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Abstract
Actions description languages (ADLs), such as STRIPS,
PDDL, and RDDL specify the input format for planning al-
gorithms. Unfortunately, their syntax is foreign to most po-
tential users of planning technology. Moreover, this syntax
limits the ability to describe complex and large domains. We
argue that programming languages (PLs), and more specifi-
cally, probabilistic programming languages (PPLs), provide
a more suitable alternative. PLs are familiar to all program-
mers, support complex data types and rich libraries for their
manipulation, and have powerful constructs, such as loops,
sub-routines, and local variables with which complex, realis-
tic models and complex objectives can be simply and natu-
rally specified. PPLs, specifically, make it easy to specify dis-
tributions, which are essential for stochastic models. The nat-
ural objection to this proposal is that PLs are opaque and too
expressive, making reasoning about them difficult. However,
PPLs also come with efficient inference algorithms, which,
coupled with a growing body of work on sampling-based and
gradient-based planning, imply that planning and execution
monitoring can be carried out efficiently in practice. We ex-
pand on this proposal, illustrating its potential with examples.

Introduction
Action description languages (ADLs), such as
STRIPS (Fikes and Nilsson 1971), PDDL (McDermott
et al. 1998) and RDDL (Sanner 2010) specify the input
format to planning algorithms. Unfortunately, their syntax
is familiar to planning experts only, and not to potential
users of planning technology. This has been recognized as a
detriment to wider adoption of planning technology, and has
led to much interest in the topic of knowledge acquisition
for planning with an annual workshop.

The syntax of PDDL or RDDL can be mastered with some
practice, but it comes with inherent expressive limitations.
These make the task of modeling large and complex real-
world planning problems particularly challenging. In this
paper we argue for the use of programming languages (PLs),
and more specifically, probabilistic programming languages
(PPLs) (Goodman et al. 2008; Mansinghka, Selsam, and
Perov 2014; Wood, van de Meent, and Mansinghka 2014;
Goodman and Stuhlmüller 2014), as more suitable alterna-
tives to classical ADLs.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

First, programmers know quite well how to use PLs to de-
scribe what they conceive in their minds. Second, it is easier
to write complex models in PLs because they support com-
plex data types and come with rich and efficient libraries for
their manipulation. Describing arrays, linked-lists, vectors,
trees, tensors etc. is very difficult and cumbersome within a
classic ADL. Such a description would not be transparent to
anyone who reads it, is likely to be lengthy, and algorithms
that use it would have no knowledge of its special properties.
PLs also come with powerful constructs, such as loops, sub-
routines, and local variables that farther enhance our ability
to naturally specify complex, realistic models and complex
objectives. More specifically, PPLs make it easy to specify
distributions essential for modeling uncertainty about action
effects and about the world’s state — essential components
of many, if not most, real-world models. Moreover, most
ADLs are restricted to closed models, whereas open mod-
els are easy to specify using PPLs.

Two related objections arise at this point: First, isn’t this
essentially telling us to use simulators? Second, we know
from KR that expressive models are difficult to reason with,
and more specifically, in the case of full-fledged PLs, many
inference tasks would be undecideable. Moreover, PLs are
likely not structured enough to support good algorithms.

Indeed, simulation will play a major role in planning al-
gorithms based on PPL models. Simulation based meth-
ods such as algorithms for bandit problems (Auer, Cesa-
Bianchi, and Fischer 2002), MDPs (Puterman 2005) and
POMDPs (Silver and Veness 2010; Ye et al. 2017), RL al-
gorithms (Sutton and Barto 1998), and Novelty-based meth-
ods (Lipovetzky and Geffner 2012) have been very success-
ful, recently. And by using code to describe the model, we
make it very easy to automatically generate efficient sim-
ulators (Wertheim, Suissa, and Brafman 2022) that can also
utilize various libraries for manipulating complex data types.

But PPL-based ADLs offer more than fast simulation. We
believe that future work can exploit the growing body of
supported inference algorithms in service of planning and
(no less important) execution monitoring. Specifically, PPLs
make it easy to assess the likelihood of new observations,
allowing us to detect rare and unlikely events. They support
more involved inference algorithms that can allow us to val-
idate our plans and verify various properties. PPLs also sup-
port annotation methods that are then used by the inference
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algorithms to make the computation more efficient. One can
use such annotations to construct more structured abstrac-
tions of the model that can guide computation (e.g., bias the
sampling process towards better actions, provide heuristic
estimates), or to automatically detect components with spe-
cial structure (e.g., deterministic variables) and exploit them.

Perhaps more importantly, PPLs can exploit automatic
differentiation methods (Baydin et al. 2018). This implies
that recent efficient gradient-based planning methods, such
as (Bhandari and Russo 2021) could be used to solve them.

We believe the above makes the case for exploiting PPLs-
based ADL in planning clear. The rest of this paper provides
some background, expands on some of the above issues,
and describes a number of examples that illustrate the points
made above. We end with a suggested research agenda.

Background
Action Description Languages
The basic components of most planning ADLs can be traced
to the STRIPS language (Fikes and Nilsson 1971). Propo-
sitions are used to describe the state of the world. These
propositions are obtained by instantiating typed variables
within a given set of predicates, by objects. For example
On(BlockA,BlockB) instantiates the binary predicate On us-
ing two block objects, which yields a proposition that is ei-
ther true or false. Actions are usually specified as schema,
e.g., Pickup(?x), with its variables as place holders for ap-
propriate objects. The action description specifies an appli-
cability condition in the form of the precondition list — a
list of predicates with objects or variables that appear in the
action schema, and a similar list describing its effects.

