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Abstract

Nowadays, autonomous vehicle technology is becoming
more and more mature. Critical to progress and safety, high-
definition (HD) maps, a type of centimeter-level map collected
using a laser sensor, provide accurate descriptions of the sur-
rounding environment. The key challenge of HD map pro-
duction is efficient, high-quality collection and annotation of
large-volume datasets. Due to the demand for high quality, HD
map production requires significant manual human effort to
create annotations, a very time-consuming and costly process
for the map industry. In order to reduce manual annotation
burdens, many artificial intelligence (AI) algorithms have been
developed to pre-label the HD maps. However, there still exists
a large gap between AI algorithms and the traditional manual
HD map production pipelines in accuracy and robustness. Fur-
thermore, it is also very resource-costly to build large-scale
annotated datasets and advanced machine learning algorithms
for AI-based HD map automatic labeling systems. In this pa-
per, we introduce the Tencent HD Map AI (THMA) system,
an innovative end-to-end, AI-based, active learning HD map
labeling system capable of producing and labeling HD maps
with a scale of hundreds of thousands of kilometers. In THMA,
we train AI models directly from massive HD map datasets via
supervised, self-supervised, and weakly supervised learning to
achieve high accuracy and efficiency required by downstream
users. THMA has been deployed by the Tencent Map team to
provide services to downstream companies and users, serving
over 1,000 labeling workers and producing more than 30,000
kilometers of HD map data per day at most. More than 90
percent of the HD map data in Tencent Map is labeled au-
tomatically by THMA, accelerating the traditional HD map
labeling process by more than ten times.

Introduction
With the fast development of intelligent transportation, envi-
ronment perception has become a key factor for autonomous
driving. In recent years, various deep neural networks (DNN)
have been developed to solve the automatic traffic scene
understanding problem, including segmentation-based and
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object detection-based methods (Fernandes et al. 2021; Tang,
Li, and Liu 2021; Yan et al. 2020). However, developing a
robust framework suitable for most road scenarios continues
to be extremely challenging since real-world environments
exhibit extreme weather variations and obstacles, which sig-
nificantly affect the final detection results from real-time data.
Furthermore, analysis needs to be performed in real time,
adding to the challenge. To solve these problems, the current
industry standard relies on high definition (HD) maps, a type
of centimeter-level imagery collected using a laser sensor,
since HD maps contain significantly more detailed represen-
tations (Máttyus et al. 2016; Elhousni et al. 2020; Fan et al.
2018; Bao et al. 2022) and true ground-absolute accuracy,
while are less affected by the driving environment, unlike con-
ventional RGB real-time traffic scene imagery. Specifically,
HD maps can provide the user with permanent road elements
such as lane marking types within annotated 3D point clouds.
Compared with real-time road images, HD maps offer offline
centimeter-level location service and significant prior knowl-
edge about traffic scenes for the self-driving vehicle to avoid
environmental interference.

The HD map production process is shown in Figure 1. The
process consists of four steps: (1) data sourcing, (2) backend
automation, (3) map making & validation, and (4) map com-
pile & release. The data sourcing is obtained from sensors on
the surveying car: Global Positioning System (GPS), Inertial
Measurement Unit (IMU), LiDAR, and camera (Bao et al.
2022). GPS and IMU provide precise absolute localization of
tracks. LiDAR, the most crucial sensor for HD maps, collects
object location information with centimeter-level precision.
The camera is used to provide the RGB image, which is used
to detect attributes of the HD map data. The raw point cloud
and image data collected from the sensor are fed into the
mid-process system, which includes the point cloud fusion
and automatic labeling system, consisting of AI and com-
puter vision analysis techniques for both point cloud and
images (Elhousni et al. 2020; Pannen et al. 2020). After pre-
labeling, the point cloud and pre-labeling data is verified by
the HD map maker in the map-making process. In the end,
the HD map data is compiled and released.

