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Abstract

We show hardness of learning AES key from pairs of ci-
phertexts under the assumption of computational closeness
of AES to pairwise independence. The latter is motivated by
a recent result on statistical closeness of AES to pairwise in-
dependence.

Introduction and Main Result
Advanced Encryption Standard (AES) is one of the most
popular encryption algorithms today. It underlies the TLS
1.3 protocol, which is used by most modern websites,
email services, instant messengers, etc. However, AES is
not based on any hard mathematical problem (or at least
we do not know there is one), and we currently have lit-
tle understanding of its provable security. A recent work
by Liu et al. (2021) shows that for a pair of distinct inputs
the corresponding pair of AES outputs is statistically close
to pairwise independence (i.e. statistically indistinguishable
from a pair of uniformly sampled distinct random n-bit
strings) under the assumption of independence and random-
ness of keys at each round. This rules out attacks based on
differential and linear cryptanalysis.

Let F : {0, 1}m × {0, 1}n → {0, 1}n be a permutation
family, denoted as Fk(x), where k ∈ {0, 1}m is a key, and
x ∈ {0, 1}n is an input. AES is a special case of F with
m ∈ {128, 192, 256} and n = 128. In this work, we prove
the resistance of a permutation family F to attacks based on
machine learning under the following
Assumption 1. For a pair of distinct inputs x and x′, and a
uniformly sampled key k, the distribution of the correspond-
ing pair [Fk(x), Fk(x

′)] is computationally indistinguish-
able from the uniform distribution of two random distinct
n-bit strings [u,u′], i.e. for any poly(n)-time algorithm D∣∣∣∣Prk [D(Fk(x), Fk(x

′)) = 1]− Pr
u,u′

[D(u,u′) = 1]

∣∣∣∣
≤ 1/poly(n) (1)

Note that the result of Liu et al. (2021) differs from Assump-
tion 1 in that we require only the initial key to be random, as
is the case in the real AES.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

We show that existence of a function computable in
poly(n) time that, given a pair of arbitrary ciphertexts, can
recover one of the keys consistent with those ciphertexts,
would result in a polynomial distinguisher that contradicts
Assumption 1. Our main result is the following
Theorem 1. Let x and x′ be arbitrary distinct n-bit strings
and assume there exists a function hx,x′ : {0, 1}2n →
{0, 1}m such that

hx,x′(y,y′) =

{
k, if ∃k : [Fk(x), Fk(x

′)] = [y,y′]

0, otherwise
,

(2)
and hx,x′ is computable in poly(n) time. Then for a random
uniform m-bit string k the distribution of [Fk(x), Fk(x

′)] is
computationally distinguishable from that of two uniformly
sampled distinct n-bit vectors.

Remark. Under Assumption 1 there is no efficient learner
for the class H := {hx,x′ | x,x′ ∈ {0, 1}n, x ̸=
x′}, where each hx,x′ is given by (2). If there were such
a learner, then by sampling uniformly at random ℓ =
poly(n) keys {ki}ℓi=1, and computing [Fki(x), Fki(x

′)],
we could generate a labeled training sample of pairs
([Fki

(x), Fki
(x′)],ki), which should suffice for our learner

to figure out an (ϵ, δ) approximation (in PAC sense) of hx,x′ ,
which by Theorem 1 would result in a polynomial time dis-
tinguisher that contradicts Assumption 1.

Proof of Theorem 1
Fix arbitrary distinct x,x′ ∈ {0, 1}n, and let hx,x′ be
defined by (2). Consider Algorithm 1, which we denote
Dx,x′(y,y′) for brevity. Randomly pick k from a uniform
distribution over {0, 1}m. Feeding Fk(x), Fk(x

′) as input
to Dx,x′ , Line 1 produces κ such that Fκ(x) = Fk(x) and
Fκ(x

′) = Fk(x
′). Thus Line 2 gives us

ξ ← F−1
κ (Fk(x)) = F−1

κ (Fκ(x)) = x,

ξ′ ← F−1
κ (Fk(x

′)) = F−1
κ (Fκ(x

′)) = x′,

and the algorithm outputs 1. Hence

Pr
k
[Dx,x′(Fk(x), Fk(x

′)) = 1] = 1 (3)

Now randomly pick n-bit strings u, u′ without replace-
ment from the uniform distribution over {0, 1}n and feed
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Algorithm 1: Distinguisher
Input: y,y′ ∈ {0, 1}n s.t. y ̸= y′

Parameter: x,x′ ∈ {0, 1}n s.t. x ̸= x′

1: κ← hx,x′(y,y′)
2: ξ ← F−1

κ (y), ξ′ ← F−1
κ (y′)

