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Abstract

Source localization, as a reverse problem of graph diffusion,
is important for many applications such as rumor tracking,
detecting computer viruses, and finding epidemic spreaders.
However, it is still under-explored due to the inherent uncer-
tainty of the diffusion process: after a long period of prop-
agation, the same diffusion process may start with diverse
sources. Most existing solutions utilize deterministic mod-
els and therefore cannot describe the diffusion uncertainty
of sources. Moreover, current probabilistic approaches are
hard to conduct smooth transformations with variational in-
ference. To overcome the limitations, we propose a proba-
bilistic framework using continuous normalizing flows with
invertible transformations and graph neural networks to ex-
plicitly model the uncertainty of the diffusion source. Experi-
mental results on two real-world datasets demonstrate the ef-
fectiveness of our model over strong baselines.

Introduction

Graph diffusion prediction is an important task in social net-
works and graph mining, which aims to unveil the propa-
gation patterns of information and predict its future state.
On the contrary, source localization is a reverse problem of
graph diffusion and tries to identify the source(s) of the ob-
served diffusion process. Source localization plays a key role
in many practical situations, such as misinformation/rumor
detection in social networks, epidemic control of infectious
diseases, and isolated failures in smart grids.

Although prior studies have made significant improve-
ments on source localization, they still face several chal-
lenges. First, most of the existing methods focus on deter-
ministic learning to solve the problem, which are unable to
handle the diffusion uncertainty of the source. For example,
different diffusion sources can generate the same diffusion
observations after a long time interval, making the diffusion
pattern matching a hard problem for the model to solve. Sec-
ond, current probabilistic methods are inadequate to conduct
smooth transformations between latent space and data dis-
tribution with variational inference models. When the diffu-
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Figure 1: The proposed method consists of two phases. The
training phase constructs the graph diffusion model, and the
inference phase infers sources from diffused observations.

sion graph grows large and becomes complex, transforming
the data distribution to multivariate Gaussian is challenging.
In this work, we propose a probabilistic graph diffusion
method for source localization, which tackles the uncer-
tainty problem and learns the diffusion patterns using deep
generative model and graph neural networks (GNNs). The
overall framework of our method is depicted in Figure 1.

Methodology

Problem Definition Give an undirected graph G
(V,E), where V is the set of nodes and F is the set of
edges. Let Y = {y;}; € RIVI be the infection state vec-
tor. y; = 1 if the node ¢ is infected, and y; = 0 other-
wise. Let X = {z;} € RIVI be the diffusion source vector,
x; = 1 if the node i is the source node and z; = 0 oth-
erwise. Due to the highly uncertain process of the diffusion,
we build a probabilistic model p(X|Y") to explicitly measure
the uncertainty. Since the diffused observation Y depends
on the graph topology G, we have the conditional probabil-
ity p(XY, G) according to Bayes rules. The graph diffusion
source localization problem can be defined as a Maximum
A Posterior (MAP) estimation problem:

X = maxp(X|Y, G) = maxp(Y|X, G)p(X)

(D

where X denotes the predicted source vector.



Training Phase Estimating the distribution of diffusion
source nodes p(X) is difficult according to Eq. (1). Hence,
we leverage a deep generative model (Kingma, Welling
et al. 2019) to map the high-dimensional p(X) into low-
dimensional p(Z), where Z € R? is the latent random vari-
able vector. The posterior p(Z|X, Y, G) can be used to infer
the latent variable Z, but p(X) is intractable. We instead ap-
proximate the posterior gg(Z|X,Y, G) parameterized by 0,
i.e., we compute the KL-divergence between p(Z|X,Y, G)
and ¢9(Z|X,Y,G). Since in most of the graph diffusion
cases the latent variable Z is independent of the diffused
observation Y (Ling et al. 2022), the posterior ¢(Z|X,Y, G)
and likelihood p(X,Y, G|Z) can be simplified as ¢(Z|X)
and p(Y| X, G)p(X|Z), respectively.

We then exploit an invertible neural network called
FFJORD bijector Fy (Grathwohl et al. 2019) in the gener-
ative model to parameterize the distribution p(X'), which
conducts a series of smooth and invertible transformations
between the latent Z and target X. The bijector Fy consid-
ers a continuous transformation from latent state z(tg) to
z(t1) as follows:

logp(z(t1)) = log p((t0)) — /t 1 Tr (8z(t)

The integration can be solved by ordinary differential equa-
tions. The objective function is:

Liain = Igu(bn { —Eq, [10gp¢(Y‘X7 G) + log pe (X|Z)]

+ Dk [g0(Z]X)||p(Z)]
— Eq, [log p(2(to)) —log p(z(t1))] }-

0% ) dt. (2)

3)
In practice, the posterior ¢o(Z|X) and the likelihood
po(X|Z) is parameterized by the FFJORD bijector Fy and
pe(Y|X, G) is modeled by the GNN.

Inference Phase Since the distribution p(X) is modeled
by p(Z) after training, we can solve the MAP in Eq. (1) via
p(X) = p(X|Z)p(Z). However, due to the computational
complexity of sampling Z from p(Z), we propose to sample
Z from the posterior ¢(Z|X). The objective function of the
inference phase is defined as:

ﬁinfer = H}%n{f log p¢(Y|X> G)

—log[pe(X|Z)qs(Z|X)]},

where X is the source vector from the training data. In prac-
tice, we sample an initial diffusion source X, from a bi-
nomial distribution in which the probability 7 is set to 0.5.
Then we optimize the value of X following Eq. (4).

“

Experiments

We conducted the experiments on two real-world source lo-
calization datasets Cora-ML and Power-Grid. We randomly
select 10% of nodes as the sources and simulate the infor-
mation diffusion process based on susceptible-infected (SI)
and susceptible-infected-recovery (SIR) algorithms.

We use three strong source localization models as the
baselines, including LPSI (Wang et al. 2017), GCNSI (Dong
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SI SIR

Dataset Method
Recall F1 Recall F1
LPSI 0595 0247 0478 0.175
GCNSI 0362 0178 0338 0.173
CoraML ¢ "VAE 0899 0697 0562 0611
Ours 0.949 0725 0950 0.726
LPSI 0495 0474 0472 0478
.. GCNSI 0348 0210 0237 0.153
PowerGrid ¢/ "VAE 0932 0721  0.646  0.665
Ours 0963 0731 0944 0.734

Table 1: Performance comparison of our model and base-
lines on two datasets under SI and SIR diffusion algorithms.

et al. 2019), and SL-VAE (Ling et al. 2022). Following pre-
vious studies, we use Recall and F1-Score as the evaluation
metrics, as source localization is in essential an unbalanced
classification problem that needs to retreive the source node
from many other nodes.

We evaluate the performance of our model and compare it
with other source localization approaches under both ST and
SIR diffusion algorithms, the results are shown in Table 1.
We can see that our model significantly outperforms LPSI
and GCNSI and achieves non-trivial improvements against
SL-VAE in terms of both metrics. Besides, all three base-
lines are worse in SIR than in SI, because the diffusion pro-
cess of SIR is more complex than SI's. These results verify
our motivation of handling the uncertainties in graph diffu-
sion and source localization by constructing a probabilistic
model using continuous normalizing flows.
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