The map-making is the most resource-consuming step, and
the research community has tried to use DNNs to build auto-
matic AI systems for the labeling process of HD maps (Jiao
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Figure 1: Basic production process of HD maps: (1) Data sourcing; (2) Backend Automation; (3) Map making and validation; (4)
Map compile and release. Example shown uses the Baidu Apollo HD Map production (Ma 2018).

2018; Elhousni et al. 2020; Zhou et al. 2021; Kim, Cho, and
Chung 2021; Li et al. 2022). These methods have achieved
relatively good results on simple 2D tasks such as lane mark-
ing and road detection. However, the main challenge for
existing automated AI solutions is creating HD maps for 2D
ground and 3D aerial element annotations in densely popu-
lated cities, where maps exhibit noise and many overlapping
3D objects. On the other hand, users of HD maps require
accurate maps from these urban environments to generalize.

In this work, we present the Tencent HD Map AI (THMA)
system, an innovative AI-based system for rapidly labelling
large collections of HD maps, that has been deployed by the
Tencent Map team since 2021 and so far, has served over one
thousand users. In particular, Tencent Map smart city appli-
cations have used the products, and the automatically labeled
HD maps have been provided to downstream self-driving
companies. THMA has helped the map makers significantly
improve their operational efficiency and reduce HD map an-
notation costs. To the best of our knowledge, our THMA is
one of the industry’s most advanced tools for creating HD
map annotations, and offers the following advantages:
• Low cost. Benefitting from self-supervised and weakly su-

pervised pre-training frameworks, THMA forms a closed
loop between generating annotations and model training.
As a result, THMA can effectively reduce the need for
large-scale manual annotation in HD maps.

• End-to-end training pipeline for any HD map scenes.
Compared to the existing HD map automatic labeling sys-
tem, THMA can create annotations for all sophisticated
2D ground and 3D aerial elements in the next generation
HD map system.

• Modular design. THMA adopts a modular design and
consistently meets downstream users’ needs, offering a
complete, ready-for-integration solution.

Overview and Advantages of THMA
In this section, we describe the THMA system workflow.
THMA was designed for annotating hundreds of thousands of

kilometers high-density urban environments, such as China’s
densely populated cities: Beijing, Shanghai, and Shenzhen
(each with a population of greater than 10, 000, 000 people),
which poses an extremely challenging task. The result is that
THMA has a modular workflow, and the key components are
shown in Figure 2.

Next Generation HD Maps Specifically, THMA generates
annotations for next generation HD maps, described below,
delivering highly accurate, up-to-date, and realistic repre-
sentations of traffic scenery. Next generation HD maps are
explicitly built for Level 4 and Level 5 self-driving vehicles,
include more abundant and fine-grained traffic scene infor-
mation than existing deployed HD maps, and will be widely
adopted sooner by advanced self-driving systems. Below, we
explain key scene attributes (ground elements, separating fa-
cilities and 3D aerial elements) of the THMA next generation
HD map in detail.

• Ground elements. Previous work mainly applied old
semantics segmentation deep learning algorithms such
as FCN (Long, Shelhamer, and Darrell 2015) and U-
Net (Ronneberger, Fischer, and Brox 2015) to identify a
small number of ground elements in HD map systems (El-
housni et al. 2020). We extend the attribute detection of
lane markings to 20 types and propose the detection of
lane marking attribute change points, road waiting areas,
stop lines, and ground traffic signs.

• Separating facilities. In our work, we add road separating
facility modules to detect guardrails, curbs, and natural
boundaries. These elements will help improve the safety
of automated driving systems.

• 3D aerial elements. The main features and detection diffi-
culties of 3D aerial elements are the distribution diversity
of scale and shape. THMA contains more 3D aerial ele-
ments. It includes large-scale objects such as tunnels and
small-scale objects such as traffic lights. In terms of shape,
there are linear objects such as straight poles and curved
ones, planar objects such as traffic signs, and thick objects
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Figure 2: Detailed overview of the proposed Tencent HD Map AI (THMA) labeling system. The system is modular and is
designed to accommodate challenges of labelling large volumes of HD maps of high-density urban environments.

