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Abstract

Foundation models (FMs) are achieving remarkable suc-
cesses to realize complex downstream tasks in domains in-
cluding natural language and vision. In this paper, we pro-
pose building an FM for material science, which is trained
with massive data across a wide variety of material domains
and data modalities. Nowadays machine learning models play
key roles in material discovery, particularly for property pre-
diction and structure generation. However, those models have
been independently developed to address only specific tasks
without sharing more global knowledge. Development of an
FM for material science will enable overarching modeling
across material domains and data modalities by sharing their
feature representations. We discuss fundamental challenges
and required technologies to build an FM from the aspects of
data preparation, model development, and downstream tasks.

Introduction
AI has achieved various milestones such as superhuman per-
formance in playing games (Campbell, Hoane Jr., and Hsu
2002; Silver et al. 2016) and quizzes (Ferrucci et al. 2010)
as well as accurate predictions of protein structures in biol-
ogy (Senior et al. 2020). Essential technologies to achieve
such successes include planning and search, machine learn-
ing and natural language processing (NLP).

State-of-the-art machine learning methods use large-scale
datasets to significantly improve the performance. BERT
(Devlin et al. 2019) and GPT-3 (Brown et al. 2020) learn
feature representations for natural language from 3–500 bil-
lion tokens. The trend of using large-scale data has also been
observed to tackle more complex tasks across multiple do-
mains requiring multimodal data. For example, using 250
million image-text pairs, DALL-E (Ramesh et al. 2021) gen-
erates an image that corresponds to a text description.

In general, foundation models (FMs) are large models pre-
trained by broad datasets in self-supervised manners instead
of targeting on specific discrete tasks. FMs aim to adapt to
a variety of downstream tasks with zero or little additional
training. BERT, GPT-3, and DALL-E are well-known ex-
amples that attempt to capture generic feature representa-
tions specifically on language and/or vision. However, while
Bommasani et al. (2021) envision the opportunities and risks
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of the FMs, they are currently limited to the domains involv-
ing NLP and visions.

As a next challenge for AI research, we promote a univer-
sal FM pretrained with multimodal data for material science.
Machine learning models have recently been adapted to ma-
terial science (Gómez-Bombarelli et al. 2016; Pyzer-Knapp
et al. 2022). However, these models are usually trained with
small, unimodal datasets in specific material domains. Ex-
isting research uses training data whose size ranges between
a few hundred (Takeda et al. 2020) and several hundred
thousand (Wu et al. 2019). In addition, each independently
learned model addresses only one specific task and does not
effectively leverage the feature representations reusable for
other models.

On the other hand, there are various types of data rep-
resenting certain aspects of materials. In principle, training
the material FM with such multimodal data should enable
more generic, important features to be acquired that are ap-
plicable to many downstream tasks within material science.
Additionally, as material scientists often come up with new
ideas from one discipline to another, the material FM has the
potential to reuse its feature representation even across dif-
ferent natural sciences such as chemistry and physics in the
long run.

The structure of this paper is as follows: First, we give an
overview of material science and AI, followed by their chal-
lenges. We then describe necessary steps and AI technolo-
gies to address these challenges, finally giving concluding
remarks.

Material Science and AI
Material discovery has been key to grow various indus-
tries. Depending on the target industrial domain, new ma-
terials need to possess specific chemical/physical character-
istics. For example, a material for solar cell needs to have
a high light absorption efficiency, high mechanical strength
durable for inclement weather, and low environmental tox-
icity. Those characteristics are determined by the internal
structures of the materials in both microscopic and macro-
scopic scales where careful design such as atom configura-
tions plays a crucial role.

In the conventional discovery process, material scientists
carry out trial-and-error processes driven by their experience
and intuition. A parameter space for material design is in-
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finitely large, where only tiny portions bring desired prop-
erties. Therefore developing new materials generally takes
10 to 20 years and costs 10 to 100 million US dollars (Ray
2021).

AI has received increased attention to address obstacles in
material discovery over the last several years. Some models
are available as open source software to facilitate scientists’
tasks, e.g., (Manica et al. 2022; Yang et al. 2017). Recent
approaches employ machine learning that performs several
tasks summarized here. For those tasks, material structures
need to be represented by appropriate representations that
include molecular graphs (Weininger 1988), crystal struc-
tures (Noh et al. 2020) and polymer strings (Lin et al. 2019),
etc.

