, we are able to show that the TEMP-TSS
problem is NP-complete. To show the hardness, we re-
duce from the original TSS problem. It is known that every
spreading process in static TSS ends in at most n rounds.
Therefore, we can reduce the static case to TEMP-TSS by
creating n-layer temporal graph such that all layers are equal
to the static social network of the TSS problem instance.

It follows from the reduction that all lower-bounds known
for the TSS problem directly carry over to our problem.
However, this is not the case for algorithmic upper-bounds.
Therefore, we mainly focus on studying the computational
complexity of restrictions, where static TSS is solvable in
polynomial time.

The first way to tackle the complexity of the TSS prob-
lem is to restrict the threshold function. If the thresholds of
all agents are equal to 1, then the static variant is trivially

solvable by adding one agent from every connected compo-
nent to the target-set. For the temporal case with the same
setting, we have the following result.
Theorem 1 It is NP-complete to solve TEMP-TSS even if
all thresholds are equal to 1 and the lifetime of the temporal
graph is 2.

To show this lower-bound, we give a reduction from the
SET COVER problem. Assuming the SETH, we also obtain,
as a corollary of Theorem 1, that for all ϵ < 1 TEMP-TSS
cannot be solved in time 2ϵknO(1).

Next, we turn our attention to cases where the under-
lying graph is restricted. For example, there is a trivial
polynomial-time algorithm for TSS on complete graphs.For
TEMP-TSS, we show that a polynomial-time algorithm is
unlikely.
Theorem 2 It is NP-complete to solve TEMP-TSS even if
all thresholds are at most 2 and the underlying graph is a
complete graph.

Conclusions and Future Work
In this paper, we initiated the study of the TEMPORAL TAR-
GET SET SELECTION problem, which is an analogy of TSS
in dynamic social networks. We provide intractability results
from the computational complexity perspective for fairly
limited settings. As our results are mostly negative, it fol-
lows that a different perspective is needed in order to obtain
some tractability results. In particular, as a natural next step,
we would like to investigate the problem deeply from the
viewpoint of parameterised complexity and approximations.

Last but not least, our variant of the problem is arguably
the simplest generalisation of static TSS to dynamic net-
works. One of the versions that researchers should not
overlook is a variant in which even the preferences of the
agents may vary over time. In many real-world scenarios,
the launch of a new product is accompanied by an advertis-
ing campaign designed to convince people to buy. However,
this purchase conviction declines over time. Sellers can raise
interest again, for example, by providing a discount.

Acknowledgements
This work was supported by the Czech Science Founda-
tion project nr. GA22-19557S, the OP VVV MEYS funded
project CZ.02.1.01/0.0/0.0/16 019/0000765 “Research Cen-
ter for Informatics”, and by the Grant Agency of the CTU in
Prague grant No. SGS20/208/OHK3/3T/18.

References
Deligkas, A.; and Potapov, I. 2020. Optimizing Reachability
Sets in Temporal Graphs by Delaying. In AAAI ’20.
Hamm, T.; Klobas, N.; Mertzios, G. B.; and Spirakis, P. G.
2022. The Complexity of Temporal Vertex Cover in Small-
Degree Graphs. In AAAI ’22.
Kempe, D.; Kleinberg, J.; and Tardos, É. 2015. Maximizing
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