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Abstract

We study safe policy improvement (SPI) for partially observ-
able Markov decision processes (POMDPs). SPI is an offline
reinforcement learning (RL) problem that assumes access to
(1) historical data about an environment, and (2) the so-called
behavior policy that previously generated this data by inter-
acting with the environment. SPI methods neither require ac-
cess to a model nor the environment itself, and aim to reli-
ably improve upon the behavior policy in an offline manner.
Existing methods make the strong assumption that the envi-
ronment is fully observable. In our novel approach to the SPI
problem for POMDPs, we assume that a finite-state controller
(FSC) represents the behavior policy and that finite memory
is sufficient to derive optimal policies. This assumption al-
lows us to map the POMDP to a finite-state fully observable
MDP, the history MDP. We estimate this MDP by combining
the historical data and the memory of the FSC, and compute
an improved policy using an off-the-shelf SPI algorithm. The
underlying SPI method constrains the policy space accord-
ing to the available data, such that the newly computed policy
only differs from the behavior policy when sufficient data is
available. We show that this new policy, converted into a new
FSC for the (unknown) POMDP, outperforms the behavior
policy with high probability. Experimental results on several
well-established benchmarks show the applicability of the ap-
proach, even in cases where finite memory is not sufficient.

1 Introduction

Reinforcement learning (RL) is a standard approach to solve
sequential decision-making problems when the environment
dynamics are unknown (Sutton and Barto 1998). Typically,
an RL agent interacts with the environment and optimizes its
behavior according to the environment’s feedback. However,
in offline RL (Levine et al. 2020), the RL agent receives a
fixed dataset of past interactions between a behavior policy
and the environment and derives a new policy without direct
interactions with the environment. One of the challenges in
offline RL is to ensure that the new policy outperforms the
behavior policy (Cheng et al. 2022). This problem is called
safe policy improvement (SPI; Thomas, Theocharous, and
Ghavamzadeh 2015). Most of the approaches to SPI assume
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Figure 1: Illustration of the offline reinforcement learning
problem in partially observable environments (adapted from
Levine et al. 2020). The dashed arrow indicates the setting
where the behavior policy is available during learning.

fully observable environments, e.g., (Petrik, Ghavamzadeh,
and Chow 2016; Laroche, Trichelair, and des Combes 2019).

The restriction to full observability poses a serious lim-
itation on the applicability of SPI, as most real-world
problems are partially observable, due to, for instance,
noisy sensors (Kochenderfer 2015). Partially observable
Markov decision processes (POMDPs) are the standard
model for decision-making problems under partial observ-
ability (Kaelbling, Littman, and Cassandra 1998). So far,
SPI for POMDPs was only studied for memoryless poli-
cies (Thomas, Theocharous, and Ghavamzadeh 2015; Yea-
ger et al. 2022). However, POMDP policies often require a
notion of memory. In general, optimal policies for POMDPs
with infinite horizons require infinite memory, rendering this
problem undecidable (Madani, Hanks, and Condon 2003).
Nevertheless, finite memory can make good approximations
of the optimal policy (Bonet 2002) and are often used in
practice for being more explainable (Dujardin, Dietterich,
and Chades 2017). Policies with finite memory may take the
form of finite-state controllers (FSCs; Meuleau et al. 1999a;
Junges et al. 2018; Carr, Jansen, and Topcu 2021).

Our approach. We contribute a novel SPI approach for
POMDPs. First, to account for the inherent memory require-
ment in partially observable domains, we consider a be-
havior policy represented by a FSC. To create a tractable
method, we assume that there exists a finite-memory pol-
icy for the POMDP that is optimal, also known as the
finite-history-window approach (Kaelbling, Littman, and



Moore 1996, Section 7.3). This assumption allows us to
cast the POMDP as an equivalent, fully observable, history
MDP that is finite, instead of the standard infinite-history
MDP (Silver and Veness 2010). We are then able to reli-
ably estimate the transition and reward models of this finite-
history MDP from the available data. We employ a specific
SPI method for MDPs, called safe policy improvement with
baseline bootstrapping (SPIBB; Laroche, Trichelair, and des
Combes 2019). In particular, we compute an improved pol-
icy that outperforms the behavior policy up to an admissi-
ble performance loss with high probability. In comparison to
the approach for mere MDPs (Laroche, Trichelair, and des
Combes 2019), we derive an improved bound on this admis-
sible performance loss by exploiting the specific structure of
the history MDP. Figure 1 illustrates our approach.

