Failure-Resistant Intelligent Interaction for Reliable Human-AI Collaboration

Hiromu Yakura
Graduate School of Science and Technology, University of Tsukuba / Tsukuba, Japan
hiromu.yakura@aist.go.jp

Abstract
My thesis is focusing on how we can overcome the gap people have against machine learning techniques that require a well-defined application scheme and can produce wrong results. I am planning to discuss the principle of the interaction design that fills such a gap based on my past projects that have explored better interactions for applying machine learning in various fields, such as malware analysis, executive coaching, photo editing, and so on. To this aim, my thesis also shed a light on the limitations of machine learning techniques, like adversarial examples, to highlight the importance of “failure-resistant intelligent interaction.”

Introduction
My primary research interests are at the intersection of human–computer interaction and machine learning. In particular, I am focusing on how we can overcome the gap people have against machine learning techniques that require a well-defined application scheme and can produce wrong results. I acknowledge that a number of researchers have contributed to improving the accuracy of machine learning, but I believe that it is also important to investigate how humans can benefit from imperfect machine learning systems. In addition, to promote sustainable collaboration between humans and machine learning systems, we need to carefully design how the systems obtain feedback from and intervene in humans. Considering that an increasing number of machine learning systems are employed in many people’s daily lives, we need not only to improve machine learning itself but also to cultivate effective ways of leveraging it.

My previous projects are in line with this context; for example, the one on malware analysis support (Yakura et al. 2018b, 2019) focused on the gap that, while computer security experts wanted to automate costly analysis, the introduction of machine learning had not been so favored because it might put errors in analysis results that are used for forensic purpose. Then, instead of automated end-to-end analysis, I proposed a new approach that offers hints for experts who are beginning to analyze by highlighting characteristic behaviors using the attention mechanism. Another project proposing a music recommender to be used while working (Yakura et al. 2018a) stemmed from the gap behind the scientific result that people should listen to songs they feel mediocre for keeping concentrated. That is, it is difficult for humans to find their mediocre songs by themselves, while it is much easier for a recommender compared to finding their best songs. These projects guided me to the approach of recognizing the limitation of current technology and providing users with control to overcome the limitations, as follows.

Computational Support for Coaching
In executive coaching, coaches are required to analyze the nonverbal behavior of a coachee during a conversation, which is mentally demanding. We thus hypothesized that computationally analyzing such nonverbal behavior can help coaches. However, in the early attempts, we found that conventional methods based on supervised machine learning cannot consider the contextual semantics of the behavior and often contradicted the intuition of skilled coaches. Hence, we developed a dedicated system that captures sudden changes in coachees’ nonverbal behavior in an unsupervised manner using the Gaussian mixture model (GMM), as in Fig. 1. It presents a coach with cues but entrusts their interpretation to the coach to be free from the contradiction. We confirmed the effectiveness of this approach with expert coaches (Arakawa and Yakura 2019, 2020).

Practical Adversarial Examples
To overcome the gap between humans and machine learning, we also need to understand the limitations of machine
learning techniques. To this aim, I have worked on research about adversarial examples to reveal the risk of machine learning systems being intentionally misguided. Yakura and Sakuma (2019) showed that, by broadcasting a subtle noise, we can make deep-learning-based speech recognition devices in the physical world mistranscribe human utterances, which can result in abusing voice assistants. Yakura et al. (2020) showed that placing a moth-like patch on a STOP sign can make autonomous driving cars misrecognize it as Speed 80 (Fig. 2). It reveals the existence of the gap from another perspective; while human drivers would not feel the patch suspicious by assuming it to be a moth stopping on the sign, it can fool the cars as an adversarial example. Given that adversarial examples are common to deep learning models, this work emphasizes the importance of designing interactions in which humans can cope with such malfunction of machine learning by providing transparent control for users.

Explorable Content Editing

The importance of such transparent control is also emphasized in Yakura et al. (2021) that focused on the gap between deep-learning-based content editing techniques and the creative process of humans. Here, our design process is often exploratory, that is, an open-ended journey starting with an under-specified goal. Thus, “one-shot” editing provided by end-to-end techniques is not optimal for serving such a serendipitous process. In fact, many people are still enjoying editing photos using Instagram, exploring possible results, whereas state-of-the-art photo enhancement transfer methods can produce high-fidelity results. Given that, I reached the idea of letting users know how to obtain a stylized result in a tool they are familiar with, instead of providing only the stylized result (Fig. 3). In photo editing, users can know which transformations should they apply to what extent in order to obtain a stylized result, and then, they can enhance contrast or disable a specific filter. It is enabled by combining black-box optimization with a perceptual metric retrieved from a pretrained style transfer model. Importantly, this approach allows us to leverage various pretrained models accumulated via machine learning research.

Future Work

As described above, I have consistently worked on how to fill the gap between machine learning techniques and humans. Currently, I am working on investigating the effect of supporting intellectual tasks (e.g., writing texts or preparing presentations) using large language models, which includes not only making progress but also maintaining users’ task engagement (i.e., avoiding procrastination). For the latter purpose, models do not always have to be accurate but can produce some interesting or funny outputs, which makes their relationship with the users failure resistant.

Towards completing my thesis, I want to deepen the discussion about the principle of the interaction design that unifies all of my past projects. This requires a comprehensive perspective that bridges artificial intelligence and human-centered computing. In these few years, I relatively put more emphasis on the latter, as I conducted empirical research centered on semi-structured interviews (Yakura 2021). Thus, discussing with other doctoral students in the AI community certainly helps me to construct bold design principles.

References

