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Abstract

Crowdsourcing and weak supervision offer methods to effi-
ciently label large datasets. Our work builds on existing weak
supervision models to accommodate ordinal target classes, in
an effort to recover ground truth from weak, external labels.
We define a parameterized factor function and show that our
approach improves over other baselines.

Introduction
To keep up with the labeled data demand of state-of-the-
art machine learning models, crowdsourcing and weak su-
pervision offer strategies to magnify the efficacy of humans
tasked with annotating data. Existing methods show promise
in classification tasks, but most methods tend to assume a
non-ordinal nature of target classes (Ratner et al. 2016). Our
work extends current weak supervision models to accom-
modate ordinal labeling, unlocking a new set of real-world
application contexts that stand to benefit.

Our application context involves human-autonomy team-
ing in space habitats, where the goal is for AI and humans
to cooperate to achieve mission goals. For successful team-
ing, it is important to consider how changes of human cog-
nitive states (e.g., situation awareness) impact mission suc-
cess, and how such states might be tracked. Specifically, we
aim to predict cognitive states of astronauts in training, such
as trust, mental workload, and situation awareness (TWSA),
which are measured on ordinal scales. The ability to pre-
dict cognitive states from unobtrusive measures is vital since
crew members cannot be queried while performing criti-
cal tasks. Current approaches for measuring cognitive states
generally use subjective questionnaires, which are obtrusive
to administer in operational contexts (Kintz et al. 2022) and
expensive and time-consuming to collect. Thus, we consider
using only weak, external cognitive state labels provided
by secondary observer judgements or programmatic label-
ing functions.

We develop new methodology to handle the ordinal na-
ture of the label space and to be able to learn from approxi-
mate, weak labels (Ratner et al. 2016)–as opposed to human
crowd-sourced labels. Apart from data collection and adju-
dication, the core technical problem we address is to derive
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an estimate of the unobserved gold-standard labels purely
based on weak, external labels.

Data Collection and Initial Analysis
We are interested in modeling cognitive workload, which is
assessed using the modified Bedford scale, a standard mea-
sure in the field of human factors. It is a uni-dimensional
rating scale designed to identify operators’ spare mental ca-
pacity while completing a task. Using the Bedford scale, a
user rates perceived workload at one of 10 different descrip-
tive levels.

Our aim is ultimately to be able to predict cognitive states
of astronauts in operational settings, without requiring them
to complete questionnaires. This is done by having external
judges or automated rules gauge the operators off-line, sim-
ulating a crew-member’s cognitive state being assessed by
judges on the ground, who have additional time compared
to the strict schedules of astronauts. For evaluation, our al-
gorithm predictions will be compared to the gold-standard
(but obtrusive) questionnaire responses provided by partic-
ipants. The initial experiment consisted of video and audio
streams recorded of participants as they completed trials of
a simulated spaceflight-relevant task. Recordings obtained
from participants show where the participant was looking,
their facial expressions, the current task display, and their
body/posture. We use these recordings and provide them to
5 external judges. Judges met and discussed best practices
and general strategies for assessing cognitive workload in
this experiment. These judges were research personnel who
were familiar with cognitive state estimation and the exper-
iment setup. Judges then independently watched the record-
ings and completed the same subjective questionnaires that
participants provided. The cognitive workload ratings pro-
vided by judges from these recordings are combined with
data about participants’ actions from the experiment and
form our initial dataset.

To investigate the feasibility of using external observa-
tions to model unobserved ground-truth, we analyse the per-
formance of individual judges. We computed various met-
rics over the dataset, including the RMSE of judges weak
labels compared to the unobserved ground-truth. Initial anal-
ysis shows that external experts do in fact perform better
than random at predicting cognitive workload, see Table 1,
where we explored different notions of random predictions.
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Label Estimate RMSE
Uniform Random Prediction 3.675
Default model: predict global average 1.873
Worst Judge 2.041
Average Judge 1.929
Best Judge 1.732
Default label model: predict mean weak label 1.643

Table 1: Error associated with each method of estimating
ground truth labels.