Given a structure of a material, predicting properties of
that material is a major task. For example, electric conduc-
tivity is an essential property in developing electronic de-
vices, for example, Organic Light Emitting Diode (OLED).
Property prediction is formulated as a regression task to
which neural network models have been applied (Gómez-
Bombarelli et al. 2016).

Another task is inverse to the material property predic-
tion: given material properties that can be exact values or
ranges, new material structures satisfying these properties
need to be generated. This task is more challenging because
an appropriate material structure needs to be identified in a
large search space of molecules estimated to contain at least
1060 possible candidates. Deep generative models have been
actively researched to address this task (Gómez-Bombarelli
et al. 2018). These generative models are specifically for
small organic molecules.

Tasks on chemical synthesis are also essential, studied in
the context of organic chemistry, including reaction predic-
tions based on neural networks as well as chemical synthesis
planning combined with other approaches, e.g., (Kishimoto
et al. 2019; Schreck, Coley, and Bishop 2019; Segler, Preuss,
and Waller 2018).

Those machine learning models are independently devel-
oped, so they are isolated in terms of data modality, mate-
rial domains, and application tasks, thereby missing links
between sharable cross-domain knowledges.

Challenges for Material FM
The material FM will realize overarching modeling across
different material domains. Once the material FM is success-
fully pretrained, its learned feature representation serves as
a basic feature set to address most of the downstream tasks
in the previous section all together. However, development
of the material FM is hindered by the fact that the knowl-
edge representation that can describe a complete picture of
materials is not available.

In theory, since materials obey the governing equations
such as the Schrödinger equation, machine learning mod-
els should effectively share common principles behind the
equations across different material domains. However, in
practice, it is infeasible to find accurate, numerical solu-
tions for each material. Therefore, knowledge on materi-
als has been represented in various, human-interpretable

ways such as molecular graph images also regarded as a se-
quence of tokens called SMILES (Weininger 1988), three-
dimensional conformation of atoms, microscopic images,
real-valued physical properties (e.g., orbital energies), and
spectroscopic representations. These knowledge represen-
tations focus only on partial aspects of materials, without
sharing comprehensive knowledge. In learning from richer
knowledge from multiple knowledge representations, the
material FM raises several fundamental challenges.

First, while most of the standard models have only at most
two modalities on natural language and vision (Ramesh et al.
2021; Shridhar et al. 2020), the material FM requires many
more modalities ranging from graphs to property values and
even images. Relating one modality to others raises an issue
caused by the dimensional complexity of multiple modali-
ties.

Second, the fact that only a few material samples are
available for some representations poses a challenge for
creating multimodal training data. For example, Ramesh
et al. (2021) created 250 million image-text pairs for text-
to-image generation of DALL-E. On the other hand, while
over one billion molecules are represented as SMILES (Ir-
win et al. 2020), far fewer examples are available for their
physical properties that are more valuable than SMILES,
e.g., 134K examples in the QM9 database (Ramakrishnan
et al. 2014), 91 and 250 samples to design sugar and dye,
respectively (Takeda et al. 2020), and at most 33K examples
for spectra (NIST 1996). Such sparseness limits the ability
to construct a large-scale dataset with no missing modalities.

Third, the material FM is forced to be trained with inac-
curate and/or incomplete data. For example, many of the in-
formative data are obtained either by computational simula-
tions or by actual chemical experiments and measurements.
These approaches introduce noises to the actual property
values. For example, it is difficult to accurately measure or
simulate the glass transition temperature, because the tran-
sition experimentally occurs over a wide temperature range
and because the simulated result depends on the configura-
tion on internal and external conditions (Liu et al. 2017).
Additionally, they are time-consuming and have difficulty in
scaling up the training data size. Another example is that
only small portions of the entire UV/IR spectra are often
simulated or experimented on, although the spectroscopic
data play a more important role specifically in material sci-
ence.

Fourth, some knowledge representations are based on im-
ages, raising a nontrivial issue on automatically extracting
essential information. For example, many of the spectro-
scopic data illustrated in academic papers are accessible
only in an image format without indicating the actual num-
bers (Probst et al. 2021). Microscopic data are another case
where knowledge is represented as images.