(a) (b)

Figure 3: (a) Example of manually annotated 3D point cloud.
(b) Example of projected Bird’s-Eye-View (BEV) images
with manually annotated lane markings.

such as traffic lights and tunnels. We adopt a unified end-
to-end framework when building THMA. The framework
outputs a unified descriptor adapted to the diversity of
object shapes and the diversity of the number of objects
at the exact location.

Advantages of AI Driven Annotation THMA relies on
AI to scale annotations to extremely large volume datasets.
The resulting production pipeline is depicted in Figure 2
and provides not only scalable infrastructure for training
and inference but also a centralized data platform for access
to meta-data. Once we have the confidence results of AI
output, we could save the high-confident output into the HD
map production line and send the low-confident output to
annotation experts to judge and re-label. The updated labels
for low-confident results then go back into the HD maps and
are fed back to re-train the AI models in the next iteration.
Thus, our AI component can be considered an end-to-end
active learning loop (Jiao 2018; Haussmann et al. 2020). The
advantages of this active learning system are:

• Massive data collection and cloud computation. Hun-
dreds of thousands of kilometers of HD map raw data is
collected through several data-collecting vehicles. In this
way, the HD map is updated quickly. To process more data

and train new models, Tencent Cloud, a secure, reliable,
and high-performance cloud computing service provided
by Tencent, is used.

• Diverse training database. Due to the novelty of the frame-
work, the training relies on over 400,000 kilometers of
HD map data which contains partially incomplete and
inaccurate annotations for self-supervised learning and
weakly supervised learning, further enabling model gen-
eralization.

• Data and workflow management platform. With the pow-
erful Tencent Cloud platform, high parallelism, traceabil-
ity, caching workflow, and PB-level data management
have been enabled.

• Completed labeling platform. The labeling platform con-
sists of the HD map label platform, which produces the
3D HD map format data, and the traditional labeled tools
which could produce the detection and segmentation data
for the 2D or 3D model.

• Powerful model zoo. The model zoo has up-to-date 2D
and 3D detection and segmentation models implemented
by PyTorch. In order to make the system end-to-end and
generalizable, the model decoders have been redesigned
to adapt to the HD map data format. Many self-supervised
and weakly supervised methods have been implemented,
trained on Tencent Map’s GPU clusters and deployed in
the cloud.

In the next two sections, we describe the data acquisition
and the smart data pre-processing (AI-based segmentation
and detection steps).

Data Acquisition
We first introduce the collection of raw 3D point cloud data
and the generation process for and 2.5D Bird’s-Eye-View
(BEV) images. The raw data of the Tencent HD map includes
RGB images, GPS position and attitude data, and the laser
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(a)
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Figure 4: (a) Smart data processing in THMA detects objects in 3D point clouds, 2.5D Bird’s-Eye-View (BEV) images, and
RGB images, fusing resulting aerial and ground object detection results for higher accuracy. (b) 2D segmentation framwork (Tao,
Sapra, and Catanzaro 2020).(c) 2.5D self-supervised learning segmentation framwork.

3D point cloud. The original 3D point cloud data used in
our model training is collected from the newest laser scanner,
installed at the tail at a 45-degree angle, focusing on scanning
the road surface. Compared with other HD map datasets, our
dataset has the advantages of high density, apparent distinc-
tion between light and dark reflection intensity, and apparent
visual features of ground elements. Besides, all 3D point
clouds in our dataset were collected from more complex traf-
fic scenes, such as China’s densely populated cities: Beijing,
Shanghai, and Shenzhen, each with a population of > 10
million people. Our traffic scenes include highways, urban
expressways, ordinary urban roads, feeder roads, rural roads,
tunnels, interchanges, etc. This imagery is currently not well
represented in other HD map systems such as Nuscenes (Cae-
sar et al. 2020), Waymo (Sun et al. 2020), Argoverse (Wilson
et al. 2021). Our point cloud scanning focuses on depicting

road features with high density, high-resolution and signifi-
cant visual features of reflection intensity, emphasizing the
refined detection of traffic attributes under the HD map pro-
duction requirements. As a result, THMA generates data
which is representative of diverse traffic conditions and is the
best source for next generation HD maps.