Real-world applications. This setting captures multiple
applications, such as predictive maintenance (Andriotis
and Papakonstantinou 2021), conservation of endangered
species (Chades et al. 2012), and management of invasive
species (Chades et al. 2011). We may, for instance, have
data from the degradation process of a certain asset, which
includes logs of inspections and maintenance that were per-
formed according to a fixed schedule (represented, for in-
stance, as a finite-state controller). Once we acquire a new
asset, we can formalize the optimization problem with of-
fline RL to compute a new schedule, using the original
schedule as a behavior policy.

We demonstrate the applicability of our method on three
standard POMDP problems. The evaluation confirms the
theoretical findings of our SPIBB approach, in comparison
to standard offline RL. We highlight results for varying sizes
of memory, and show that we can achieve reliable perfor-
mance improvement even for problems where finite memory
is not sufficient in general.

2 Background
For a countable set X we write | X| for the number of ele-
ments in X, and A (X)) for the set of probability distributions

over X with finite support. Given two probability distribu-
tions P, ) € A(X), the LI-distance between P and () is

1P =Qlh =) [P(x) - Qx)l.

zeX

The Li-error of an estimated probability distribution P is
given by the L1-distance between P and the true distribu-
tion P: ||[P — P||,. Finally, we write I(z = y) for the indi-
cator function returning 1 when z = y and 0 otherwise, and
[l : m] for the set of natural numbers {l,...,m} C N.

2.1 MDPs, POMDPs, and FSCs

Definition 1 (POMDP). A partially observable
Markov decision process (POMDP) is a tuple
M = (S;A,T,R,~,Z,0), where S, A and Z are finite
sets of states, actions, and observations, T: S x A — A(S)
is the transition function, R: S X A = [Ruin, Rmax] C R
is the reward function with known bounds, v € [0,1) C R
is the discount factor, and O: S x A — A(Z) is the
observation function.
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As a special case, we have the (fully observable) Markov
decision process (MDP; Puterman 1994), where Z = S and
O(z | s,a) = I(z = s), so it can be defined as a POMDP
without observations: M = (S, A, T, R, 7).

A history is a sequence of observations and actions: h €
(Zx A)* x Z. We denote the set of all histories by #, and H,
denotes all histories of maximal length %k, where the length
|h| is the number of observations in the history h.

A belief b € A(S) is a distribution over the states
of a POMDP. Beliefs are sufficient statistics for histories
in POMDPs (Astrfjm 1965; Smallwood and Sondik 1973).
That is, they provide just as much information as the his-
tories themselves. A belief b can be updated into a new be-
lief b" upon taking an action a and receiving an observation z
by performing a Bayesian belief update (Kaelbling, Littman,
and Cassandra 1998). The belief &’ of being in state s given
some history h’, denoted b(s | h'), can be recursively com-
puted by repeated applications of the belief update on ac-
tions a and observations z in the history 4’ = haz:

V' (s" | haz) =0'(s" | b(- | h),a, z).

until the history h is empty, denoted (), and where b(- | 0) is
the initial belief.

A POMDRP is equivalent to an infinite-state fully observ-
able MDP called the history MDP (Silver and Veness 2010).

Definition 2 (History MDP). The fully observable history
MDP of a POMDP is (H, A, Ty, Ry, ), where H is the
set of all histories, A and ~y are the actions and discount
factor from the POMDP, and Ty;: H x A — A(H) and
Ry 1 H x A — R are the transition and reward functions:

w(haz | hya) = st|h ZT'|sa (2] 5, a),
seS s'eS
a) = Zb(s | h)R(s,a).
seS

Since belief states are sufficient statistics for histories,
the so-called belief MDP of a POMDP serves as a com-
mon alternative for the history MDP, we refer to Kaelbling,
Littman, and Cassandra (1998) for more details.

