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Abstract

Intentionally crafted adversarial samples have effectively ex-
ploited weaknesses in deep neural networks. A standard
method in adversarial robustness assumes a framework to de-
fend against samples crafted by minimally perturbing a sam-
ple such that its corresponding model output changes. These
sensitivity attacks exploit the model’s sensitivity toward task-
irrelevant features. Another form of adversarial sample can
be crafted via invariance attacks, which exploit the model
underestimating the importance of relevant features. Previ-
ous literature has indicated a tradeoff in defending against
both attack types within a strictly ℓp bounded defense. To pro-
mote robustness toward both types of attacks beyond existing
adversarial training methods, we propose circumventing Eu-
clidean norms with a regularized angular loss function to bet-
ter distinguish between natural samples and adversarial sam-
ples. Our preliminary results indicate that regularizing over
invariant perturbations in our framework improves combined
invariant and sensitivity defense.

Introduction
Adversarial robustness can be motivated by the canonical
comparison between two seemingly identical images of
a panda. One image, however, contains an imperceptibly
small perturbation that results in a completely different
image classification (Goodfellow, Shlens, and Szegedy
2015). Such adversarial attacks exploit a model’s sensitivity
to features that it considers highly important to the learning
task but are actually of little significance (Tramèr et al.
2020). However, a less studied class of adversarial samples
exploits a model’s invariance to relevant features.

Ensuring safety in machine learning algorithms requires
the field of adversarial robustness to be keen on examining
new forms of attack and subsequent mitigation strategies.
Tramèr et al. (2020) explore invariance attacks and observe
a fundamental tradeoff in defending sensitivity and invari-
ance attacks when considering the neural networks as pre-
sented in Jacobsen et al. (2020). Furthermore, Tramèr et al.
(2020) find that using common adversarial training frame-
works that rely on ℓp perturbations to improve robustness
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toward sensitivity attacks necessarily worsens robustness to-
ward invariance attacks. Augmenting training solely with
these constraints in Euclidean space causes the model to be-
come increasingly invariant towards task-relevant features.

Navigating this trade-off has not been explored in
non-Euclidean spaces. In this study, we propose an adver-
sarial framework that deviates from creating perturbations
under Euclidean norms. To do this, our model learns a
geometrically-meaningful distance metric using an angular
loss. This approach allows us to produce adversarial sam-
ples anchored outside a Euclidean ℓp bounded ball, which
allows us to simultaneously regularize over both invariance
and sensitivity attacks.

Sensitivity and Invariance Adversarial Attacks
Let us consider a classification task with samples (x, y) ∈
Rdx{1, ..., C} ∼ D. Let us also consider a ground truth
labeling oracle O : Rd → {1, ..., C}.

Definition 1 (Sensitivity Adversarial Example) Given
some classifier f , and a correctly classified input
(s, y) ∼ D, an ϵ-bound sensitivity adversarial exam-
ple is an input x∗ ∈ Rd such that:

1. f(x∗) ̸= f(x).
2. ||x∗ − x|| ≤ ϵ.

Definition 2 (Invariance Adversarial Example) Given
some classifier f , and a correctly classified input
(s, y) ∼ D, an ϵ-bound invariance adversarial exam-
ple is an input x∗ ∈ Rd such that:

1. f(x∗) = f(x).
2. O(x∗) ̸= O(x) and O(x∗) ̸= ⊥.
3. ||x∗ − x|| ≤ ϵ.

Note that the above formulation and definitions mirror
those found in Tramèr et al. (2020). A significant assump-
tion required for Definition 1 is that for all x and associated
perturbations x∗, if ||x∗ − x|| ≤ ϵ, then O(x∗) = O(x).
Informally, perturbations of magnitude less than ϵ preserve
the oracle’s labelling. As shown in Tramèr et al. (2020), it
is precisely the violation of this assumption that results in a
fundamental tradeoff between robustness toward these two
types of adversarial attacks.
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Adversarial Training Method AOrig ASA AIA

FGSM (Baseline) 99.02 98.95 85.67
Baseline + MLSA 99.38 99.17 82.49
Baseline + MLSA + MLIA 99.09 98.98 87.80

Table 1: Average Accuracy (A) over MNIST data across
three randomly seeded runs. ML is our metric learning norm
that uses different adversarial samples. SA and IA indi-
cate sensitivity or invariance samples, respectively. Regu-
larizing with angular triplet loss for both sensitivity and in-
variance attacks improves accuracy over invariance samples
with minimal impact on sensitivity accuracy.

Adversarial Metric Learning Framework
We employ a metric learning framework that learns a dis-
tance measure over embeddings in angular space. Previ-
ous results reflect a more flexible adversarial optimization
framework (Duan et al. 2018). While this study investigates
the use of metric learning in traditional adversarial defense
against sensitivity attacks, our study builds upon this frame-
work to defend against invariance attacks.

Our loss function, Lt, is defined as the classic triplet loss
found in (Mao et al. 2019), which creates a fixed margin
between the differences in the anchor sample and positive
and negative examples respectively. We define the distance,
D(·), as the angular distance between two samples in order
to encode the information in the angular metric space.

D(h(x(i)
a ), h(x(i)

p,n)) = 1− |h(x(i)
a ) · h(x(j)

p,n)|
∥h(x(i)

a )∥2∥h(x(j)
p,n)∥

(1)

We derive an adversarial training framework using the be-
low loss term by considering the anchor sample to be a nat-
ural image xa, a positive example to be a perturbed image
xp, and a negative sample to be an image xn from a different
class. We construct our loss function by including a sensitiv-
ity triplet loss regularization term, an invariance triplet loss
regularization term, and a feature norm. This forces adver-
sarial and natural samples closer together in learned space.

Lall =

N∑
i
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a ), h(x(i)
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n ))
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+
∑
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∥h(xt)∥2

(2)

Lce is cross entropy loss, Lsa uses sensitivity attacks for
positive class, Lia uses invariance attacks for positive class,
xp and xq are sensitivity and invariance perturbed samples
respectively, and λ1, λ2, λ3 are coefficients ∈ R+.

Experiments and Discussion
In our experiments we generate sensitivity attacks using
FGSM (Goodfellow, Shlens, and Szegedy 2015) and invari-
ance attacks using the method described in Tramèr et al.

(a) No Invariance (b) With Invariance

Figure 1: PCA plots showing difference in FGSM-perturbed
images with invariance regularizer.

(2020). We generate a single sensitivity attack and a single
invariance attack for each sample in the MNIST dataset.

Our results in Table 1 indicate that regularizing with sen-
sitivity and invariance attacks using an angular triplet loss
can improve performance against invariance attacks with
minimal loss in accuracy over sensitivity attacks. Our model
trained with sensitivity and invariance regularization outper-
forms the adversarial baseline which uses ℓp-bound norms.

After each model is trained, we extract the penultimate
layer and examine the learned embedding space with PCA.
Figure 1a shows the distribution of adversarial images with-
out invariance regularization. In comparison, when the in-
variance triplet regularizer is added, it is shown to be more
tightly grouped and circular (1b). This indicates our model’s
ability to better identify perturbed samples because they’re
grouped together. Overall these results imply that models
may be trained to resist both sensitivity and invariance at-
tacks without significantly sacrificing performance in one or
the other. For future work, we plan to expand this analysis
to more datasets and adversarial attacks.
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