For detection of 3D aerial elements, the best solution is to
analyze (segment and detect objects) in 3D point cloud data.
However, for the detection of ground elements, 2.5D BEV
images, i.e., top-down parallel projection of 3D cloud points,
yield better accuracies and inference speeds. One of the key
innovations of THMA is that we can efficiently bind 2.5D
BEV images and 3D point clouds. Sample data (3D point
clouds and 2.5D BEV images) is shown in Figure 3.
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2.5D BEV Image Generation The 2.5D BEV projection
images we use are generated from the 3D laser point cloud
by a top-down parallel projection with minor modifications,
such as car removal. For the original 3D point cloud data, we
select the resolution of 0.05 meter and calculate the center
coordinates, image range, and point cloud range of each
projection image according to the trajectory to determine the
coordinate conversion parameters. Next, we convert the point
cloud within the selected range to the Mercator coordinate
system and perform elevation filtering on the 3D point cloud,
to only reserve the points near the ground. For the points
falling within each pixel, we put the reflection intensity value,
the highest elevation value, and the lowest elevation values
into the three channels of the 2.5D BEV output, respectively,
and normalize the pixel range to 0-255.

The 2.5D BEV projection images generated through the
above process contain rich texture information. Each image
is rotated in the direction of vehicle travel. The resulting
image size is 1024 × 1024 and the pixel resolution is 0.05
meters. Considering the quality and gray scale enhancement
of the original point cloud, the reflection intensity channel
of the BEV image can clearly and better reflect texture char-
acteristics of the road surface. Semantic information such
as lane markings, ground signs, and zebra crossings in traf-
fic scenes can be distinguished according to the light and
dark changes of the reflection intensity. Besides, each pixel
records the highest and the lowest elevation values, respec-
tively, to differentiate the ground and curbs and guardrails,
which are challenging to detect from the single channel 2D
BEV images.

Smart Data Processing
The next step in the THMA pipeline, shown in Figure 4,
is known as the divide-and-conquer smart data processing,
which identifies objects in 3D multi-scan fusion point clouds,
2.5D BEV images, and RGB images. The 3D detection algo-
rithm auto labels 3D points (for traffic lights, poles, tunnels,
and traffic signs) and lines (for barriers and curbs) from the
multi-scan fusion point cloud. The 2.5D segmentation algo-
rithm detects ground elements such as lane marking on the
multi-channel BEV image. The 2D segmentation algorithm
detects other attributes, such as the lane marking color in the
RGB image. All generated annotations are merged into the
final HD map product. Below, we briefly introduce the tech-
nical algorithm design for 3D point cloud and BEV elements
in HD map automatic annotation.

3D Point Cloud Object Detection
3D objects vary widely in shapes and sizes. Generally, the
algorithms on 2D and 3D object detection are based on the
detection of the bounding box. However, these algorithms are
only suitable for objects with known orientation and aspect
ratios. For objects without defined directions, it is difficult
or not feasible to define the corners and size of the bounding
box. Even if the label is forcibly defined, conflicts between
different training samples arise, resulting in non-convergence
of training or degradation of the performance of the algorithm.
In our case, a unified framework compatible with the diversity
of object shapes, sizes and distribution is needed.

Based on the above considerations and previous work in
HD map labelling (Yang, Liang, and Urtasun 2018; Yang,
Luo, and Urtasun 2018), we propose a new unified end-to-end
3D model. The schematic diagram is shown in Figure 4 3D
point cloud branch and Figure 5. The backbones of the model
include 2D and 3D convolutions. The output is a universal
descriptor that provides information on the detected objects,
instead of just the bounding boxes. In case the object direction
cannot be identified, the output descriptor can be used for
a unique description without ambiguity. For example, the
descriptor does not explicitly define the yaw of a pole. Instead,
the apex and bottom points of the pole are provided, and the
yaw can be calculated from these quantities. Another example
is the traffic cone, which is described using the vertex, center,
and radius of the bottom. The corners of the traffic sign can
again be computed, according to the previous logic. Finally,
the object detected is not required to be thick, flat, rectangular,
or even planar.