A policy for a POMDP is a function 7: H — A(A),
mapping histories to distributions over actions. The set of all
policies is II. The goal is to compute a policy that maximizes
the expected discounted reward in the infinite horizon:

=)

where 7 is the reward the agent receives at time step t when
following policy 7. In general, a policy that maximizes the
expected discounted reward requires infinite memory, that
is, it needs to account for all possible histories. As such,
computing optimal policies in POMDPs is undecidable in
general (Madani, Hanks, and Condon 2003).

We may instead use policies with a finite amount of mem-
ory. In general, such policies are not optimal, that is, they
do not maximize the expected discounted reward, yet they
are computationally more tractable. A finite-memory pol-
icy maps finite histories to actions, w: H — A(A), and

max E
well



can be represented by a finite-state controller of size s
(|Z] + 1)¥ (Meuleau et al. 1999a; Junges et al. 2018), as
we need to account for all possible combinations of obser-
vations of size k, with a possible empty observation.

Definition 3 (Finite-state controller). A finite-state con-
troller (FSC) is a tuple (N',n°, 1, n) where N is a finite set
of memory nodes, n° € N is an initial node, 1: N' x Z —
A(A) is an action mapping, andn: N x Z x A — N isa
memory update function. A 5-FSC is an FSC with |N| = k.

In any time step ¢, given the current memory node n; and
observation z;, the action a; is randomly drawn from the
distribution ¥ (- | n¢, 2z¢), and the memory node is updated
to ngr1 = N(ng, 2¢, a¢). A policy represented by an FSC can
get arbitrarily close to the optimal policy as x grows (Bonet
2002). Computing finite-state controllers that aim to maxi-
mize the expected (discounted) reward can be done in sev-
eral ways, such as gradient descent (Meuleau et al. 1999b)
and convex optimization (Amato, Bernstein, and Zilberstein
2010; Junges et al. 2018; Cubuktepe et al. 2021).

We denote the set of finite-memory policies of size k
by Ilj, and the set of finite-memory policies of size k rep-
resented by FSCs with some fixed memory update 7 by IT}.
Furthermore, policies of size k can be represented by poli-
cies with more memory. These sets are related by the fol-
lowing inclusions, where k' > k: HZ C I C Iy CII.

Finally, we define the state-based and state-action-based
value functions on an (PO)MDP M with policy 7 as V.M (s)
and QM (s, a) respectively. We omit M or m when they are
clear from the context. The performance of a policy 7 in
M is denoted by p(mw, M) and is defined as the expected
value in some initial state o, that is, p(m, M) = V.M (s).
Furthermore, we write V.5 for a known upper bound on the
absolute value of the performance: Vi ax < Bmax/1—+.

2.2 Safe Policy Improvement on MDPs

Here, we review safe policy improvement (SPI) for MDPs.
A dataset is a sequence D of trajectories collected under a
behavior policy wz in an MDP M ™. For MDPs, the datasets
we consider for SPI are of the form D = (s, ar, 7¢)1e[1:m)»
and we write #p (x) for the number of times x occurs in D.
The goal of SPI is to compute a new policy 7y based on D
that outperforms w5 with an allowed performance loss ¢ €
R with high probability 1 — §.

SPI operates on a set of admissible MDPs =, that is,
MDPs M = (S, A, T, R,~) which are ‘close’ to an MDP
M = (S,A, T, R,~) estimated from a dataset D by maxi-
mum likelihood estimation (MLE).

Definition 4 (MLE-MDP). The MLE-MDP of an unknown
true MDP M* = (S, A, T, R,~) and a dataset D is a tuple
M = (S, A, T,R, ) with transition and reward functions T
and R derived from D via maximum likelihood estimation:

_ #D(svaasl> Rtotal(saa)

B #D(Saa) #D(Sva) ’

where Rmtal(57a) = Z(st,atﬂ‘t)ep H(St =sANa; = CL) STy is
the sum of all rewards in the state-action pair (s, a).