Finally, since large-scale SMILES data are mostly for
small organic molecules, specifically for drugs (Irwin et al.
2020), they do not best represent materials. While the num-
ber of molecular structures can be arbitrarily increased by
creating artificial molecules on the basis of sampling, such
an augmentation does not always lead to covering more
practical material structures. For example, SMILES has dif-
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Name Size Property examples Note
ZINC20

>1B SMILES, 3-D atom conformation Bioactive, bionegic, and drug-like
(Irwin et al. 2020) molecules

PubChem
(Kim et al. 2021) 112M SMILES, molecular weight, TPSA,

XLogP

Generic organic molecule database.
Incomplete property sets sometimes
found as text (examples omitted)

PubChemQC 3.2M SMILES, HOMO-LUMO energy gap, DFT calculation for molecules
(Nakata and Shimazaki 2017) dipole moment, 3-D atom conformation selected from PubChem.

ChEMBLE 2M SMILES, polar surface area, Bioactive molecules(Gaulton et al. 2017) bioactivities, molecular weight
OQMD 1M Composition ratio, band gap, stability, Inorganic crystal structures.

(Kirklin et al. 2015) formation energy DFT calculation.
QM9 134K SMILES, heat capacity, DFT calculation with up to 9 atoms.

(Ramakrishnan et al. 2014) HOMO-LUMO energy gap 20 physical properties.
Chemistry Webbook

< 51K Mass spectra, IR spectra, IR spectra for 16K molecules.
(NIST 1996) UV/Vis spectra UV/Vis spectra for 1.6K molecules.

Table 1: Examples of available datasets

ficulty in accurately describing materials based on macro-
molecules (e.g., polymers) due to their stochastic properties
(Lin et al. 2019).

AI Technologies for Material FM
We discuss three necessary steps and their technical obsta-
cles, while referring to AI technologies to realize the mate-
rial FM.

Data Preparation
Data preparation is the first essential step for the success
of the material FM. In general, the importance of large-
scale datasets has been recognized in the material informat-
ics community, e.g., (Dima et al. 2016; Jha et al. 2021).
However, the material FM needs a large-scale multimodal
dataset that describes various aspects for each material. The
data should be collected by various methods to cover broad
material domains across different modalities. As discussed
in the previous section, the type, usefulness, quantity, and
quality of the data depend on the modality. We discuss sev-
eral approaches to collect large-scale data.

Integration of public datasets One straightforward ap-
proach is to integrate several public, structured datasets that
represent basic properties as a uniform dataset. Table 1 sum-
marizes examples of the datasets (e.g., ZINC20 and ChEM-
BLE). However, the uniform dataset cannot always fill in
the data points of all properties, since those datasets do not
possess property values of all materials. Considering only a
set of materials whose physical properties are all available
results in discarding the majority of the material data. Ad-
ditionally, a large number of physical property values stored
there are calculated either by simulations with a very small
number of atoms due to high computational overhead (e.g.,
up to 9 atoms for QM9) or less informative heuristic val-
ues (XLogP and TPSA) calculated instantly, on the basis of
counting material substructures.

Information extraction from text and images Despite
conveying rich information, Table 1 shows that spectra data
are very sparse. Although extracting spectra from academic
papers is one way to increase the data size, they are pro-
vided only as images in those papers. This is also the case
for papers with microscopic data. NLP and image process-
ing techniques are needed for extracting useful information
(e.g., actual numbers for spectra) from an image and associ-
ating them with its corresponding material, as is successfully
done for chemical reactions (Lowe 2012). For example, the
work of Lowe (2012) needs to be combined with automated
data extraction algorithms for plots in a chart, e.g., (Cliche
et al. 2017).

Simulations and experiments supported by AI Despite
time-consuming steps, performing computational simula-
tions or actual experiments is necessary to increase the
dataset size. Such cases include both sparse spectroscopic
data and more basic physical properties available in QM9
and PubChemQC. Active learning (Settles 2009) is one way
for effective data collection, which needs to be applied here.
For example, given an available budget such as time and
money, this task is regarded as a problem to choose the next
material to simulate and determine a set of experimental
conditions that maximize the chance of obtaining desired re-
sults. Related work attempts to improve experimental design
(Eyke, Green, and Jensen 2020) and automated data genera-
tion in chemical space (Smith et al. 2018; Park et al. 2020).
Acceleration of physical simulation by surrogate model is
another promising solution (Toledo-Marin et al. 2021).