The resulting model framework is compatible with the
diversity of object shapes. Further, we can detect multiple ob-
jects (multi-objects) appearing at the same location. Without
loss of generality, the output descriptor for multi-objects can
be expressed as:

Dm = s0s1...sN V⃗0V⃗1...V⃗N , (1)
where si is the activation probability of the corresponding
description vector Vi, and Vi represents the descriptor for a
single object.

Knowledge Distillation Object labels in 3D cloud points
often contain significant noise and labelling errors. These
confounding factors influence performance, especially when
using focal loss to solve the class imbalance problem during
training. To address this challenge, we adopt knowledge dis-
tillation in our 3D object detection framework. Knowledge
distillation has been proven to yield significant performance
improvement for complex 3D point cloud object detection
and segmentation tasks (Hou et al. 2022). Specifically, we
construct two training paths. The upper path, shown in the
figure 5, is the basic model for 3D object detection, including
point feature extraction module, point-to-voxel transforma-
tion module, encoder-decoder model, etc. The refined ground
truth generated by the basic model is combined with the orig-
inal ground truth and then used as the supervision target for
the lower training path. We adopt the output confidence of a
positive sample to calculate the difference.

Let Sg be the set of ground truth, e.g., the ground truth
bounding boxes, and Sout the output of the deep model. The
refined ground truth Sr can be computed as:

Sr = (Sg ∩ Sl) ∪ Sh (2)

Sl = {x|x ∈ Sout, Confidence(x) > Tlow} (3)

Sh = {x|x ∈ Sout, Confidence(x) > Thigh}, (4)
where Sl is the low confidence result and Sh is the high
confidence result.
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Figure 5: Our solution with knowledge distillation for 3D
point cloud object detection.

(a) (b)

Figure 6: Sample label outputs of our system: (a) pole detec-
tion results (in yellow), (b) difficult example of pole detection:
auto labeling exceeds human labeling ability, labelling (red)
part of the pole incorrectly not annotated by a human annota-
tor.

Visualization Results Sample 3D detection results from
production are shown in the Figure 6(a) and Figure 6(b).
In Figure 6(a), the red arrow indicates the results of our
algorithm, which show the challenging example where the
pole could be detected correctly even though it is between
trees. In some circumstances, the auto label algorithm even
performs better than the human annotator, see Figure 6(b). In
this example, a part of the pole is occluded by the trees, and
the human annotator labeled only the visible part. However,
our algorithm correctly labels the missing right top point.
The above results demonstrate that the 3D object detection
algorithm in THMA is robust and accurate.

We also present additional detection results of traffic lights
in Figure 7. The 3D algorithm detects the traffic lights cor-
rectly, although they are small and sometimes densely ar-
ranged. In Figure 9 the detection result for the tunnel is
shown. Unlike traffic lights, tunnels spread widely in space
and a large receptive field is required for their detection. Fi-
nally, Figure 8 shows that our model maintains good results
even in the concentrated and complicated traffic sign scenes.

2.5D BEV Segmentation and Object Detection
As discussed above, 2.5D BEV images offer more insightful
information for ground object detection, such as better detec-
tion and segmentation of lane markings, ground signs and
zebra crossings. Below, we discuss the associated analysis
steps for 2.5D BEV images.

Self-Supervised Pre-training To address missing labels
and noise commonly associated with BEV data, we intro-
duce the newest self-supervised learning methods into our

(a) (b)

Figure 7: (a) Multi adjacent traffic-lights detection results (b)
Diverse angle distribution traffic-lights detection results.