T(s'| s,a) , and R(s,a) =
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For an MLE-MDP M and error functione: S x A — R,
we define the set of admissible MDPs = with a transition
function 7' that has L, distance to the estimated transition
function 7" bounded by the error function e:

= = {M [ ¥(s,0)IT( | 5,0) = T(| s,0) 1 < efs,a)}.

The general idea behind SPI methods is to define this er-

ror function e such that Eéﬂ includes the true MDP M * with
high probability 1 — ¢ (Petrik, Ghavamzadeh, and Chow
2016, Proposition 9). Then one can compute a new policy

which is an improvement for all MDPs within Z. An al-
ternative is to simply solve the MLE-MDP, but this could
lead to arbitrarily poor policies when the amount of data
is insufficient. If, however, the amount of data is sufficient
for all state-action pairs, then we can guarantee with high
probability that the improved policy computed on the MLE-
MDP has a higher performance. Specifically, as pointed out
by Laroche, Trichelair, and des Combes (2019), the amount
of data is sufficient when for all state-action pairs

Vi 254125
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Then, with probability 1 — 4, an optimal policy 7; for M is

(-approximately safe with respect to the true MDP M ™ for
some admissible performance loss ( € R. That is,

plrr, M*) > p(n*, M*) = ¢ > plmg, M) - C,

where 7* is an optimal policy in the true MDP M*. Intu-
itively, this ensures that the estimated transition function is
close enough to the true MDP to guarantee that the policy
computed in the MLE-MDP approximately outperforms the
behavior policy in the underlying MDP.

#p(s,a) > % (1)

2.3 SPI with Baseline Bootstrapping on MDPs

The bound in Equation (1) needs to hold for every state-
action pair, which impairs the practical use of optimizing the
MLE-MDP. The SPI with baseline bootstrapping (SPIBB;
Laroche, Trichelair, and des Combes 2019) algorithm over-
comes this limitation, allowing the constraint in (1) to be
violated on some state-action pairs. These state-action pairs
are collected in U, the set of unknown state-action pairs with
counts smaller than a given hyperparameter N :

U= {(s,a) €8x A|#p(s,a) < NA}.

SPIBB computes an improved policy 7y on M as above,
except that 77 is constrained to follow 7 for unknown state-
action pairs: V(s,a) € U.mr(a | s) = mg(a | s). Then,
7y is a ¢-approximately safe improvement of 7g with high

probability 1 — 9:
llo 2|S||A2!8]
N, BT 5
_P(WI7M)+P(7Tﬁ7M)a (2)

where ( is computed via (Theorem 2; Laroche, Trichelair,
and des Combes 2019).

_ 4VII’18.X
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3 SPIBB for POMDPs
Now we detail our approach to apply SPIBB to POMDPs.

Formal problem statement. Given a POMDP M
(S,A,T,R,~,Z,0) of which the transition and observa-
tion functions are unknown, some initial belief b € A(S),
and a finite-memory behavior policy represented as a xk-FSC
g = (N, n 1, n), the goal is to apply SPIBB to construct
anew x-FSC 77 = (N, n% 4’ 1) with the same nodes and
memory structure 7, i.e. 73,77 € II}, such that with high
probability 1 — 4, 7y is a (-approximately safe improvement
over g with respect to M. That is, with a probability of at
least 1 — § we have

p(mr, M) = p(mg, M) — C.

3.1 From POMDP to Finite-History MDP

While a POMDP can be mapped to a fully observable history
MDP (Definition 2), this MDP has infinitely many states,
making a direct application of SPI(BB) methods infeasible.
To mitigate this issue, we make an assumption on the struc-
ture of the history MDP (and inherently on the POMDP)
that implies that the history MDP is equivalent to a smaller,
finite, MDP. We formalize this assumption via stochastic
bisimulation (Givan, Dean, and Greig 2003). Intuitively, this
bisimulation is an equivalence relation that relates (history)
states that behave similarly according to reward signals.

Definition 5 (Bisimilarity of history states). A stochastic
bisimulation relation E C H x H on history states h1, ho €
‘H is an equivalence relation satisfying

E(h1,hy) <= VYa€ A. Ry(hi,a) = Ry(he,a) and
VhY, by € H with E(hy, hb) we have
Ty (hy | hi,a) = Ty (hh | haya).