On average, our five expert judges have a mean RMSE of
1.929, with the best judge scoring an RMSE of 1.732 and
the worst judge 2.255. Even naive aggregations of the ex-
pert votes produce improved predictions of the unobserved
ground truth. When we use the mean weak label to predict
workload, the RMSE drops to 1.643, better than the best ex-
pert. These results are promising for further improvements
using label models which estimate the errors the external
expert judges make in order to arrive at further improved
estimates of the unobserved ground truth.

A Factor Graph Label Model for Ordinal Data
To obtain improved estimates of the unobserved ground
truth, we sought to expand on existing approaches to mod-
elling weakly labeled data. Ratner et al. (2016, 2020) present
a factor-graph based method that focuses on modeling and
integrating noisy signals provided by a set of labeling func-
tions. The approach defines a factor graph which encodes
labelling propensity, accuracy, and pairwise correlations of
labelling functions. Inspired by this method, our algorithm
encodes the generative model pw(Λ, Y ), using the labeling
accuracy of the experts. Let Λ ∈ {1, . . . , 10}m×n denote the
matrix of weak labels for m samples annotated by n external
judges. Given the label matrix, for a given data point xi, ex-
pert j, and unobserved gold-standard label yi, the labelling
accuracy factor for a classification task is defined as follows:

ϕAcc
i,j (Λ, Y ) = 1{Λi,j = yi}

For a given data point xi, we define the vector of this factor
for all n experts as ϕi(Λ, Y ), and the corresponding param-
eter vector w ∈ Rn. This defines our model:

pw(Λ, Y ) = Z−1
w exp

(
m∑
i=1

w⊤ϕi(Λ, yi)

)
. (1)

To fit this model without access to the gold-standard la-
bels Y , we minimize the negative log marginal likelihood
given the observed label matrix Λ. We optimize this objec-
tive by interleaving stochastic gradient descent steps with
Gibbs sampling.

Ordinal Labels In our ordinal data setting, labels that are
closer together along the ordinal scale are more likely to be
confused. Therefore, we want to weight weak labels that are
off by small magnitudes similarly to correct weak labels,
which we achieve by introducing an alternative factor func-
tion. We define the following, parameterized factor function,

Best Judge Default Label Model Snorkel Ours
1.732 1.643 3.183 1.582

Table 2: Mental workload prediction performance (RMSE)
of label models, computed by comparison to ground-truth.

which replaces the accuracy factor function:

ϕOrd
i,j (Λ, Y ) =

1

1 + e|Λi,j−Yi|−δj

The error parameter δ is a vector, much like the w vector in
our objective function, and each entry is associated with the
error we allow for expert j. This parameter shifts the inverted
sigmoid function along the x-axis, where greater shifts or
greater δj values allow for greater errors to be made by ex-
pert j. The δ parameter can either be determined through do-
main knowledge about what constitutes a good and an ac-
ceptable weak label, or it can be learned based on Λ, since
ϕOrd is continuous, smooth, and differentiable. We do note
that, if one aims to learn δ, the objective is no longer convex.
Therefore, in many cases it might be better to have domain
knowledge inform the values δ, i.e., acceptable deviations
from the ground-truth.

Results
To identify ideal setting for our algorithm (learning rate,
number of iterations), we choose a learning rate that fits the
weak labels well and achieves a low negative marginal log
likelihood during training, and stop training early as the like-
lihood curve flattens out.

Our approach’s RMSE value of 1.582 represents an im-
provement over the best expert, who had an RMSE of 1.732,
over the data programmming method Snorkel (Ratner et al.
2020)–designed for classification–with an RMSE of 3.183,
and over the default label model predicting the mean weak
label with an RMSE of 1.643.
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C. 2016. Data Programming: Creating Large Training Sets,
Quickly. In Advances in Neural Information Processing Sys-
tems, 3567–3575.

16305


