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Abstract

The SEND/RETURN (S/R) project is created to explore the
efficacy of content-based music recommendations alongside
a uniquely generated Unreal Engine 5 (UE5) virtual environ-
ment based on audio features. S/R employs both a k-means
clustering algorithm using audio features and a fast pattern
matching (FPM) algorithm using 30-second audio signals
to find similar-sounding songs to recommend to users. The
feature values of the recommended song are then commu-
nicated via HTTP to the UE5 virtual environment, which
changes a number of effects in real time. All of this is be-
ing replicated from a listen-server to other clients to cre-
ate a multiplayer audio session. S/R successfully creates a
lightweight online environment that replicates song infor-
mation to all clients and suggests new songs that alter the
world around you. In this work, we extend S/R by train-
ing a convolutional neural network using Mel-spectrograms
of 30-second audio samples to predict the mood of a song.
This model can then orchestrate the post-processing effect in
the UE5 virtual environment. The developed convolutional
model had a validation accuracy of 67.5% in predicting 4
moods (‘calm’,‘energetic’,‘happy’,‘sad’).

Introduction
In the task of music recommendation, mood recognition is
a key feature in understanding a piece of music. Previous
work has shown a link between personality traits and musi-
cal taste (Vuoskoski and Eerola 2011; Rentfrow and Gosling
2003; Zangerle et al. 2018), as well as genre (Ferwerda,
Tkalcic, and Schedl 2017), which makes further understand-
ing of psychological factors an important part of music rec-
ommender systems (MRS) (Schedl et al. 2018). While the
problem often “lacks a well-defined answer” (Kim et al.
2010), the classification of mood in music nonetheless is
a popular problem to solve. There are multiple approaches
used, such as contextual information, content-based, or hy-
brid approaches (Kim et al. 2010). This project continues to
focus on content-based methods, in order to avoid the com-
mon bias of MRS to lean towards more popular content (Fer-
raro et al. 2021).

The motivation for this project was to explore the efficacy
of using Mel-spectrograms in mood recognition of music.
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Given that the Mel scale is a near-human accurate repre-
sentation of audio (Stevens, Volkmann, and Newman 1937;
Stevens and Volkmann 1940) and has often been used in
similar work for music (Venkataramanan and Rajamohan
2019; Hsu, Chen, and Yang 2021), one would expect this to
continue into mood classification. This builds off our origi-
nal work which explores content-based music recommenda-
tions, in contrast to traditional user-based recommendations.
The overall aim is to find and use the most accurate repre-
sentation of audio samples to the human ear and anticipate
seeing the results reflect that accuracy.

Thayer’s model (Thayer 1990) is a popular choice for
emotion classification (Bischoff et al. 2009; Singh et al.
2012) and has been used for audio applications such as
playlist creation based on mood (Panda and Paiva 2011), ar-
tificial emotions forecasting (Salmeron 2012) and song visu-
alization (Kim et al. 2017). Mood prediction has previously
been done using valence values, specifically, arousal-valence
values (Kim et al. 2011; Delbouys et al. 2018). (Veas 2020)
predicts mood with ten of the features provided by Spotify:
length, danceability, acousticness, energy, instrumentalness,
liveness, valence, loudness, speechiness, and tempo. How-
ever, Spotify audio features may not always be readily avail-
able. This body of work aims to replicate the accuracy of
such models by solely using Mel-spectrograms which may
be effective in discerning music genres/sub-genres (Hsu,
Chen, and Yang 2021) as well as emotion in speech audio
(Venkataramanan and Rajamohan 2019).

Our project’s contribution is threefold: First, we created a
scalable virtual world for multiple users to experience music
together. This environment is generated using Unreal Engine
5 (UE5) with environmental effects and actors which are de-
termined by the currently playing song’s audio features. We
then provided song recommendations based on a fast pattern
matching (FPM) algorithm. Lastly, we developed a convolu-
tional model to control the environment’s post-processing
effect, based on the mood of the song being played.