The largest stochastic bisimulation relation is called
(stochastic) bisimulation, denoted by ~. We write [h]~. for
the equivalence class of history h under ~, and H /., for the
set of equivalence classes.

Assumption 1 (Sufficiency of finite histories). Every his-
tory state h of size |h| > k in the history MDP is bisimilar
to a history state h' of size |h'| < k. That is, h ~ I’

As a consequence, the history MDP satisfying Assumption 1
has a finite bisimulation quotient MDP (Givan, Dean, and
Greig 2003), and we call it a finite-history MDP instead.
This finite-history MDP consists of states that are the equiv-
alence classes of histories under ~. Note that belief remains
a sufficient statistic in this case, i.e., b(s | [h]~) = b(s | h).
Definition 6 (Finite-history MDP). A POMDP satisfying
Assumption 1 is a fully observable finite-state MDP M =
(H/~, A, Ty, Ru,v) where the states are given by the set
of equivalence classes, the actions and discount factor from
the POMDP, and transition and reward functions defined as

Ty ([haz]~ | [h]~, a)
> b(s|[he) > T(s' | 5,a)0(z | 8, a),

ses s’es
Ru([Pl~,a) =Y b(s | [h]<)R(s,a).
seS
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Under bisimulation equivalence, the finite-history MDP and
the POMDP are related in the following fundamental way.

Theorem 1 (Optimal finite-memory policies under bisimi-
larity). An optimal policy 7* in the finite-history MDP is an
optimal finite-memory policy for the POMDP.

Theorem 1 is a direct result of bisimilarity (Givan, Dean,

and Greig 2003). We may number the equivalence classes in
the finite-history MDP in such a way that they correspond
to memory nodes of an FSC. As a result, the finite-history
MDP can be defined on a state space consisting of memory
nodes and observations rather than histories.
Definition 7 (Finite-history MDP via FSC). A POMDP sat-
isfying Assumption 1 is a fully observable finite-state MDP
M = (N x Z,A, Ty, Ry, ) where the states are given by
pairs of memory nodes from an FSC and observations, the
actions from the POMDP, and transition and reward func-
tions defined as

TH(<n/v Z/> ‘ <nv Z>7 a)
D b | (n2) Y T(s' | 5,@)0(" | 8, a)n(n’ | n, 2, a),

seS s'es
Ru((n,2),a) =Y _b(s | (n,2))R(s,a),
seS

where b(s | (n,z)) is the belief of being in state s of the
POMDP, given memory node n and observation z.
Recall that 7 is the memory update function of the FSC.

This finite-history MDP will serve as the (unknown) true
MDP M* in our application of SPIBB.

3.2 Estimating the Finite-History MDP

Next, we describe how to estimate the true finite-history
MDP M* by an MLE-MDP M. The approach is similar to
that of SPI for MDPs described in Section 2, except that the
dataset D is different. Here, D is collected from simulating
the POMDP M under (FSC) policy 7. This yields a dataset
of the form

D= <<ntazt>aatart>t€[1:m]7 3
where the observations z; come from the observation func-
tion, and the memory nodes n; are observed from the FSC.

Definition 8 (Finite-history MLE-MDP). The MDP from
Definition 7 can be estimated from a dataset D of the
form (3), following the same approach for estimating a stan-
dard MLE-MDP as in Definition 4:

RH(<TL, 2),a) = W
Rrowi((n, 2), a) Z I({(n¢, ze) = (n,2) Nay = a) - ry.

((nt,2¢),a¢,m¢)ED

3.3 Applying SPIBB to the Finite-History MDP

In this section, we apply the theory of SPIBB, as introduced
in Section 2, to our setting. In particular, we have just defined

and

, where



Figure 2: The Maze environment. The locations are colored
according to the agent’s perception.

a true MDP M™ (the finite-history MDP, Definition 6) and

an MLE-MDP M estimating M * (Definition 8). Let
U={((n,z),a) eEN xZxA|#p((n,z),a) < Np}

be the set of tuples ({n,z),a) which occur less than Nx

times in the dataset D for some hyperparameter N,. Just
as in SPIBB for MDPs, we compute a new policy m; € II}

for the MLE-MDP M that estimates the finite-history MDP,
constrained to follow the behavior policy g used to collect
D for all ({n, z),a) € U.