Planning languages have evolved to gradually more com-
plex descriptions, including quantification over variables,
conditional effects, resources, cost, preferences, constraints,
axioms, non-Boolean finite-domain variables and much
more (Fox and Long 2003; Gerevini et al. 2009; Bäckström
and Nebel 1995). However, the constrained structure of the
languages, their reliance on simple data types and lack of
iterators makes it difficult to express complex models.

Moreover, none of the above languages support proba-
bilistic models — an essential component of realistic mod-
els. These models require numeric information and, of-
ten, variables with continuous domains. While an extension
of PDDL to probabilistic domains (PPDDL) (Younes and
Littman 2004) exists, it is mainly useful for transforming
existing classical domains to probabilistic ones.

There are two notable exceptions. RDDL (Sanner 2010)
is a language developed for describing dynamic Bayesian
networks (DBNs) (Ghahramani 1997) that capture the tran-
sition and observation functions of MDPs and POMDPs.
RDDL can be viewed as restricted, special purpose proba-
bilistic programming language. DBNs describe the condi-
tional probability of post-action or observation values given
the pre-action variables’ values. Additional layers in be-
tween the pre-action and post-action layer allow intermedi-
ate computations. RDDL specs are declarative and explicitly
specify the conditional probabilities of each variable value.
These values can be described using a broad set of sup-

ported mathematical and logical functions and expressions.
A variable in one layer can be conditioned on the previous
layer, only. This can be viewed as a generative model that
describes how each layer’s values are generated from the
previous layer. Writing RDDL specifications requires mas-
tering their syntax, and complex distributions may be diffi-
cult to specify. Intermediate computations are accomplished
by adding intermediate DBN layers, which may be tedious
since each variable can only be assigned once. As we show
later, a piece of code with local variables (possibly assigned
multiple times) and advanced control structures like loops
can be much easier to specify, is more compact and is easier
to understand. It also enables much more efficient sampling
by simply using the code itself, whereas RDDL specification
must be parsed and sampled by a generic piece of code. And
finaly, RDDL can describe graphical models, only. Hence, it
cannot capture open-world domains.

BLOG (Srivastava et al. 2014) was an important step in
the direction we are espousing worth highlighting. Its syn-
tax is PL-like, and it supports set objects using which it is
able to model open universes. However, it is short of a full-
fledged PPL as it does not support rich data structure and
itreserators, and lacks the inference capabilities of modern
PPLs.

Probabilistic Programming
Probabilistic programming (Goodman et al. 2008; Mans-
inghka, Selsam, and Perov 2014; Wood, van de Meent, and
Mansinghka 2014; Goodman and Stuhlmüller 2014) rep-
resents statistical models as programs written in an other-
wise general programming language that provides syntax for
the definition and conditioning of random variables. This
means that programmers familiar with languages such as
C++, Python, and more, can use them with almost no ad-
ditional effort. Inference can be performed on probabilistic
programs to obtain the posterior distribution or point esti-
mates of the variables. Inference algorithms are provided by
the PPL framework, and each algorithm is usually applica-
ble to a wide class of probabilistic programs in a black-box
manner. Probabilistic programs may contain loops, condi-
tional statements, recursion, and operate on built-in and user
defined data structures. The algorithms include Metropolis-
Hastings(Mansinghka, Selsam, and Perov 2014; Yang, Han-
rahan, and Goodman 2014), Hamiltonian Monte Carlo (Car-
penter et al. 2017), expectation propagation (Minka et al.
2010), extensions of Sequential Monte Carlo (Wood, van de
Meent, and Mansinghka 2014; van de Meent et al. 2015;
Paige et al. 2014; Rainforth et al. 2016; Murray and Schön
2018), variational inference (Wingate and Weber 2013; Ku-
cukelbir et al. 2017), gradient-based optimization (Carpenter
et al. 2017; Bingham et al. 2019), and others.

Expressive Power
We compare PPL-based specification with RDDL ones on
two examples, seeking to illustrate that that PPL-based spec-
ification are easier to write and understand and can describe
models that RDDL (and most other ADLs) cannot describe,
and this is done without a need to learn a new language. We
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focus on RDDL because it is the richest available ADL ac-
tively used in planning that supports probabilistic models.

Locusts Swarm — Multi-Stage Exogenous Events
In this domain, aside from the agent’s action, there are ex-
ogenous events that take place in parallel. To capture these
exogenous events, RDDL needs to introduce intermediate
layers in the DBN. If the event is complex, i.e., develops
in multiple stages, then one layer is needed for each stage
since every variable in a DBN can be assigned once only.
With code, on the other hand, one can considerably simplify
the domain description by using intermediate variables that
describe the process and are reassigned multiple times.

In the Locusts Swarm domain, a swarm of locusts has in-
vaded a nature reserve. The reserve is divided into nine pri-
mary cells that host a variety of endangered plants (10 tons
of plants in each cell). The swarm moves from cell to cell
twice during the night, eating half the plants of each cell it
encounters. It rests in the last cell visited at night during the
following day. The swarm moves stochastically depending
on how many plants it smells in neighboring cells. The re-
serve management has a crop duster that can spray pesticides
at a single cell at night. These materials fade away after one
day and need a whole day to disable the swarm. The only
chance to stop this catastrophe is to spray, in advance, the
cell in which the swarm will rest the following day.