SEND/RETURN Overview
The motivation of this project was to both improve existing
music recommendation algorithms and the song searching
experience. We wanted to create a new and unique way for
people to get together and experience new music; to create a
relaxed space to explore music and visually experience the
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difference between tracks, which is different from the way
we usually perceive new music.

This project solves both these issues, with a sophisticated,
yet robust, song recommendation algorithm and an experien-
tial multiplayer virtual experience. This allows users to find
new music alongside their friends wherever they are in the
world. This project also creates a unique way to experience
songs visually. One may even view songs they have listened
to in the past in a new light once they become aware of the
environmental changes that affect different songs.

Network Overview
SEND/RETURN (S/R) is comprised of three main com-
ponents: A Flask server, a virtual world executable, and a
Python script to generate new dataset entries using the Spo-
tify API. All three components work together to create the
uniquely generated experience powered by Unreal Engine 5.
Figure 1 illustrates the S/R server/client model created.

A Spotify scraper was created in Python that allows us
to gather data on a per-album basis. The data we gather in-
cludes 30-second previews for each song and a compiled list
of all audio features for each track in CSV format. Using the
Spotify scraper increased flexibility and was used to quickly
expand the dataset with a compiled list of album names, and
automate any data wrangling processes required to use the
data. The compiled information that is received from the
script is used to train our models and used as a reference for
key information within the Flask application for hosts. More
information about how we created the dataset is presented in
the following section. The original S/R project relies on the
‘valence’ feature provided by Spotify to control the mood
in the generated virtual environment. We propose a convo-
lutional model to predict the mood of each song and replace
this audio feature.

The Unreal Engine 5 multiplayer game framework pow-
ers the front-end of S/R by allowing a user to host a listen-
server for other people to join into. Within the listen-server,
all data is replicated using the game framework using Re-
mote Procedure Calls and client multicast replication. This
increases the scalability of the project as the host is the only
user that needs to set up and interact with the Flask server.
Using replication on our particle and post-processing sys-
tems allows clients to simply download the executable for
the virtual world and join listen-servers using a lobby list
browser or a direct IP connection. From the host’s system,
an input allows for song searching, and song submission data
is sent to the local Flask server in which our model returns a
JSON object that contains values that will be replicated to all
connected clients (Grinberg 2018). This is our lightweight
solution for S/R that makes it easy to jump in in and share
the discovery of new music with others.

The Flask server acts as an interface that handles data be-
tween our model and the virtual world that we built. Specif-
ically, Flask is used to map our model to API endpoints that
are called in Unreal using VaREST, an HTTP plugin. The
Flask application is designed to receive a string from the
Listen-server host and uses the Spotify API to find the cor-
rect 30-second preview for analysis. Our trained STUMPY
model will return a song name from our dataset and Flask

Figure 1: SEND/RETURN network diagram.

will utilize the YouTube API to find a direct link to the song
on YouTube.

Data returned from Flask is packaged up in a JSON
format that allows Unreal Engine 5 to parse the informa-
tion into the game world assets. With the returned object,
the ‘streamingurl’ parameter is set server-side in an audio
streaming asset found in the world and replicated to all con-
nected clients using multicasting. This creates a replicated
audio stream that all connected players can hear with audio
occlusion and reverb based on the environmental location in
the virtual world. Other data packaged in the returned JSON
object refers to the Spotify audio feature values for the re-
turned song, with the values being used to modify multi-
ple systems replicated from host to client, as outlined in Ta-
ble 1. The mapping of audio features to environmental ef-
fects was based on experimentation by the project’s design-
ers. We experimented in order to find the visual effect, which
this model dictates, that has the largest impact on human ex-
perience. Examples of these effects in the virtual world are
shown in Figure 2 and Figure 3 respectively.

With all of these systems in place, S/R successfully cre-
ates a lightweight online environment that replicates song
information to all clients and suggests new songs that alter
the world around you.

Song Recommendation
Song recommendation in S/R supports two algorithms: k-
means clustering of audio features and STUMPY’s (Law
2019) fast pattern matching (FPM) of audio signals. The in-
put song can be any song that is searchable in Spotify’s API,
and the algorithms return a song from our created dataset.
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Figure 2: Example of S/R environment effect changes based
on audio features. The falling fireworks are associated with
a low-energy song.