Theorem 2 (¢-bound on history MDP). Let Ilg be the
set of policies under the constraint of following wg when
((n,2),a) € U. Then, the policy w1 computed by the
SPIBB algorithm on the history MDP (Definition 2) is a (-
approximate safe policy improvement over the behavior pol-
icy wg with high probability 1 — 9, where:

2 2|H||A|212]
tog 2PHIARE ey 1)+ p(ms, ).

4VH1€LX

The proof replaces the regular MDP from the SPIBB al-
gorithm with the (infinite) history MDP. We can reduce the
exponent from |7{|, which would be the result of naively ap-
plying the SPIBB algorithm, to | Z| because of the structure
of the transition function of the history MDP. In particular,
the transition function of the history MDP is defined for his-
tories h which are appended by an action a and an observa-
tion z to haz, see Definition 2. As such, the successor states
of h in the history MDP are fully determined by the obser-
vation z instead of the full state-space, and thus we may re-
place 25! from Equation (1) by 2/%!. The full proof can be
found in Appendix A (Simao, Suilen, and Jansen 2023).

While Theorem 2 and its proof reason over the full history
MDP, these results extend to the finite-history MDP when
Assumption 1 is satisfied. We have the following corollary.

Corollary 1 (¢-bound on finite-history MDP). Let 11g and
g be as in Theorem 2. Then, the policy w; computed by the
SPIBB algorithm in the finite-history MDP M* of a POMDP
satisfying Assumption 1 is a (-approximate safe policy im-
provement over the behavior policy g with high probability
1 — 6, where the admissible performance loss C is given by

4Vmax\/ 2 2|NxZ||A[217]
- log AL
— plr, M) + pls, M)

Since bisimilarity is an equivalence relation, the finite-
history MDP is equivalent to the full history MDP, and thus
also the POMDP, see Theorem 1. As a consequence, the
proof of Corollary 1 follows immediately from Theorem 2
and the fact that bisimulation is an equivalence relation.

iii)
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4 Empirical Analysis

This section contains the empirical evaluation of our ap-
proach to SPI for POMDPs. We first describe the setup of
the experiments and then present and analyze the results.
We provide further details in Appendix B (Simao, Suilen,
and Jansen 2023) and code at https://github.com/LAVA-
LAB/spi_pomdp.

4.1 Setup

Environments. We consider three POMDP problems:

i) CheeseMaze (McCallum 1993): An agent navigates a
maze, moving in the four cardinal directions, but in each
state it only perceives whether or not there is a barrier in
each direction (see Figure 2). The agent is placed at a ran-
dom location at the beginning of an episode, and receives
a positive reward (+1) if it reaches the goal (&), and
a small negative reward (—0.01) otherwise. The episode
ends when the agent reaches the goal.

Tiger (Kaelbling, Littman, and Cassandra 1998): An
agent is in front of two doors, and a tiger is randomly
positioned behind one of them at the beginning of each
episode. The agent has three actions: Listening, or open-
ing one of the doors. Listening gives a noisy observa-
tion of the position of the tiger, and a small negative re-
ward (—1). Opening the door with the tiger gives a large
negative reward (—100), while opening the other door
gives a positive reward (+10).

Voicemail (Williams and Young 2007): An agent controls
a voicemail machine, at the beginning of the episode,
the user listens to a message and decides if they want
to keep it. This information is hidden from the agent,
which has three actions: ask, save, and delete. Asking
the user if they want to keep the message gives the agent
a small negative reward (—1) and a noisy observation of
the user’s intention. Correctly saving the message gives
a positive reward (+5), and a negative reward (—10) oth-
erwise. Correctly deleting the message gives a positive
reward (45), and a negative reward (—20) otherwise.

ii)

Satisfaction of Assumption 1. Note that the Maze envi-
ronment is close to satisfying Assumption 1 for memory that
looks back two steps, i.e., k = 2, with the exceptions of his-
tories with equal observations. Tiger and Voicemail do not
satisfy the assumption for any k.