RDDL requires a description that grows linearly because
increasing the number of nightly swarm transitions increases
the number of required RDDL layers. Using a PPL, we can
provide a fixed-size description. The verified RDDL code
appears in Listing 3 and the pseudo PPL code in Listing 1.

The Open World Room Cleaning Domain
Using code, it is easy to describe open-world domains, i.e.,
domains in which the set of objects is not constant. This
is very natural in many cases, and was demonstrated in
BLOG (Srivastava et al. 2014). Below is a simple example
of a domain describing a robot cleaning a children’s room.
Such a domain does not correspond to a graphical model,
because the size of the graph changes. Hence, it cannot be
described in RDDL, PDDL, and similar languages.

In the Room Cleaning domain, a robot cleans the chil-
dren’s room and should put all the toys in their place. Each
toy has a size and a level of difficulty to grasp, and a price.
The robot is initially aware of only three toys, some already
in place. It can place one toy per minute, yet it may drop and
break a toy. Every minute it receives positive reward for or-
dered toys based on their size, and a negative reward for un-
ordered toys. If it breaks a toy, it receives a one-time penalty
for its price. Every minute the robot is cleaning, it may find
up to two new toys needing attention. The mission only ends
when all toys are in place, and there is no maximum number
of toys (See pseudo code in Listing 2).

Reward Machines and Factorization
Recently, specification of complex, non-Markovian reward
functions (i.e., ones depending on the entire past), captured
by automata, and known as reward machines have become

popular (Camacho et al. 2019). By taking the Cartesian
product of the underlying MDP and the reward-machine au-
tomaton, we obtain a new, product MDP w.r.t which the re-
ward is Markovian.

Technically, reward machines allow us to decompose the
”true” product MDP into smaller components. This is good
for learning, representation, and planning. This is particu-
larly important when MDPs are represented using explicit
tables. Probabilistic programs generalize this idea. First, fac-
tored structure can be reflected directly in the code — both
the probabilistic part and the reward part. Second, one can
describe much more elaborate reward functions using code.
In fact, utilities behave much like log-probabilities (Wingate
et al. 2011; van de Meent et al. 2016), and the same machin-
ery can be applied to them.

Inference, Planning and Verification
One advantage of PPLs is the (growing) body of inference
algorithms they support. Sampling algorithms are obtained
immediately, as the PPL code can be executed to yield sim-
ulated values. This is an important advantage over existing
ADLs in which the description must be parsed and compiled
to an executable format. Below we describe a number of ad-
ditional inference tasks that can be carried out using existing
infra-structure.

Computing Policy Parameters — Sailing Domain
In many applications, we seek to find optimal parameters
for a policy with fixed structure. A classic example is a
fixed-size finite-state controller, where we seek to find the
structure of the best controller for a POMDP with bounded
size (Meuleau et al. 1999; Poupart and Boutilier 2004).
The Sailing Domain provides an example of such a prob-
lem (Péret and Garcia 2004; Tolpin and Shimony 2012).

A sailing boat must travel between the opposite corners
A and B of a square lake of a given size. At each step, the
boat can head in 8 directions to adjacent squares. It always
moves one unit-distance, called a leg. The unit distance cost
of movement depends on the wind, which can also blow in 8
directions. The cost of sailing into the wind is prohibitively
high, upwind is the highest feasible, and away from the wind
is the lowest. When the angle between the boat and the wind
changes sign, the sail must be tacked, which incurs an addi-
tional cost. The wind is assumed to follow a random walk,
either staying the same or switching to an adjacent direction,
with a known probability.

For any given lake size, there is a non-parametric stochas-
tic policy that tabulates the distribution of legs for each com-
bination of location, tack, and wind. However, such policy
does not generalize well — if the lake surface area increases,
due to a particularly rainy year, for example, the policy is not
applicable to the new parts of the lake. Instead, we can define
a generalizable parametric policy balancing between hesita-
tion in anticipation for a better wind and rushing to the goal
at any cost. The policy chooses a leg with log-probability
equal, up to a constant, to the sum of the leg cost and of the
Euclidean distance between the position after the leg and
the goal, multiplied by the policy parameter θ (the leg di-
rected into the wind is excluded from choices). The greater
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the θ, the higher is the probability that a leg bringing the boat
closer to the goal will be chosen:

log Pr(leg) = leg-cost+θ·distance(next-location, goal)+C
(1)

In a probabilistic programming language, (1) can be ex-
pressed as just sampling from a categorical distribution:

leg ∼ Categorical({leg i : Pr(leg i)}) (2)

Inferring the policy, either offline or online, can be accom-
plished using out-of-the-box inference algorithms for mod-
els expressed by probabilistic programs. Note, that this pol-
icy is differentiable with respect to θ. This allows to leverage
automatic differentiation capabilities of modern probabilis-
tic programming languages for efficient optimization.

Verification
Probabilistic model-checking (a.k.a. statistical model check-
ing in the verification community) (Henriques et al. 2012)
refers to the problem of verifying certain properties of prob-
abilistic transition systems. Special purpose systems for this
task such as PRISM (Kwiatkowska, Norman, and Parker
2011) and UPPAAL-SMC (Bulychev et al. 2012) have been
developed. The basic query in such systems is what is the
probability of a future event satisfying some property. There
are several settings in which the query is posed: (a) for the
fixed policy — to check the robustness of a chosen policy,
(b) for a broad class (a distribution) of policies — to check
the robustness of the agent in an average case, and (c) for the
worst-case policy with respect to the query — to check ro-
bustness of the agent in an adversarial setting. For the above
mentioned sailing domain, for example, we may query about
the probability of visiting the complementary corners of the
square lake, where bulrush grows, or about the probability
of travel cost execeeding a certain threshold.