FM Creation
Once we have a large-scale multimodal dataset, machine
learning methods based on deep neural networks are reason-
able approaches to create the material FM. Particularly, neu-
ral networks based on successful encoder-decoder architec-
tures in natural language (Vaswani et al. 2017) and images
(Kingma and Welling 2014) are promising in chemistry and
material science e.g., (Gómez-Bombarelli et al. 2018).
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Figure 1: Overview of FM architecture for material science

Given a training dataset, an encoder-decoder-based neu-
ral network first encodes its input to learn an effective rep-
resentation in a feature space (or latent space) with reduced
dimensions. It then decodes the encoded input, returning the
decoded result as output that is compared against a target for
training. One form of training is to attempt to generate the
output identical to the input. For language translation, the
input and output are a description in a source language and
its translation into a target language, respectively.

Creating the material FM on the basis of an encoder-
decoder-based neural network is a rational choice, since it
can reuse the feature representation of the encoder across
different downstream tasks. We discuss a few approaches
for the material FM.

One straightforward approach is to train a neural network
that encodes all elements of each material to a latent space
that is decoded to the identical elements. Obviously, this ap-
proach has a high dimension of the input space that is dif-
ficult to learn as well as a serious issue caused by a large
number of missing data points across different modalities.

A more reasonable approach is first to prepare several sets
of neural networks (called the unimodal neural networks in
this paper) each of which learns for a feature representation
of its corresponding, specific modality. Another neural net-
work (called the unification neural network) then attempts
to learn commonalities among these feature representations
of the unimodal neural networks as a united latent space.

A schematic diagram of the FM architecture is exhibited
in Figure 1. Here, we propose development of the material
FM that can encode input data including several missing
modalities to feature representations united together, and de-
code them to a completed set of modalities. The downstream
models can also receive those representations on the united
latent space as their input to address their downstream tasks.

In training unimodal neural networks, there are vari-
ous knowledge representations, including a text-based graph
topological representation (i.e., SMILES), a tabular repre-
sentation (e.g., physical properties such as HOMO-LUMO
and images (e.g., microscopic data). There are many ap-
proaches to learn unimodality, which can be further im-

proved by follow-up research. For example, a graph con-
volution neural network is one way to learn feature repre-
sentation on graph structures of molecules (Altae-Tran et al.
2017), while deep generative models are another way by
regarding SMILES as text in language (Gómez-Bombarelli
et al. 2018). In general, variants of Transformer (Vaswani
et al. 2017) are strong candidates because of Transformer’s
promise in many domains including language (Devlin et al.
2019; Vaswani et al. 2017), vision (Khan et al. 2022),
graphs (Yun et al. 2019), and chemical reaction predictions
(Schwaller et al. 2018).

Although we envision that dealing with more than two
modalities is the key to realize the material FM, starting with
two modalities is a reasonable choice because of the litera-
ture available in the AI research community.

Given a training example represented as feature vectors in
two feature spaces S1 and S2, contrastive learning (Jaiswal
et al. 2020) attempts to group feature vectors in S1 and S2

closer if those vectors represent similar examples, and vice
versa. CLIP (Radford et al. 2021) is based on contrastive
learning to contrast natural language text and images. Other
related approaches include contrastive-loss-based alignment
of different feature vectors in one latent space (Nakayama
and Nishida 2017). This work was recently expanded to sup-
port three modalities of text, audio and video (Alayrac et al.
2020) and implemented to Transformer (Akbari et al. 2021).

Contrastive learning has just started being applied to the
tasks in chemistry, such as relating molecule names in IU-
PAC to their SMILES representations (Guo et al. 2022) and
SMILES to a three-dimensional representation (Liu et al.
2022). Investing in ideas behind contrastive learning is one
way to embody the unification neural network. A recent al-
gorithm to predict masked latent representations is another
promising approach (Baevski et al. 2022).

Given source and target sequences of tokens, the atten-
tion mechanism in neural networks, which is a successful
factor for Transformer (Vaswani et al. 2017), attempts to
identify relations between source tokens and target tokens.
Representing the unification neural network as an attention
mechanism for feature vectors of two different modalities
is another approach, since attention can calculate how ele-
ments in a feature vector in S1 contribute to represent those
in S2. This approach has been studied in the context of cross-
modal representation alignments to jointly model language
and vision. Tan and Bansal (2019) and Lu, D. Batra, and
Lee (2019) report to compute those cross-modal attention by
key-query dot product between different modalities, while
Ye et al. (2019) and Kamath et al. (2019) report to process
concatenated multi modal representations by a single Trans-
former. See (Khan et al. 2022) for a comprehensive survey.