3: if ξ = x and ξ′ = x′ then
4: return 1.
5: else
6: return 0.
7: end if

them as input to Dx,x′ . Intuitively, in this case the event
A := {hx,x′(u,u′) ̸= 0} has low probability. Let us up-
perbound the latter using the union bound:

Pr[A] = Pr
u,u′

[hx,x′(u,u′) ̸= 0]

= Pr
u,u′

[∃κ ̸= 0 : [Fκ(x), Fκ(x
′)] = [u,u′]]

= Pr
u,u′

⋃
κ̸=0

[Fκ(x), Fκ(x
′)] = [u,u′])


≤

∑
κ̸=0

Pr
u,u′

[[Fκ(x), Fκ(x
′)] = [u,u′]] (4)

Notice that [Fκ(x), Fκ(x
′)] is a fixed 2n-bit string, and the

joint p.d.f. of u,u′ has the form

Pr
u,u′

(u = υ,u′ = υ′) =
1

2n(2n − 1)
, υ ̸= υ′. (5)

Combining (4) and (5), we have

Pr
u,u′

[A] ≤
∑
κ̸=0

1

2n(2n − 1)
=

1

2n
. (6)

When hx,x′(u,u′) = κ ̸= 0, we have F−1
κ (u) = x,

F−1
κ (u′) = x′, and thus we can write

Pr
u,u′

[Dx,x′(u,u′) = 1 | A] = 1 (7)

Now we turn to the event when hx,x′(u,u′) outputs the
zero key. This happens if one of the following events oc-
curs: B := {hx,x′(u,u′) = 0} ∩ {[F0(x), F0(x

′)] =
[u,u′]}, or C := {hx,x′(u,u′) = 0} ∩ {∄κ ∈ {0, 1}n :
[Fκ(x), Fκ(x

′)] = [u,u′]}.
By Eq. (5), we have

Pr
u,u′

[B] ≤ Pr[[F0(x), F0(x
′)] = [u,u′]] =

1

2n(2n − 1)
.

(8)
In the event B, we have [F−1

0 (u), F−1
0 (u′)] = [x,x′], and

thus Alg. 1 produces 1 in this case, i.e.
Pr
u,u′

[Dx,x′(u,u′) = 1 | B] = 1. (9)

In the event C, hS(u,u
′) outputs 0 which is not a key that

maps [x,x′] to [u,u′] under AES, and we have
Pr
u,u′

[Dx,x′(u,u′) = 1 | C]

= Pr
u,u′

[F−1
0 (u) = x, F−1

0 (u′) = x′ | C]

= Pr
u,u′

[u = F0(x),u
′ = F0(x

′) | C] = 0 (10)

Now we can decompose the probability that Dx,x′(u,u′)
outputs 1 as follows:

Pr
u,u′

[Dx,x′(u,u′) = 1]

= Pr
u,u′

[Dx,x′(u,u′) = 1 | A] · Pr
u,u′

[A]

+ Pr
u,u′

[Dx,x′(u,u′) = 1 | B] · Pr
u,u′

[B]

+ Pr
u,u′

[Dx,x′(u,u′) = 1 | C] · Pr
u,u′

[C]. (11)

Plugging (6), (7), (9), (8), (10) into (11), we have

Pr
u,u′

[Dx,x′(u,u′) = 1] ≤ 1 · 1

2n
+ 1 · 1

2n(2n − 1)
+ 0

=
2n − 1 + 1

2n(2n − 1)
=

1

2n − 1
. (12)

Finally, combining (3) and (12), we get∣∣∣∣Prk [Dx,x′(Fk(x), Fk(x
′)) = 1]− Pr

u,u′
[Dx,x′(u,u′) = 1]

∣∣∣∣
≥ 1− 1

2n − 1
,

which means that Alg. 1 is a poly(n)-time distinguisher be-
tween the distribution of [Fk(x), Fk(x

′)] and the distribu-
tion of two distinct random n-bit strings, and this concludes
the proof.

Conclusion
Inspired by the recent result of Liu et al. (2021) on statistical
closeness of AES to pairwise independence under random-
ness of all round keys, we make a relevant assumption on
computational closeness of AES to pairwise independence
under randomness of just the initial key. Under this assump-
tion we prove the resistance of AES against attacks based on
machine learning algorithms that aim to recover AES key
from pairs of ciphertexts. Our proof is elementary and uses
only college-level probability. We argue that Assumption 1
is realistic and is a reasonable alternative to common cryp-
tographic assumptions such as existence of a one-way func-
tion.
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