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Abstract

Recent advancements in Generative Adversarial Networks
(GANS5) have made it possible to obtain high-quality face im-
ages of synthetic identities. These networks see large amounts
of real faces in order to learn to generate realistic looking syn-
thetic images. However, the concept of a synthetic identity for
these images is not very well-defined. In this work, we verify
identity leakage from the training set containing real images
into the latent space and propose a novel method, IdProv, that
uses image composition to trace the source of identity signals
in the generated image.

Introduction

Generative Adversarial Networks (GANs) (Goodfellow
et al. 2020) consume a large number of face images in or-
der to learn a latent representation for each image and gen-
erate synthetic images. Since the latent space is learnt by ob-
serving real faces during its training, it is possible that some
identity information from the training set can be “leaked”
into this learned space from which vectors are sampled and
decoded into faces. Identity leakage, if present, can pose a
privacy threat and has been preliminarily explored in ex-
isting literature. Tinsley et. al. (Tinsley, Czajka, and Flynn
2021), present a study utilizing face matching for real train-
ing image pairs and pairs containing one real and one syn-
thetic face image. The distribution of match scores estab-
lishes that identities of real faces used for training, leak into
the generated face images. To detect identity leakage using
existing matching approaches, we require some detectable
identity component of the real face signal in the synthetic
face. To investigate these concerns further, we examine the
provenance (Moreira et al. 2022) of this leakage for syn-
thetic face images with composite images. Generally, im-
age provenance for complex manipulated images i.e., query,
aims to analyze the evolution of the query image content
from its source images (ones that donated content). This
work considers the training images showing leakage to be
identity donors for synthetic images.

Methodology

Our method, IdProv, simulates identity composition scenar-
ios by systematically generating synthetic face images. We
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Synthetic composites

Retrieved real faces with most identity leakage for each composite
Figure 1: Top 3 real images with the most identity leakage
into synthetic composites having 2 synthetic parents.

describe the creation of our synthetic dataset, and the exper-
iments conducted on the same.

Data Generation for Experiments Composite face im-
ages are generated using the }V latent space of Style-
GAN2 (Karras et al. 2020). From a set of source images,
we randomly choose & images (parents), and use their la-
tent vectors [y, ...I[ € WV to obtain a composite latent vector
givenby l. = 1/k- Zle [;. Two types of source images are
considered - (i) synthetic, S sampled from W, and (ii) real,
R, selected from Flickr Faces High Quality (FFHQ) dataset.
For synthetic sources, £, = {I° € W} where the latent vec-
tors [® are randomly sampled. Whereas, Pivotal Tuning In-
version (Roich et al. 2022) is used to obtain the set of latent
vectors, L, = {I" € W} from the real sources. 10K images
are generated using both S and R for each k = {2, ..., 8}.

Retrieving Closest Real Faces Upon description using
a face matcher, the synthetic composites are subsequently
matched to the set of synthetic images S. From our ex-
periments, this yields a high number of false positives or
matches of composites with non-parents (see fig. 2a). For
each image in the set of false positives, the cosine dis-
tance is computed to each parent of the composite in the
set {p1,...,px} in the face recognition embedding space.
The image is subsequently associated with the closest par-
ent in the set. This leads to a set of false positives F(p;)
{f1,..., fn} for each parent. We constrain the size of |F| =
5, by considering the images with the lowest cosine distance
from p;. This diversifies the content that can match with the
sources. Finally, the parent p; and the false positives, F(p;)
are matched with the set of real images, R. This matching
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Figure 2: Cosine distance distributions between the true positives (TP) and negatives (TN) from the composite, made from S
in (a) and from R in (b). Also, (c) shows the distribution of the cosine distance of the closest real (CR) faces retrieved for a
synthetic composite, with the distributions from (b) for comparison. These results are for £ = 2 source faces.

results in cosine distances (for each p; and F(p;)), from the
real faces. We then select the 20 closest real faces to each p;
and f; € F(p;), namely I,,, and Iy,, f; € F(p;). Finally,
we find the closest real (CR) faces for the synthetic com-
posite, ..., as intersection of these sets of indices using the
following formula.

i€l,...k] fi€F(pi)
Results

Embeddings in the face recognition space are extracted us-
ing ArcFace (Deng et al. 2019). In our experiments, the
threshold used for obtaining successful matches is 0.68. The
distribution of cosine distance between each synthetic com-
posite to the embeddings of S are shown in Fig. 2a. There
is a significant overlap between the distributions of the co-
sine distance of the true positives (parents) and true nega-
tives (non-parent faces), implying large number of false pos-
itives. However, Fig. 2b shows that the match distributions
of real composites to their parents and the non-parent real
images are nearly identical. Observing both these distribu-
tions, we infer that for the large overlap in Fig. 2a to exist,
there must be some common identity features being shared
among the synthetic faces in S. This inference aligns with
the presence of large number of false positives. Thus, we
argue that the origin of these common identity features is
the training phase of the GAN, where it sees a large number
of real identities, which “leak” into the learned space. Fur-
ther, upon averaging, the leaked identities common across
the k parents, aggregate into the composite face. This is not
the case when we use real images, which have distinct iden-
tities. For real composites, averaging latent representations
simply averages their identities, with no semantic aggrega-
tion of identity features. To evaluate if this framework can
highlight specific identities, for each synthetic composite,
we retrieve leaking sources. The cosine distances for closest
real images retrieved for the full test set of synthetic compos-
ites, is depicted in Fig. 2c. The distributions show that our
method retrieves real images which are closer to a synthetic
composite than to their real composite. This verifies inherent
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Number of Parents, &

2 3 4 5 6 7 8
TP | 0.97 097 0.97 097 097 097 097
TN | 097 097 097 097 097 097 0.97
CR | 079 078 077 076 075 0.74 0.73
Table 1: We report the means for TP, TN for R and CR dis-

tributions for all & € [2,..8]. Fig. 2c shows the distribution
fork = 2.

identity leakage from the FFHQ training images into the W
space of StyleGAN2. Similar behaviour for higher values of
k is shown by the distribution means in Table. 1.

Conclusion

Identity leakage in GANSs can have an adversarial effect on
privacy of identities in the training set. This study success-
fully demonstrates the threat that StyleGAN2 poses to the
privacy of identities and proposes a novel method to retrieve
real identities present in a synthetic composite face image.
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