Figure 8: Sample traffic sign detection results. Our system
addresses challenging detection scenarios, such as closely
positioned signs.

framework. Self-supervised learning aims to design auxil-
iary tasks that help the model learn meaningful representa-
tions from large-scale unlabeled data. We apply the Masked
Autoencoder (MAE) technique (He et al. 2022), a popular
self-supervised pre-training method, to pre-train the Vision
Transformer used in BEV image analysis tasks. The basic
structure of MAE is a deep encoder and a lightweight de-
coder. Only unmasked patches are fed into the encoder, and
the decoder processes learn-able masked tokens for image in-
painting. Similar to other 3D space and video representation
learning tasks (Bao, Dong, and Wei 2021; Feichtenhofer et al.
2022; Tong et al. 2022), we found MAE to be time-saving
and effective.

Weakly Supervised Pre-training In THMA, we are able to
leverage large volumes of existing HD maps with correspond-
ing human-annotated results. The challenge in learning AI
systems from these datasets is that the human-annotated re-
sults have large label noise. In the manual production process,
annotation experts can integrate the data according to the pro-
duction operation specifications and job anti-counterfeiting
based on multiple-times data collections. However, for our
automatic AI system, the BEV images are generated accord-
ing to the trajectory 3D point cloud collected at a single time.
If we use them directly to generate training data, the model
performance will be inadequate due to the label noise prob-
lem (Zhou 2018). To address this limitation, we generate a
large number of incomplete and inaccurate training samples
through data mining, non-last night area filtering, and high-
reliability area discrimination of the true value of the BEV
images. Using these large-scale training samples and limited
annotations to pre-train and fine-tine a model on the finely
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Figure 9: Sample tunnel detection results. Our system is
robust to extreme view-point variations.

Figure 10: Sample results of lane marking detection in BEV
imagery from urban areas.

labeled sample set, the robustness in highly complex urban
scenes is greatly improved.

Automatic Ground Element Detection The final step in
analysis of 2.5D BEV images is detection of ground elements,
such as lane markings. For all 2D elements, we selected
SegFormer (Xie et al. 2021), a segmentation-based vision
transformer structure, as the backbone for 2.5D BEV image
detection. The key advantage of a Transformer-based method
is that the attention map of vision transformer encoders has
larger receptive fields than traditional CNN encoders. Differ-
ent from the original Vision Transformer (ViT) (Dosovitskiy
et al. 2020), SegFormer uses the sequence reduction pro-
cess to reduce the amount of calculation and accelerates the
convergence process during model training (Xie et al. 2021;
Wang et al. 2021). For each Transformer block, the sequence
reduction self-attention is calculated as:

Attention(Q,K, V ) = Softmax

(
QKT

√
dhead

)
V (5)

where K is the token representation with initial shape
N × C, defined as:

K = Linear(γC,C) ·
[
K.Reshape

(
N

γ
, γC

)]
(6)

The reduction ratio γ decreases the dimension of K from
N×C to N/γ×C. SegFormer also introduces the 3×3 depth-
wise convolution into the feed-forward network (FFN) to
expand the receptive field and reduce harmful effects caused
by positional embedding. This is the feed-forward network
layer after each self-attention block in SegFormer:

y = MLP (Activation[DWConv(MLP (x))]) + x (7)
where DWConv is a 3× 3 depth-wise convolution.
The overall structure of SegFormer consists of a hierar-

chical transformer encoder and a lightweight MLP decoder
which can take advantage of the transformer-induced feature
that produces both highly local and non-local attention to
rendering powerful representations.

Visualization Results Sample prediction results of the
BEV SegFormer are shown in Figure 10. The scenario shown
in Figure 10 is very complex, including lane markings type
change, lane number change, and stop line detection. We not
only need to identify the geometric position of the lane mark-
ings accurately but also need to accurately detect the attribute
of the lane markings and the position at which the number of
lanes changes. Benefiting from the self-supervised learning,
weakly supervised pre-training, and Vision Transformer, our
multitask model can solve the above tasks well.