Data collection. We generate behavior policies via Q-
learning using the memory of an FSC that keeps track of
the last k& € {1,2} observations as the state. After conver-
gence, we extract a softmax policy, to ensure we sample dif-
ferent actions during data collection. We consider datasets
of different sizes, namely: 1, 2, 5, 10, 20, 50, - - -, 5000, and
10000 trajectories, and generate 500 datasets for each envi-
ronment, number of trajectories, and behavior policy.

Learning. We consider two algorithms to compute a new
policy: SPIBB, and Basic RL. Both algorithms operate on
the finite-history MLE-MDP (Definition 8) related to the
finite-history MDP of the POMDP. We implement Basic
RL as an unconstrained SPIBB where N, = 0, that is,
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Figure 3: Policy improvement on the environments Maze, Tiger, and Voicemail (first, second and third row, respectively) for
datasets collected by a behavior policy with history size k = 2, varying the hyperparameters pairs column-wise: (Ny = 5, k' =

2), (No = 20,k = 2), (Nx =5,k

), and (Nx = 20, k" = 3). The plots show the mean (solid line), 10%-CVaR (dashed

line), and 1%-CVaR (dotted line). The performance of the behavior policy is shown in green (dash-dotted line).

it solves the MLE-MDP using value iteration. For each
dataset, we compute new policies 7m; using each offline
RL algorithm, considering different hyperparameters: N5 €
{5,7,10, 15,20, 30,50, 70,100} and ¥" € {k,k+1}, where
k' is the history size encoded in the FSC of 7;.

Evaluation metrics. Each policy is evaluated over 10 000
episodes to obtain an estimate of the performance of the im-
proved policy p(7;, M*). We also consider the normalized
policy improvement:

p(ﬂ-IvM*) — p(ﬂ-ﬂ7M*)
P(Tmax, M*) — p(mg, M)’

where T,.x 1S the policy with the highest expected return
in each environment. To aggregate the results across the 500
repetitions, we compute the mean and Conditional Value at
Risk (CVaR; Rockafellar and Uryasev 2000). We use x%-
CVaR to indicate the mean of the 2% lowest performances.
As an approximation of the optimal value, we show the per-
formance of PO-UCT (Silver and Veness 2010), which uses
the environment as a simulator to compute a policy.

p(rr) =

4.2 Results

Figure 3 shows results on the three environments (ordered
by row). The data was collected using a behavior policy with
k = 2. The first column shows the results where SPIBB uses
a low threshold to consider a history-action pair known and
the same memory size as the behavior policy (N, = 5 and
k' = 2). The second column shows the results with a higher
threshold (V4 = 20 and k' = 2). The third column shows
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the results for increased memory (N, = 5 and k' = 3).
Finally, the fourth column shows the results with a higher
threshold and increased memory (N, = 20 and k¥’ = 3).
Basic RL is included everywhere to give a perspective on
the influence of different hyperparameters.

Figures 4 and 5 extend the empirical analysis on the
Voicemail and Tiger environments for memoryless behav-
ior policy (k = 1), since they demonstrated to be more
challenging for the safe policy improvement problem. Fig-
ure 4 considers the Voicemail environment, while Figure 5
shows the normalized results for a range of thresholds in
the Tiger environment. We provide further results in Ap-
pendix C (Simdo, Suilen, and Jansen 2023).

4.3 Analysis

Basic RL is unreliable. Across all environments, the Ba-
sic RL algorithm shows a considerable performance drop
compared to the behavior policy, even in terms of the mean
performance for smaller datasets. Notice that for Tiger and
Voicemail, the CVaR metrics are often outside the graph.

SPIBB outperforms Basic RL. In the environments Tiger
and Voicemail (Figure 3, second and third row), the SPIBB
algorithm shows better performance than the Basic RL
across all dataset sizes. This is likely due to the SPIBB al-
gorithm retaining the randomization of the behavior policy
when insufficient data is available.