Figure 3: Example of S/R environment effect changes based
on audio features. The bright blue post-processing effect is
associated with a high-tempo song.

Audio Feature Environmental Effect Data Type
Mode Moon Color bool (m,M)
Tempo Post-Processing Effect int (bpm)
Time Signature Blueprint Shader int (3 to 7)
Valence Player Model/Darkness float (0 to 1)
Energy Firework Projectile float (0 to 1)
Danceability Meteor/Firework Count float (0 to 1)

Table 1: Unreal Engine environmental effects and their cor-
responding audio features. Mode’s data type is either minor
(m) or major (M).

Note that k-means clustering is the only algorithm that re-
lies on audio features provided by Spotify.

Both k-means and FPM are clustering algorithms that
employ unlabeled data and aim to separate songs into n
groups of similar within group statistics. The k-means uti-
lizes Lloyd’s algorithm to find centroids that minimizes
within-cluster sum of squares (Lloyd 2019). FPM is a clus-
tering algorithm that is designed to efficiently work on
time series data. It relies on calculating the matrix profile
to compute the distances between time-series signals us-
ing Mueen’s Algorithm for Similarity Search (Mueen et al.
2022).

The k-means clustering algorithm runs much quicker (∼5
seconds, including communication) than the FPM (up to
∼30 seconds, including communication). However, based
on our qualitative feedback from student demos, FPM far
outperforms k-means clustering when it comes to users feel-
ing the recommended song is similar to their input song. For
this reason, we focused on developing the FPM algorithm
over k-means and set FPM as the default choice in the app.

The k-means clustering algorithm clustered all the songs
in our dataset randomly into 50-250 clusters and was trained
on the Spotify audio features of each song in our dataset.
It then found the nearest cluster for the input song, based
on its audio features, and randomly chose a song from the
nearest cluster. The reliance on randomness of this algorithm
is likely one of the reasons it failed to recommend similar
sounding songs, according to user feedback.

In contrast, FPM utilizes the audio signal (in lieu of au-
dio features generated by Spotify) to find the input song’s
closest matching pattern(s) in our dataset. In order to keep
recommendation times below 30 seconds, the audio signals
were down-sampled before pattern matching. Another limi-
tation of this approach is that the algorithm searches through
the entire dataset of songs, which means recommendation
time would increase as the dataset size increases. FPM uses
matrix profiles to reduce the time complexity to O(log(n)),
but it may eventually run into run-time issues even if we
move our algorithm to a system with higher specifications.
While 30-second computation time is higher, we generally
have about three minutes to select the next song and could
reduce computation times further with caching.

Since FPM proved more successful with pairwise match-
ing, we tested pairwise k-means clustering and found it to
perform worse than larger numbered clusters.

During a project showcase at our University, we set up a
demo station with VR glasses and collected qualitative feed-
back from approximately ten users. The users donned the
headset, searched for a song of their choosing and our al-
gorithm provided a similar song from our dataset and al-
tered the virtual environment accordingly. All of the users
who tested our project demo preferred the recommendations
generated by FPM over k-means. Most of the limitations of
our recommendation came when our dataset did not include
a similar song to match a user’s search preferences. For in-
stance, if a user chose a genre not defined in our dataset, we
wouldn’t be able to recommend a similar song. Overall, the
users found the experience pleasant.

Dataset
To create a dataset to train our mood-predicting neural net-
work to detect moods, we collected the top five playlists for
each of the four moods using Spotify’s API. We then con-
verted the 30-second audio previews to Mel-scaled spectro-
grams. We prefer this scaling due to its perceptual-centric
design where scale of pitches are judged by listeners to be
equal in distance one from another. Algorithm 1 outlines our
steps for creating the dataset. Note that we chose the key-
word ‘relax’ to generate ‘calm’ songs as there was an is-
sue with ‘calm’ playlists not consistently returning playlists
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Algorithm 1: Dataset collection
Input: Moods
Output: Mel-scaled spectrogram