This is a standard query in probabilistic programming.
From the probabilistic inference point of view, these three
settings involve analysis of the predictive posterior of the
model and differ only in the way the model is conditioned.
For (a), the predictive posterior is obtained for the model
conditioned on the chosen policy parameters. For (b), a
Bayesian prior reflecting assumptions on the class of poli-
cies is imposed on latent variables, and the predictive pos-
terior is obtained under the prior. For (c), applicable to
stochastic domains only, the model is conditioned on the oc-
curence of the event of interest. The posterior is most of-
ten represented by samples, allowing for convenient and ef-
ficient calculation of quantiles and compatibility intervals;
alternatively, variational inference may allow performing
probabilistic queries on the posterior in closed form.

Moreover, unlike purpose-built tools, which are often
confined to a particular type of queries, the whole arsenal of
Bayesian model checking, evaluation, and comparison (Gel-
man et al. 2013, Chapters 6–7) becomes available when
probabilistic programming is used to define the model.

Research Agenda
The discussion above suggests natural research questions:

Planning Algorithms The most important direction is
continuing to develop planning algorithms that can exploit
PPL-based action descriptions. This includes:
• Efficient sampling algorithms.
• Model-based gradient descent algorithms that exploit our

ability to auto-diff probabilistic programs.
• Techniques for guiding planners, including heuristics

(such as novelty (Lipovetzky and Geffner 2012)),
helpful-actions, as used by POMCP (Silver and Veness
2010) and Despot (Ye et al. 2017) to perform roll-outs,
and other techniques.

• Algorithms that recognize domains with special proper-
ties, e.g., deterministic, fully observable, allowing the use
of special-purpose planners

• Algorithms that exploit component structure within a
program for planning, such as deterministic components
(as in reward machines and POMDP-Lite (Chen et al.
2016)), fully observable components, etc.

Learning Algorithms
A long line of work, going back at least to (Yang, Wu, and
Jiang 2007) is concerned with learning action models for
planning. This becomes even more crucial when we allow
more complex descriptions. This should be of interest to the
PPL community, interested in learning PPLs in general, as it
offers a more constrained setting with many potential exam-
ples. If fact, learning quantitative information with program
structure fixed is already supported by existing PPLs.

Compilation
Methods for compiling programs into existing formalisms
(e.g., to RDDL) could be used to exploit the strength of cur-
rent planning algorithms. Approximate compilation meth-
ods can be used to provide approximate solutions, and these
could also be used to guide algorithms that solve the original
problem description, e.g., as heuristics.

Summary
In this paper we argued for the use of PPLs as a language for
specifying stochastic planning models. PPL makes it easier
to express complex models, and their code can be exploited
by planning algorithms. Indeed, models of various realistic
systems cannot be captured compactly using existing for-
malism, nor do associated methods scale to handle planning
in them. Moreover, PPL inference algorithms can be used
by planning algorithms to support various useful inference
tasks. This, of course, does not detract from the usefulness of
existing methods with their associated planning algorithms.
They remain useful as potential models, when appropriate,
and as tools that can be exploited by richer models to support
efficient planning.

Appendix: Code Examples
In the following pages we provide PPL pseudo-code for the
Locust Swarm and Room Cleaning domains and verified
RDDL code for the Locust Swarm domain.
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Listing 1 The Locusts Swarm domain in pseudo PPL code.
1: c o o r d i n a t e s enum {x , y}
2: d i r e c t i o n s enum {up , down , l e f t , r i g h t}
3: o v e r n i g h t t r a n s i t i o n s =2 / / The number o f n i g h t l y swarm movements .
4:
5: / / s t a t e v a r i a b l e s :
6: t o n s o f p l a n t s i n c e l l s [ 3 , 3 ] =10 / / 1 0 t o n s i n each of 3x3 c e l l s
7: s w a r m l o c a t i o n = (2 , 2 ) / / The ( x , y ) l o c a t i o n o f t h e swarm .
8: s w a r m d i s a b l e d = f a l s e / / De te rmine i f t h e swarm i s d i s a b l e d and no l o n g e r damages t h e p l a n t s .
9:

10: / / ’ d i s a b l e s w a r m a c t i o n ’ i s t h e l o c a t i o n we want t o s p r a y t h e p e s t i c i d e s . ’ s ’ i s t h e s t a t e we want t o sample from .
11: f u n c t i o n s a m p l e n e x t s t a t e ( d i s a b l e s w a r m a c t i o n , s )
12: f o r move i n 1 t o o v e r n i g h t t r a n s i t i o n s / / Repea t by t h e number o f t h e swarm n i g h t l y t r a n s i t i o n s .
13: t o t a l w e i g h t =0
14: w e i g h t s [ 4 ]
15:
16: / / C a l c u l a t e t h e p r o b a b i l i t y f o r t h e swarm t o go i n each d i r e c t i o n based on t h e amounts o f p l a n t s t h e r e .
17: w e i g h t s [ up ] = i f s . s w a r m l o c a t i o n [ y ] > 2 t h e n 0 . 0 e l s e s . t o n s o f p l a n t s i n c e l l s [ s . s w a r m l o c a t i o n [ x ] , s . s w a r m l o c a t i o n [ y ] +1 ]
18: w e i g h t s [ down ] = i f s . s w a r m l o c a t i o n [ y ] < 2 t h e n 0 . 0 e l s e s . t o n s o f p l a n t s i n c e l l s [ s . s w a r m l o c a t i o n [ x ] , s . s w a r m l o c a t i o n [ y ] −1 ]
19: w e i g h t s [ r i g h t ] = i f s . s w a r m l o c a t i o n [ x ] > 2 t h e n 0 . 0 e l s e s . t o n s o f p l a n t s i n c e l l s [ s . s w a r m l o c a t i o n [ x ] +1 ] , s . s w a r m l o c a t i o n [ y ] ]
20: w e i g h t s [ l e f t ] = i f s . s w a r m l o c a t i o n [ x ] < 2 t h e n 0 . 0 e l s e s . t o n s o f p l a n t s i n c e l l s [ s . s w a r m l o c a t i o n [ x ] −1 ] , s . s w a r m l o c a t i o n [ y ] ]
21: t o t a l w e i g h t = w e i g h t s [ up ] + w e i g h t s [ down ] + w e i g h t s [ r i g h t ] + w e i g h t s [ l e f t ]
22:
23: f o r m o v e d i r e c t i o n i n d i r e c t i o n s / / Normal i ze t h e w e i g h t s .
24: w e i g h t s [ m o v e d i r e c t i o n ] = w e i g h t s [ m o v e d i r e c t i o n ] / t o t a l w e i g h t
25: m o v e d i r e c t i o n = s a m p l e d i s c r e t e ( w e i g h t s ) / / Sample t h e swarm movement d i r e c t i o n .
26:
27: / / C a l c u l a t e t h e new swarm l o c a t i o n based on t h e sampled d i r e c t i o n .
28: s . s w a r m l o c a t i o n [ x ] = s w i t c h ( m o v e d i r e c t i o n ){
29: c a s e r i g h t : s . s w a r m l o c a t i o n [ x ] +1
30: c a s e l e f t : s . s w a r m l o c a t i o n [ x ] −1
31: d e f a u l t : s . s w a r m l o c a t i o n [ x ]
32: }
33: s . s w a r m l o c a t i o n [ y ] = s w i t c h ( m o v e d i r e c t i o n ){
34: c a s e up : s . s w a r m l o c a t i o n [ y ] +1
35: c a s e down : s . s w a r m l o c a t i o n [ y ] −1
36: d e f a u l t : s . s w a r m l o c a t i o n [ y ]
37: }
38: i f n o t s . s w a r m d i s a b l e d / / I f t h e swarm i s n o t d i s a b l e d , i t e a t s h a l f t h e food i n i t s c u r r e n t l o c a t i o n .
39: s . t o n s o f p l a n t s i n c e l l s [ s w a r m l o c a t i o n ] = 0 . 5 * s . t o n s o f p l a n t s i n c e l l s [ s w a r m l o c a t i o n ]
40:
41: i f s . d i s a b l e s w a r m a c t i o n == s . s w a r m l o c a t i o n / / The swarm i s d i s a b l e d i f t h e c rop d u s t e r s p r a y e d i t s l a s t l o c a t i o n .
42: s . s w a r m d i s a b l e d = t r u e
43:
44: / / The reward i s t h e t o t a l number o f p l a n t s l e f t i n t h e n a t u r e r e s e r v e .
45: r eward =0
46: f o r e a c h t o n s i n c e l l i n s . t o n s o f p l a n t s i n c e l l s
47: r eward = reward + t o n s i n c e l l
48: r e t u r n reward , s / / R e t u rn t h e reward and t h e sampled n e x t s t a t e .

Listing 2 The Room Cleaning domain in pseudo PPL code.
1: t o y s p r o p e r t i e s enum { s i z e , i n p l a c e , p r i c e , g r a s p i n g d i f f i c u l t y}
2: t o y s = [{0 . 1 , t r u e , 0 . 3 , 0 . 1} ,{0 . 8 , f a l s e , 0 . 2 , 0 . 1} ,{6 . 8 , f a l s e , 1 . 5 , 0 . 2} ] \\The ’ toys ’ l i s t i s t h e o n l y s t a t e v a r i a b l e .
3:
4: / / ’ o r d e r t o y a c t i o n ’ i s t h e i n d e x of t h e t o y t h a t s h o u l d be o r d e r e d . ’ s ’ i s t h e s t a t e we want t o sample ( t h e n e x t s t a t e and reward )

from .
5: f u n c t i o n s a m p l e n e x t s t a t e ( o r d e r t o y a c t i o n , s )
6: r eward = 0
7: t o y = s . t o y s [ o r d e r t o y a c t i o n ] / / Get t h e t o y t h e r o b o t s h o u l d h a n d l e .
8: i f n o t t o y [ i n p l a c e ] / / I f t o y n o t i n p l a c e
9: i f s a m p l e b e r n o u l l i ( t o y [ g r a s p i n g d i f f i c u l t y ] ) / / Sample i f t h e t o y f a l l s and b r e a k s based on i t s g r a s p i n g d i f f i c u l t y .