Another approach other than contrastive learning to deal
with multi missing modal data will be an extension of
masked language model (Devlin et al. 2019) to multi modal-
ities. Masking partial or full tokens of an input modality (e.g.
SMILES, properties table, etc.), the FM should be trained so
to predict the masked tokens. This approach is simple but
careful masking strategy by for example curriculum training
will be needed.

Since creating an FM falls into a task of discovering
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effective neural network architectures, other AI-based ap-
proaches that achieve this goal are useful in general. For ex-
ample, Neural Architecture Search is an important subject
to automate some of the architecture creation tasks (Ben-
meziane et al. 2021). Improving the performance of the de-
coder is formulated as a heuristic search problem addressed
by new heuristic search that is more adaptive than standard
beam search, e.g., (Freitag and Al-Onaizan 2017) .

One final note is that the dataset contains noisy data points
whose distributions are difficult to estimate due to various
approaches for constructing the data. This gives the AI re-
search community opportunities to develop algorithms ro-
bust to such unpredictable noises.

Downstream Tasks
Once the material FM is made, it can deal with several es-
sential downstream tasks in a more uniform way.

One attractive capability is to model the missing modali-
ties of a material at a time. This enables material scientists to
obtain comprehensive information on a material of interest.
This task is addressed by encoding represented knowledge
of an input material with limited available modalities to a
feature vector incorporating information about the modali-
ties of all the prepared material samples.

One technical challenge is how to effectively leverage the
unification neural network. This is related to the approach on
autoregressive and diffusion models that leverage the latent
spaces trained by contrastive learning (Ramesh et al. 2022).
For transformer-based models, word masking (Devlin et al.
2019) is related.

The material FM can support a downstream task to com-
plete missing modalities, which eventually equals to modal-
ity conversion; predictive or generative modeling task. For
example, given an IR spectrum visually drawn by a material
scientist, the FM can generate candidates of molecular struc-
tures that are represented in SMILES as well as meet that IR
spectrum. After the IR spectrum is transformed into num-
bers (see the discussion in the Data Preparation subsection),
this task is addressed by performing encoding and decod-
ing steps in the direction from that IR spectrum to its cor-
responding molecular structure. In a similar manner, other
variety of modality conversions; property to molecule, text
to molecule, molecule to property are realized.

In practice, molecular generation algorithms need to ac-
count for structural constraints of molecules in each material
domain (e.g. structural symmetry, inclusion of a backbone
structure, tuning of functional groups, etc.), as well as ex-
perimental conditions (e.g. temperature profile of polymer-
ization, etc.). The material FM needs to provide an effective
framework combined with other approaches that handle con-
straints, e.g., (Lim et al. 2020; Takeda et al. 2020).

Modeling across different material domains is another no-
table capability ensured for downstream tasks. For example,
accurately modeling electronic conjugated systems of poly-
mers is key to successfully design new conductive polymers
with high electric conductivity. Even if no training exam-
ple is available for the polymers, the material FM pretrained
with the electronic conjugated systems of other non-polymer
materials (e.g., small organic molecule and semiconductor)

can leverage generic features necessary to predict the elec-
tronic conjugated systems for a polymer of interest. With a
smaller number of available training examples, which is of-
ten the case in the material industry in practice, the model
can be tuned further.

Conclusion
In this paper, we proposed building a Foundation Model
(FM) for material science, which is trained with massive
data acquired across a broad range of data modalities and
material domains. We identified existing issues and argued
on required technologies from the viewpoints of data prepa-
ration, model development, and downstream tasks. In ma-
terial science, incorporation of multiple representations of
material is the key for accurate modeling. The FM for mate-
rial science will integrate those representations on a united
latent space, so that overarching modeling across different
disciplines the same as human scientists do will be achieved.

Finally, integrating materials domains and modalities
does not necessarily indicate that only one absolute FM
should exist; as is seen in the NLP domain, the emergence
and culling of various models will occur in developing the
material FM, contributing to accelerate material science.
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