1: Moods = ‘happy’,‘sad’,‘energetic’,‘relax’
2: for each mood: m do
3: Query Spotify for 5 playlists for the US market for m
4: end for
5: for each song in the playlists: s do
6: Request 30-second preview of each s
7: Compute short-time Fourier transform (STFT)
8: Save the magnitude from the complex-valued STFT
9: Calculate their Mel-scaled spectrogram

10: Convert to dB-scaled spectrogram
11: end for
12: return dB-scaled spectrograms

(a) Calm (b) Energetic

(c) Happy (d) Sad

Figure 4: Sample song spectograms

were in the top results of a user searching ‘calm’ on Spo-
tify. We found that ‘relax’ was more successful in return-
ing ‘calm’ playlists. While each playlist can be a different
length, they are about 75 to 100 songs each. We ended up
with 1,292 total songs where each song generated a spec-
trogram that is 128 by 2584 pixels. A sample of 225 spec-
trograms is randomly chosen from each of the four tar-
get moods in our dataset. The resulting set is split 700/200
(0.78/0.22) for train/validation. A sample spectrogram gen-
erated for each mood is shown in Figure 4. Note that these
figures are randomly selected and not representative of the
whole dataset.

All the features in our dataset, listed in Table 1, are nor-
malized to avoid features like tempo to dominate others.

Methods
Our objective is to train a model that employs audio fea-
tures to generate virtual environmental effects. We observe
the significance of these visual changes when a model is able
to successfully distinguish between calm vs energetic and
sad vs happy tunes. Thus, we aim to not just maximize our

Algorithm 2: Convolutional model design. The 2D convolu-
tion layers are represented as “conv (kernel size for the con-
volution window) - (number of output filters)”. The ReLU
activations are not shown for brevity. Fully-connected lay-
ers are listed as “fc - (number of neurons)”
Input: Mel-scaled spectrogram (128,2584)
Output: Predicted mood class

1: conv2-32 + batch normalization + max pooling
2: conv2-64 + batch normalization + max pooling
3: conv2-128 + batch normalization + max pooling
4: conv2-256 + batch normalization + max pooling
5: fc-256 + batch normalization + 50% drop-out
6: fc-128 + batch normalization + 50% drop-out
7: fc-64 + batch normalization + 50% drop-out
8: fc-4 with softmax activation
9: return Mood ∈ {‘happy’,‘sad’,‘energetic’,‘relax’}

model accuracy but also to develop a model that provides a
pleasant virtual environment to our users.

Model Design
The employed model is a 2D convolutional network as visu-
alized in Figure 5 (Gavrikov 2020). It consists of 2D convo-
lution layers with 32, 64, 128, and 256 filters, respectively,
each followed by batch normalization and a max pooling
operation. Before the head of the network, there are densely
connected layers with 256, 128, and 64 neurons each with
batch normalization and 50% dropout rate and ReLU activa-
tion. Since we are aiming to categorize each song into four
moods, the output layer has four neurons with a softmax ac-
tivation. The model is presented in Algorithm 2.

As an alternative to building our own model, we also ex-
perimented with fine-tuning existing image classifiers, such
as VGG16 (Simonyan and Zisserman 2014). But their over-
all accuracy was not comparable to the proposed model.

Model Training
The model is trained for 50 epochs to minimize sparse cat-
egorical cross-entropy loss using rmsprop (Hinton, Srivas-
tava, and Swersky 2012). The train and validation are shown
in Figure 6. While the results indicate possible overfitting
occurring after around 45 epochs, we enabled Keras’s early
stopping callback to save the best model which occurred at
epoch 41.

Results
S/R provides a virtual environment for a group of users to
co-listen to music. The UE5 environment is uniquely aug-
mented for the currently playing song, based on its Spotify
audio features. An FPM algorithm is employed to recom-
mend users a similar sounding song based on the raw audio
signals.