10: r eward = − t o y [ p r i c e ] / / Give a n e g a t i v e reward based on t h e t o y p r i c e .
11: s . t o y s . remove ( t o y ) / / Remove t h e broken t o y from t h e t o y s l i s t .
12: e l s e
13: t o y [ i n p l a c e ] = t r u e / / I f t h e r o b o t c o u l d g r a s p t h e t o y , i t i s s a i d t o be i n p l a c e .
14:
15: f o r e a c h t o y i n s . t o y s / / Give a p o s i t i v e ( n e g a t i v e ) reward f o r each t o y ( n o t ) i n p l a c e by i t s s i z e .
16: i f t o y [ i n p l a c e ]
17: r eward = reward + t o y [ s i z e ]
18: e l s e
19: r eward = reward − t o y [ s i z e ]
20:
21: n u m b e r o f t o y s t o a d d = s a m p l e d i s c r e t e ( 0 . 4 , 0 . 3 , 0 . 3 ) / / Sample t h e number o f new t o y s found ( z e r o : 0 . 4 , one : 0 . 3 , o r two : 0 . 3 ) .
22: f o r 1 t o n u m b e r o f t o y s t o a d d / / Add t o y s as t h e amount found .
23: new toy = { a b s o l u t e v a l u e ( s a m p l e n o r m a l (1 , 1 ) , s a m p l e b e r n o u l l i ( 0 . 2 ) ,
24: s a m p l e u n i f o r m (0 , 4 ) , s a m p l e u n i f o r m (0 , 0 . 4 )} / / Sample t h e new t o y p r o p e r t i e s .
25: s . t o y s . append ( new toy ) / / Add t h e new t o y t o t h e t o y s l i s t .
26: r e t u r n reward , s / / R e t u rn t h e reward and t h e sampled n e x t s t a t e .
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Listing 3 The Locusts Swarm domain in RDDL code.
1: / / s w a r m o f l o c u s t s : c e l l s map
2: / /
3: / / 3|@c1|@c2|@c3|
4: / / 2|@c4|@c5|@c6|
5: / / 1|@c7|@c8|@c9|
6: / / −−−−−−−−−−−−−−
7: / / y / x 1 2 3
8: domain s w a r m o f l o c u s t s 2 {
9: t y p e s { c e l l : o b j e c t ; d i r e c t i o n : {@up , @down , @le f t , @r igh t} ;} ;