SPIBB is reliable when Assumption 1 is satisfied. Ana-
lyzing the results for the Maze environment (Figure 3, first
row), we observe that SPIBB shows reliably outperforms
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Figure 4: Policy improvement on the Voicemail environment for datasets collected with a memoryless policy (k = 1), varying

the hyperparameters pairs column-wise: (No = 5,k = 1), (NA = 50,k’ = 1), (NA = 5, K

), and (N = 50,k" = 2).

The plots show the mean (solid line), 10%-CVaR (dashed line) and 1%-CVaR (dotted line). The performance of the behavior

policy is shown in green (dash-dotted line).
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Figure 5: Normalized performance p(7;) on the Tiger envi-
ronment (kK = 1). The left, middle and right columns show
the mean, 10%-CVaR and 1%-CVaR, respectively. The first
row shows the results where the improved policy uses the
same memory as the behavior policy (k' = k), while the
second row shows the results for an improved policy with
more memory (k' = k + 1).

the behavior policy even for a small N, (first column), for
which only the 1%-CVaR shows a performance drop.

More memory improves the reliability. SPIBB shows
slightly unreliable behavior for small values of N, in the
Tiger and Voicemail environments (Figure 3), as evidenced
by both the CVaR curves, which can be alleviated by increas-
ing the N, or the memory of the new policy (second, third
and fourth column). When Assumption 1 is violated, the per-
formance drop may be significant, as seen in the first two
columns of Figure 4. In this case, merely increasing the N
threshold is not enough to guarantee a policy improvement.
Increasing the memory size, however, allows the SPIBB al-
gorithm to improve the behavior policy, as Figure 4 (last col-
umn) and Figure 5 (second row) show.

Deterministic policies may require more memory. Fig-
ure 4 shows an interesting phenomenon. In partially observ-
able settings, the stochastic behavior policy might perform
better than the new deterministic policy, since randomiza-
tion can trade-off some amount of memory. We observe that
when k£ = 1, SPIBB and Basic RL converge to determinis-
tic policies with an expected return lower than the behavior
policy. When SPIBB has sufficient data, it is not constrained
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to follow the behavior policy, and thus does not inherit any
randomization from that policy. As stated in the previous
paragraph, more memory can then yield a new deterministic
policy with a higher return than the behavior policy.

5 Related Work

Offline RL, also known as batch RL, learns or evaluates a
policy from a fixed batch of historical data (Levine et al.
2020). Overall, these algorithms rely on pessimism to miti-
gate the lack of feedback from the environment and can be
split into two categories (Jin, Yang, and Wang 2021): those
that constrain the final policy to stay close to the behav-
ior policy (Laroche, Trichelair, and des Combes 2019), and
those that penalize rare experiences (Petrik, Ghavamzadeh,
and Chow 2016). Our method belongs to the first category.

Various extensions of SPIBB could be adapted for
POMDPs, such as soft-SPIBB (Nadjahi, Laroche, and des
Combes 2019; Scholl et al. 2022), deep-SPIBB (Brand-
fonbrener, des Combes, and Laroche 2022), and factored-
SPIBB (Simao and Spaan 2019a,b). SPI has also been stud-
ied without the behavior policy (Simdo, Laroche, and des
Combes 2020) and for multi-objective (Satija et al. 2021)
and non-stationary settings (Chandak et al. 2020).

When the behavior policy is influenced by unobserved
variables, we may come across confounding variables. The
problem of evaluating a policy offline was studied in this set-
ting, for instance, assuming that observed and unobserved
variables are decoupled (Tennenholtz, Shalit, and Mannor
2020), or that the influence of the confounding variable on
the behavior policy is limited (Namkoong et al. 2020). Since
we assume that the behavior policy only depends on the ob-
served history, we have no confounding variables.

6 Conclusions

We presented a new approach to safe policy improvement
for POMDPs. Our experiments show the applicability of the
approach, even in cases where finite-history is not sufficient
to obtain optimal results. In the future, it would be interest-
ing to relax Assumption 1 to distance metrics (Ferns, Panan-
gaden, and Precup 2004, 2005) instead of exact bisimilarity.
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