Application Development and Deployment
The THMA framework has been developed by the application
research team(T, lab) at the Tencent Map starting in 2020.
It takes 1.5 years to build and improve the THMA system.
In the beginning, this system is an open loop, which will
not only need a lot of labeling workers to annotate the train-
ing data manually but also decrease the updating frequency.
The regular updating frequency for the open loop system is
about one month. When we upgrade the system to the closed
loop active learning framework, the updating frequency is im-
proved to 1-2 weeks. Besides, the modular design of THMA
is combined with the closed-loop active learning framework.
When one model for a selected element in the HD map is
published or updated (e.g., lane marking color detection), it
will first be tested separately and then added to the produc-
tion pipeline. Note that we used different models for different
elements; thus, the whole architecture can be considered as a
multi-task framework. Each task can be tested individually,
but there are connections between tasks. For example, when
detecting the change points of the lane marking attribute, we
must use the lane marking position and attribute information
obtained by other model branches.

The programming language used in the deployment is
Python. To evaluate the model in each version, we use an
independent subset of HD maps that are accurately anno-
tated and reviewed by map makers for validation. This subset
includes 1,000 kilometers of HD map 3D point clouds, cor-
responding 3D aerial elements, and 2D ground element an-
notations. We update the evaluation results for each released
version in the product documentation. For overall system
performance, we evaluate the performance in terms of au-
tomation ratio, i.e., the percentage of HD map data that could
be auto-labeled, throughput, i.e., the output volume, as well
as the acceleration of the labeling speed. After comparing the
labeling results from THMA and human labeling results, the
overall automation ratio is more than 90 percent. This way,
the labeling speed is accelerated more than ten times. Due
to the compact design of the system, the throughput of the
system is more than 30,000 kilometers per day.
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Figure 11: Qualitative results for the deployed THMA system: the annotations generated from 3D object detection and 2.5D / 2D
segmentation and object detection are merged into the HD map system and published to downstream map makers for use.

Application Impact and Payoff
THMA has been developed and deployed for two years, used
by thousands of annotation experts. To date, our system has
produced over 400,000 kilometers of HD map data. It has a
record of serving almost one thousand workers to produce
30,000 kilometers of HD map data per day, which is quite
advanced to the best of our knowledge. Over the two years
of usage, this system has achieved the following business
improvements:

1. Efficiency. In the traditional system of auto-labeling, to ef-
ficiently develop a model in massive traffic data scenarios
such as China, at least several kilometers of point-cloud
data and several ten thousands of images are needed, an
annotation effort that would require a whole year. Due
to the end-to-end data recycling, intelligent data mining,
and weakly supervised and self-supervised techniques,
THMA reduces the labelling time required by an order of
magnitude.

2. Model Generalization Ability. Due to processing and learn-
ing from hundreds of thousands of kilometers of challeng-
ing HD map data, the labelling system has high precision
and recall, as well as generalization ability in challeng-
ing cases of urban scenery. As a result, THMA creates
a record of serving one thousand makers and producing
several tens of thousands kilometers per day.

3. Iterative and Incremental Development. New requests
from downstream smart city applications and self-driving
companies are added as time goes by. Since THMA fol-
lows a modular design approach around different sub-
tasks, product updates can be performed without affecting
the overall AI solution. Since deployment in 2021, we
release the latest version regularly to customers and our

systems are updated every 2 months, on average.

Conclusion and Future Work
In this paper, we introduce the Tencent HD map AI (THMA)
system, a novel, end-to-end, and fully automatic AI system
designed to label hundreds of thousands of kilometers of high
definition (HD) maps of densely populated urban environ-
ments for autonomous driving applications. The system is
designed and deployed in production by the Tencent Map
T lab team and their users since 2021, generating 30,000
kilometers of HD map data per day and serving over 1,000
labeling workers. To the best of our knowledge, the resulting
system is one of the largest in the world to date. The core
algorithm propagates annotations from existing Tencent large-
scale HD map datasets to newly acquired data and allows
for fully automatic and human-in-the-loop type labelling,
saving significant time and cost over existing fully manual
annotation techniques.

In future work, we plan to expand the existing system
focused on lane detection to auto-labelling more complex
label relationships. We also hope to leverage iterative and
incremental development to further improve robustness.
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