10:
11: p v a r i a b l e s {
12: x l o c a t i o n ( c e l l ) : {non − f l u e n t , i n t , d e f a u l t = −1} ;
13: y l o c a t i o n ( c e l l ) : {non − f l u e n t , i n t , d e f a u l t = −1} ;
14: t o n s o f p l a n t s ( c e l l ) : { s t a t e − f l u e n t , r e a l , d e f a u l t = 1 0 . 0} ;
15: s w a r m d i s a b l e d : { s t a t e − f l u e n t , boo l , d e f a u l t = f a l s e} ;
16: s w a r m l o c a t i o n x : { s t a t e − f l u e n t , i n t , d e f a u l t = 1} ; s w a r m l o c a t i o n y : { s t a t e − f l u e n t , i n t , d e f a u l t = 1} ;
17: t o t a l n e i g h b o r s p l a n t s 1 : { i n t e rm − f l u e n t , r e a l , l e v e l = 1} ;
18: swarm move1 : { i n t e rm − f l u e n t , d i r e c t i o n , l e v e l = 2} ;
19: s w a r m l o c a t i o n 1 x : { i n t e rm − f l u e n t , r e a l , l e v e l = 3} ;
20: s w a r m l o c a t i o n 1 y : { i n t e rm − f l u e n t , r e a l , l e v e l = 3} ;
21: t o n s o f p l a n t s 1 ( c e l l ) : { i n t e rm − f l u e n t , r e a l , l e v e l = 4} ;
22: t o t a l n e i g h b o r s p l a n t s 2 : { i n t e rm − f l u e n t , r e a l , l e v e l = 5} ;
23: swarm move2 : { i n t e rm − f l u e n t , d i r e c t i o n , l e v e l = 6} ;
24: s w a r m l o c a t i o n 2 x : { i n t e rm − f l u e n t , r e a l , l e v e l = 7} ;
25: s w a r m l o c a t i o n 2 y : { i n t e rm − f l u e n t , r e a l , l e v e l = 7} ;
26: d i s a b l e s w a r m a c t ( c e l l ) : { a c t i o n − f l u e n t , boo l , d e f a u l t = 0} ;} ;
27:
28: c p f s{
29: t o t a l n e i g h b o r s p l a n t s 1 = sum {? c : c e l l} [ i f ( ( ( s w a r m l o c a t i o n x +1) == x l o c a t i o n ( ? c ) ˆ s w a r m l o c a t i o n y == y l o c a t i o n ( ? c ) ) |
30: ( ( s w a r m l o c a t i o n x − 1) == x l o c a t i o n ( ? c ) ˆ s w a r m l o c a t i o n y == y l o c a t i o n ( ? c ) ) |
31: ( ( s w a r m l o c a t i o n y + 1) == y l o c a t i o n ( ? c ) ˆ s w a r m l o c a t i o n x == x l o c a t i o n ( ? c ) ) |
32: ( ( s w a r m l o c a t i o n y −1) == y l o c a t i o n ( ? c ) ˆ s w a r m l o c a t i o n x == x l o c a t i o n ( ? c ) ) ) t h e n t o n s o f p l a n t s ( ? c ) e l s e 0 . 0 ] ;
33: swarm move1 = D i s c r e t e ( d i r e c t i o n ,
34: @up : i f ( s w a r m l o c a t i o n y == 3) t h e n 0 . 0 e l s e ( sum {? c : c e l l} [ i f ( ( s w a r m l o c a t i o n y + 1) == y l o c a t i o n ( ? c ) ˆ
35: s w a r m l o c a t i o n x == x l o c a t i o n ( ? c ) ) t h e n t o n s o f p l a n t s ( ? c ) e l s e 0 . 0 ] ) / t o t a l n e i g h b o r s p l a n t s 1 ,
36: @down : i f ( s w a r m l o c a t i o n y == 1) t h e n 0 . 0 e l s e ( sum {? c : c e l l} [ i f ( ( s w a r m l o c a t i o n y − 1) == y l o c a t i o n ( ? c ) ˆ
37: s w a r m l o c a t i o n x == x l o c a t i o n ( ? c ) ) t h e n t o n s o f p l a n t s ( ? c ) e l s e 0 . 0 ] / t o t a l n e i g h b o r s p l a n t s 1 ) ,
38: @lef t : i f ( s w a r m l o c a t i o n x == 1) t h e n 0 . 0 e l s e ( sum {? c : c e l l} [ i f ( ( s w a r m l o c a t i o n x − 1) == x l o c a t i o n ( ? c ) ˆ
39: s w a r m l o c a t i o n y == y l o c a t i o n ( ? c ) ) t h e n t o n s o f p l a n t s ( ? c ) e l s e 0 . 0 ] / t o t a l n e i g h b o r s p l a n t s 1 ) ,
40: @right : i f ( s w a r m l o c a t i o n x == 3) t h e n 0 . 0 e l s e ( sum {? c : c e l l} [ i f ( ( s w a r m l o c a t i o n x + 1) == x l o c a t i o n ( ? c ) ˆ
41: s w a r m l o c a t i o n y == y l o c a t i o n ( ? c ) ) t h e n t o n s o f p l a n t s ( ? c ) e l s e 0 . 0 ] / t o t a l n e i g h b o r s p l a n t s 1 ) ) ;
42: s w a r m l o c a t i o n 1 x = s w i t c h ( swarm move1 ){c a s e @up : s w a r m l o c a t i o n x , c a s e @down : s w a r m l o c a t i o n x ,
43: c a s e @right : s w a r m l o c a t i o n x + 1 , c a s e @le f t : s w a r m l o c a t i o n x − 1} ;
44: s w a r m l o c a t i o n 1 y = s w i t c h ( swarm move1 ){c a s e @up : s w a r m l o c a t i o n y + 1 , c a s e @down : s w a r m l o c a t i o n y − 1 ,
45: c a s e @right : s w a r m l o c a t i o n y , c a s e @le f t : s w a r m l o c a t i o n y} ;
46: t o n s o f p l a n t s 1 ( ? c ) = i f ( s w a r m l o c a t i o n 1 y == y l o c a t i o n ( ? c ) ˆ s w a r m l o c a t i o n 1 x == x l o c a t i o n ( ? c ) ) t h e n t o n s o f p l a n t s ( ? c ) * 0 . 5
47: e l s e t o n s o f p l a n t s ( ? c ) ;
48: t o t a l n e i g h b o r s p l a n t s 2 =sum {? c : c e l l} [ i f ( ( ( s w a r m l o c a t i o n 1 x +1) == x l o c a t i o n ( ? c ) ˆ s w a r m l o c a t i o n 1 y == y l o c a t i o n ( ? c ) ) |
49: ( ( s w a r m l o c a t i o n 1 x − 1) == x l o c a t i o n ( ? c ) ˆ s w a r m l o c a t i o n 1 y == y l o c a t i o n ( ? c ) ) |
50: ( ( s w a r m l o c a t i o n 1 y + 1) == y l o c a t i o n ( ? c ) ˆ s w a r m l o c a t i o n 1 x == x l o c a t i o n ( ? c ) ) |
51: ( ( s w a r m l o c a t i o n 1 y −1) == y l o c a t i o n ( ? c ) ˆ s w a r m l o c a t i o n 1 x == x l o c a t i o n ( ? c ) ) ) t h e n t o n s o f p l a n t s 1 ( ? c ) e l s e

