Multimodal Deep Generative Models for Remote Medical Applications

Catherine Ordun
University of Maryland Baltimore County
Dept. Information Systems
cordun1@umbc.edu

Abstract
Visible-to-Thermal (VT) face translation is an under-studied problem of image-to-image translation that offers an AI-enabled alternative to traditional thermal sensors. Over three phases, my Doctoral Proposal explores developing multimodal deep generative solutions that can be applied towards telemedicine applications. These include the contribution of a novel Thermal Face Contrastive GAN (TFC-GAN), exploration of hybridized diffusion-GAN models, application on real clinical thermal data at the National Institutes of Health, and exploration of strategies for Federated Learning (FL) in heterogenous data settings.

Introduction
Telemedicine experienced a renaissance during the Covid pandemic. However, many patients and providers are still constrained to the facets of a simple web-meeting experience, offering few personalized analytics. We speculate that one reason for the lack of innovation is the restriction of onboard computer and smartphone sensors. In particular, the RGB camera is limited to the visible spectra. If telemedicine applications could take advantage of signals residing outside of this band, for example the long-wave infrared (LWIR) spectrum (8 - 14um), greater information about a patient’s state of health could be obtained during a virtual consultation. Medical research in the well-studied field of thermal physiology provides this exact framework (Buddharaju et al. 2007; Pavlidis et al. 2007). Since LWIR detects heat emitted from the surface of the facial skin in complete darkness, signs of inflammation and anxiety can be visualized in a contact-free manner, all correlated to gold standard vital measures. Such information is hidden in the visible spectra, preventing physicians from assessing important clues about patient health. Unfortunately, the universal installation of LWIR sensors onto existing computers and smartphones is not feasible for numerous technical and economic reasons. Motivated by these observations, my thesis contributes new algorithms such as conditional Generative Adversarial Networks (cGAN) and related deep learning methods, so that AI can stand in as a proxy for thermal hardware. By taking an RGB image normally available on computer systems and translating it into a thermal image, these signs of patient stress and health can be visualized without needing a thermal sensor. My research is divided into three phases, described below: 1) Phase I - Visible-to-Thermal Facial GAN, 2) Phase II - Real Clinical Thermal Data, 3) Phase III - Thermal Generation with Federated Learning.

Phase I - Visible-to-Thermal Facial GAN
Before starting, I completed an overview of thermal AI limitations in facial emotion recognition (FER), in order to study the ethical impacts and biases in existing thermal datasets and studies (Ordun et al. 2020). This study armed me with greater knowledge towards ethical impacts as this research proceeds into Phase III. Although thermal-to-visible (TV) translation has been applied successfully for person re-identification in law enforcement (Mallat et al. 2019; Zhang et al. 2019, 2018), translating in the opposite direction of visible-to-thermal (VT) is more challenging since it requires mapping high frequency edges to lower frequency, smooth thermal textures. Further, the subject identity can be lost, in addition to poor geometric alignment of...
the face. To address these challenges, I completed the development of the Facial-Visible-to-Thermal GAN (favtGAN) (Ordun et al. 2021), proving that auxiliary sensor labels can improve generated thermal face quality, by conditioning the generator. I extended favtGAN into the Thermal Face Contrastive GAN (TFC-GAN) in order to improve thermal image quality, resolution, and perceptual clarity. TFC-GAN incorporates contrastive losses for regional patch and temperature differentiation. Fourier Domain losses to learn the signal domain, with a relativistic loss and anti-aliasing to promote shift invariance to the input visible image. It achieves up to an 81.15% FID improvement on highly diverse, challenging visible-thermal facial datasets.

I am currently incorporating an end-to-end pipeline to generate well-aligned thermal faces. The goal is to resolve severely misaligned facial pairs, a problem that plagues all VT/TV datasets since pre-paired sets are not available, through the use of spatial transformation networks (Jaderberg, et al. 2015) to automatically learn a deformation grid. More recently, I am exploring denoising diffusion implicit models (DDIMs) (Song et al. 2020), popularized by AI art applications such as Stable Diffusion, as an alternative thermal generation strategy as opposed to GAN. To this extent, my approach hybridizes GAN and the diffusion process. Phase I is 75% complete.

Phase II - Real Clinical Thermal Data

Existing pain instruments fail to accurately report chronic pain experienced by cancer patients, making it difficult for physicians to manage pain during the course of treatment. To this extent, I developed deep learning models for chronic cancer pain detection, using data I processed from an ongoing clinical trial at the National Institutes of Health (NIH) entitled Intelligent Sight & Sound (ISS) across 29 patients (Ordun, Cha et al. 2022). This dataset is the first of its kind and consists of multimodal extracts drawn from patient narrative videos - facial landmarks, audio statistics, audio spectrograms, text transcripts, and self-reported pain scores. It varies markedly from existing pain datasets (Lucey et al. 2011) since chronic pain is not acute (e.g. stimulated from muscular contractions) and thereby patients display subdued and hard-to-detect facial emotions. As mentioned in the Introduction, thermal imagery offers valuable insights that are invisible on RGB images such as signs of inflammation and stress - common symptoms of cancer chronic pain patients. To this extent, the clinical trial has been collecting thermal video during in-clinic patient visits. As a result, I plan to apply the TFC-GAN on real cancer thermal imagery, and deploy the model to operate against full-motion-video for near real-time thermal face generation. Phase II is 50% complete, where I am currently developing RGB video models with multimodal inputs and preparing the RGB-thermal data pairs for the GAN.

Phase III - Thermal Generation with FL

Recently, a handful of works in Federated Learning (FL) have explored how to federate RGB image-translation GANs (Li et al. 2022; Xie et al. 2022). Generative capacity, or the ability to output high resolution and diverse images, is a shared problem that is so far being investigated through different weighting mechanisms and distribution architectures for the generator and discriminator. However, these works use datasets like MNIST which are far simpler than human faces captured in the thermal distribution. This, coupled with the task of translating across optical spectra will undoubtedly expose challenges in the existing approaches to generative capacity. As a result, Phase III intends to offer new innovations by exploring a combination of different weighting schemes using simulations across heterogeneous batches of training data mimicking different patient devices. Phase III is the least developed and will require the most research effort.

Acknowledgments

I am especially grateful to my advisor, Dr. Sanjay Purohit, and co-advisor, Dr. Edward Raff, for their mentorship and expertise. Further, I wish to thank Booz Allen Hamilton for continued support towards my research.

References