The proposed CNN model dictates one of the environ-
mental effects, in place of Spotify’s audio feature ‘valence’.
The following are quantitative results for the CNN model
which predicts a song’s mood from among the four of
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Figure 5: Convolutional model architecture

Mood Precision Recall
Calm 0.98 0.72
Energetic 0.55 0.55
Happy 0.57 0.56
Sad 0.65 0.87

Table 2: Precision/recall scores for the predicted moods.

Thayer’s 2D emotion model. The highest validation accu-
racy for the model is 67.5%, with reruns consistently scoring
around 65%. A confusion matrix of our predicted moods is
shown in Figure 7 and associated precision/recall scores are
provided in Table 2.

We found the environment post-processing to be the most
significant effect on user experience as it affects the entire
screen hue at all times. The Spotify API may recommend
‘valence’ to reflect the mood, but we propose to control this
via the mood prediction CNN model instead.

Our model performs the strongest identifying ‘calm’ spec-
trograms, with a precision of 0.98, as they are the most dis-
tinct ones as shown in Figure 4. Following this visible pat-
tern, ‘sad’ has the highest recall of 0.87. This performance is
lessened when it comes to ‘happy’ and ‘energetic’ spectro-
grams; the model seems to struggle with these two moods,
typically confusing them almost 40% of the time. Looking at
our other trained models, the models seem to generally learn
‘sad’ and ‘calm’ well (recalls > 0.70, precision > 0.65), and

Figure 6: History of the train (blue dots) and validation (red
line) accuracy.

Figure 7: Confusion matrix of the model with accuracy:
0.675

‘energetic’ and ‘happy’ somewhat well (recalls and preci-
sions around 0.55 each).

While a higher accuracy may be needed for certain appli-
cations, we believe the overlap of happy and energetic songs
is acceptable for our use case of controlling effects in a vir-
tual environment. Therefore, we believe these results are ad-
equate to replace Spotify’s ‘valence’ audio feature with the
caveat that the ‘energetic’ and ‘happy’ labels be combined
given their ambiguity in our results. This is an improvement
from employing Spotify’s ‘valence’ value as frequently it
could not differentiate between ’sad’ and ‘calm’.

Conclusion and Future Work
This paper presented a virtual world that provides a scal-
able solution for multiple people to experience new songs
together. SEND/RETURN creates a world where many en-
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vironmental factors are controlled by the streaming music’s
features. It includes a song recommendation algorithm based
on fast pattern matching to explore new music and a mood
detection model that alters the virtual effects in their envi-
ronment.

A convolutional neural network was employed for mood
recognition/classification, achieving a 67.5% validation ac-
curacy for four-class (calm, energetic, happy, sad) classifica-
tion when using Mel-spectrograms as the sole input feature.

The model is especially effective at differentiating be-
tween calm vs energetic and sad vs happy songs. While the
accuracy score of the model may be improved with a larger
dataset and/or data augmentation, which other models make
use of, it has been adequate to control the mood in the virtual
environment.

Data augmentation and the building of a larger dataset
could give the model more breadth of learning and flexi-
bility. The model struggled to learn for a while in the de-
velopment of this project but adding a BatchNormalization
layer after each Conv2D layer solved this issue. Thus, exper-
imenting with other layers or architectures, such as a short-
chunk CNN with ResNet (Hsu, Chen, and Yang 2021), can
help with learning. We also would like to explore multi-
modal approaches, i.e. incorporating lyrical mood classifica-
tion (Delbouys et al. 2018; Hu, Downie, and Ehmann 2009).
Given the effectiveness of Mel-spectrogams in representing
music, we would like to explore using Mel-spectrograms
as the backbone of a song recommendation model, likely
a Siamese neural network (Manocha et al. 2018; Lee et al.
2020).

Currently, the mapping of audio features to environmental
effects is designed manually. In future, a separate study can
be conducted to develop an AI model to control these envi-
ronmental effects. This model could rely on audio features
as well as external indicators such as crowd patterns or even
weather forecast.

The choice of song recommendation algorithm was based
on a qualitative feedback collected from approximately ten
users. Both the environmental effects and song recommen-
dation could be enhanced by a larger, more comprehensive
user study to show the impact of AI on human interaction
with music.
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