0 . 0 ] ;
52:
53: swarm move2 = D i s c r e t e ( d i r e c t i o n ,
54: @up : i f ( s w a r m l o c a t i o n 1 y == 3) t h e n 0 . 0 e l s e ( sum {? c : c e l l} [ i f ( ( s w a r m l o c a t i o n 1 y + 1) == y l o c a t i o n ( ? c ) ˆ
55: s w a r m l o c a t i o n 1 x == x l o c a t i o n ( ? c ) ) t h e n t o n s o f p l a n t s 1 ( ? c ) e l s e 0 . 0 ] ) / t o t a l n e i g h b o r s p l a n t s 2 ,
56: @down : i f ( s w a r m l o c a t i o n 1 y == 1) t h e n 0 . 0 e l s e ( sum {? c : c e l l} [ i f ( ( s w a r m l o c a t i o n 1 y − 1) == y l o c a t i o n ( ? c ) ˆ
57: s w a r m l o c a t i o n 1 x == x l o c a t i o n ( ? c ) ) t h e n t o n s o f p l a n t s 1 ( ? c ) e l s e 0 . 0 ] / t o t a l n e i g h b o r s p l a n t s 2 ) ,
58: @lef t : i f ( s w a r m l o c a t i o n 1 x == 1) t h e n 0 . 0 e l s e ( sum {? c : c e l l} [ i f ( ( s w a r m l o c a t i o n 1 x − 1) == x l o c a t i o n ( ? c ) ˆ
59: s w a r m l o c a t i o n 1 y == y l o c a t i o n ( ? c ) ) t h e n t o n s o f p l a n t s 1 ( ? c ) e l s e 0 . 0 ] / t o t a l n e i g h b o r s p l a n t s 2 ) ,
60: @right : i f ( s w a r m l o c a t i o n 1 x == 3) t h e n 0 . 0 e l s e ( sum {? c : c e l l} [ i f ( ( s w a r m l o c a t i o n 1 x + 1) == x l o c a t i o n ( ? c ) ˆ
61: s w a r m l o c a t i o n 1 y == y l o c a t i o n ( ? c ) ) t h e n t o n s o f p l a n t s 1 ( ? c ) e l s e 0 . 0 ] / t o t a l n e i g h b o r s p l a n t s 2 ) ) ;
62: s w a r m l o c a t i o n 2 x = s w i t c h ( swarm move2 ){c a s e @up : s w a r m l o c a t i o n 1 x , c a s e @down : s w a r m l o c a t i o n 1 x ,
63: c a s e @right : s w a r m l o c a t i o n 1 x + 1 , c a s e @ le f t : s w a r m l o c a t i o n 1 x − 1} ;
64: s w a r m l o c a t i o n 2 y = s w i t c h ( swarm move2 ){c a s e @up : s w a r m l o c a t i o n 1 y + 1 , c a s e @down : s w a r m l o c a t i o n 1 y − 1 ,
65: c a s e @right : s w a r m l o c a t i o n 1 y , c a s e @ le f t : s w a r m l o c a t i o n 1 y} ;
66: s w a r m l o c a t i o n x ’= s w a r m l o c a t i o n 2 x ;
67: s w a r m l o c a t i o n y ’= s w a r m l o c a t i o n 2 y ;
68: t o n s o f p l a n t s ’ ( ? c ) = i f ( s w a r m d i s a b l e d ) t h e n t o n s o f p l a n t s ( ? c ) e l s e ( i f ( s w a r m l o c a t i o n 2 y == y l o c a t i o n ( ? c ) ˆ
69: s w a r m l o c a t i o n 2 x == x l o c a t i o n ( ? c ) ) t h e n t o n s o f p l a n t s 1 ( ? c ) * 0 . 5 e l s e t o n s o f p l a n t s 1 ( ? c ) ) ;
70: s w a r m d i s a b l e d ’ = i f ( s w a r m d i s a b l e d ) t h e n s w a r m d i s a b l e d e l s e e x i s t s {? c : c e l l} ( ( d i s a b l e s w a r m a c t ( ? c ) == 1) ˆ
71: x l o c a t i o n ( ? c ) == s w a r m l o c a t i o n 2 x ˆ y l o c a t i o n ( ? c ) == s w a r m l o c a t i o n 2 y ) ;
72: } ;
73: r eward = [ sum {? c : c e l l} ( t o n s o f p l a n t s ’ ( ? c ) ) ] ;
74: }
75:
76: non − f l u e n t s s w a r m o f l o c u s t s 2 n f {
77: domain = s w a r m o f l o c u s t s 2 ;
78: o b j e c t s { c e l l : { c e l l 1 , c e l l 2 , c e l l 3 , c e l l 4 , c e l l 5 , c e l l 6 , c e l l 7 , c e l l 8 , c e l l 9} ;} ;
79: non − f l u e n t s {
80: x l o c a t i o n ( c e l l 1 ) =1; x l o c a t i o n ( c e l l 2 ) =2; x l o c a t i o n ( c e l l 3 ) =3 ; x l o c a t i o n ( c e l l 4 ) =1 ; x l o c a t i o n ( c e l l 5 ) =2; x l o c a t i o n ( c e l l 6 ) =3;
81: x l o c a t i o n ( c e l l 7 ) =1; x l o c a t i o n ( c e l l 8 ) =2; x l o c a t i o n ( c e l l 9 ) =3 ; y l o c a t i o n ( c e l l 1 ) =3 ; y l o c a t i o n ( c e l l 2 ) =3; y l o c a t i o n ( c e l l 3 ) =3;
82: y l o c a t i o n ( c e l l 4 ) =2; y l o c a t i o n ( c e l l 5 ) =2; y l o c a t i o n ( c e l l 6 ) =2 ; y l o c a t i o n ( c e l l 7 ) =1 ; y l o c a t i o n ( c e l l 8 ) =1; y l o c a t i o n ( c e l l 9 ) =1;} ;
83: }
84:
85: i n s t a n c e i n s t s w a r m o f l o c u s t s 2 {
86: domain = s w a r m o f l o c u s t s 2 ; non − f l u e n t s = s w a r m o f l o c u s t s 2 n f ;
87: i n i t − s t a t e { s w a r m l o c a t i o n x =2; s w a r m l o c a t i o n y =2;} ;
88: max−nondef − a c t i o n s = 1 ; h o r i z o n = 9 ; d i s c o u n t = 0 . 9 ;}
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