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Abstract

In this paper, we study the Robust optimization for sequence
Networked submodular maximization (RoseNets) problem.
We interweave the robust optimization with the sequence
networked submodular maximization. The elements are con-
nected by a directed acyclic graph and the objective function
is not submodular on the elements but on the edges in the
graph. Under such networked submodular scenario, the im-
pact of removing an element from a sequence depends both
on its position in the sequence and in the network. This makes
the existing robust algorithms inapplicable. In this paper, we
take the first step to study the RoseNets problem. We design a
robust greedy algorithm, which is robust against the removal
of an arbitrary subset of the selected elements. The approxi-
mation ratio of the algorithm depends both on the number of
the removed elements and the network topology. We further
conduct experiments on real applications of recommendation
and link prediction. The experimental results demonstrate the
effectiveness of the proposed algorithm.

Introduction
Submodularity is an important property that models a di-
minishing return phenomenon, i.e., the marginal value of
adding an element to a set decreases as the set expands.
It has been extensively studied in the literature, mainly ac-
companied with maximization or minimization problems of
set functions (Nemhauser and Wolsey 1978; Khuller, Moss,
and Naor 1999). This is called submodularity. Mathemati-
cally, a set function f : 2V → R is submodular if for any
two sets A ⊆ B ⊆ V and an element v ∈ V \B, we have
f(A∪v)−f(A) ≥ f(B∪v)−f(B). Such property finds a
wide range of applications in machine learning, combinato-
rial optimization, economics, and so on. (Krause 2005; Lin
and Bilmes 2011; Li et al. 2022; Shi et al. 2021; Kirchhoff
and Bilmes 2014; Gabillon et al. 2013; Kempe, Kleinberg,
and Tardos 2003; Wang et al. 2021).

Further equipped with monotonicity, i.e., f(A) ≤ f(B)
for any A ⊆ B ⊆ V , a submodular set function can be
maximized by the cardinality constrained classic greedy al-
gorithm, achieving an approximation ratio up to 1 − 1/e
(Nemhauser and Wolsey 1978) (almost the best). Since
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then, the study of submodular functions has been extended
by a variety of different scenarios, such as non-monotone
scenario, adaptive scenario, and continuous scenario, etc
(Feige, Mirrokni, and Vondrak 2007; Golovin and Krause
2011; Das and Kempe 2011; Bach 2019; Shi et al. 2019).

The above works focus on the set functions. In real ap-
plications, the order of adding elements plays an important
role and affects the function value significantly. Recently,
the submodularity has been generalized to sequence func-
tions (Zhang et al. 2015; Tschiatschek, Singla, and Krause
2017; Streeter and Golovin 2008; Zhang et al. 2013). Con-
sidering sequences instead of sets causes an exponential in-
crease in the size of the search space, while allowing for
much more expressive models.

In this paper, we consider that the elements are networked
by a directed graph. The edges encode the additional value
when the connected elements are selected in a particular or-
der. Such setting is not given a specific name before. To
distinguish from the classic submodularity, we in this paper
name it as networked submodularity (Net-submodularity for
short). More specifically, the Net-submodular function f(σ)
is a sequence function, which is not submodular on the in-
duced element set by σ but is submodular on the induced
edge set by σ. The Net-submodularity is first considered in
(Tschiatschek, Singla, and Krause 2017), which mainly fo-
cuses on the case where the underlying graph is a directed
acyclic graph. General graphs and hypergraphs are consid-
ered in (Mitrovic et al. 2018).

Recently, robust versions of the submodular maximiza-
tion problem have arisen (Orlin, Schulz, and Udwani 2018;
Mitrovic et al. 2017; Bogunovic et al. 2017; Sallam et al.
2020) to meet the increasing demand in the stability of the
system. The robustness of the model mainly concerns with
its ability in handling the malfunctions or adversarial at-
tacks, i.e., the removal of a subset of elements in the selected
set or sequence. Sample cases of elements removal in real
world scenarios include items sold out or stop production in
recommendation (Mitrovic et al. 2018), web failure of user
logout in link prediction (Mitrovic et al. 2019) and equip-
ment malfunction in sensor allocation or activation (Zhang
et al. 2015). In this paper, we take one step further and study
a new problem of robust sequence networked submodular
maximization (RoseNets). We show an example in Figure 1
to illustrate the importance of RoseNets problem.
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Figure 1: Example of RoseNets

See in Figure 1. Suppose all edge weights in sequence A
are 0.9, in sequence B are 0.5, in sequence C are 0.4. Let
the net-submodular utility function f of the sequence be the
summation of all the weights of the induced edge set by the
sequence. Such utility function is obviously monotone but
not submodular.1 However, it is submodular on the edge set.
Now we can see, the utility of sequence A, B and C are 2.7
(largest), 2.5 and 2.4 respectively. We can easily check that if
one node would be removed in each sequence, the worst util-
ity after removal of sequence A, B and C is 0.9, 1.0 (largest),
and 0.8. If we remove two nodes in each sequence, the utility
of A, B and C becomes 0, 0, and 0.4 (largest). With different
number of nodes removed, the three sequences show differ-
ent robustness. Existing non-robust algorithm may select se-
quence A since it has the largest utility. However, sequence
B and C are more robust against node removal.

Given a net-submodular function and the corresponding
network, the RoseNets problem aims to select a sequence of
elements with cardinality constraints, such that the value of
the sequence function is maximized when a certain number
of the selected elements may be removed. As far as sequence
functions and net-submodularity are concerned, the design
and analysis of robust algorithms are faced with novel tech-
nical difficulties. The impact of removing an element from a
sequence depends both on its position in the sequence and in
the network. This makes the existing robust algorithms inap-
plicable here. It is unclear what conditions are sufficient for
designing efficient robust algorithm with provable approxi-
mation ratios for RoseNets problem. We aim to take a step
for answering this question in this paper. Our contributions
are summarized as follows.

1. To the best of our knowledge, this is the first work that
considers the RoseNets problem. Combining robust opti-
mization and sequence net-submodular maximization re-
quires subtle yet critical theoretical efforts.

2. We design a robust greedy algorithm that is robust
against the removal of an arbitrary subset of the selected
sequence. The theoretical approximation ratio depends
both on the number of the removed elements and the net-
work topology.

3. We conduct experiments on real applications of recom-
mendation and link prediction. The experimental results
demonstrate the effectiveness and robustness of the pro-
posed algorithm, against existing sequence submodular
1Easy to see that in sequence B, the utility of {B4} is 0, but

{B3, B4} is 0.5, which violates the submodularity.

baselines. We hope that this work serves as an important
first step towards the design and analysis of efficient al-
gorithms for robust submodular optimization.

Related Works
Submodular maximization has been extensively studied in
the literature. Efficient approximation algorithms have been
developed for maximizing a submodular set function in var-
ious settings (Nemhauser and Wolsey 1978; Khuller, Moss,
and Naor 1999; Calinescu et al. 2011; Chekuri, Vondrák, and
Zenklusen 2014). By considering the robustness require-
ment, recently, robust versions of submodular maximization
have been extensively studied. These works aim at select-
ing a set of elements that is robust against the removal of
a subset of elements. The first algorithm for the cardinal-
ity constrained robust submodular maximization problem is
studied in (Orlin, Schulz, and Udwani 2018). A constant fac-
tored approximation ratio is achieved. The selected k-sized
set is robust against the removal of any τ elements of the
selected set. The constant approximation ratio is valid as
long as τ = O(

√
k)). An improvement is made in (Bo-

gunovic et al. 2017), which provide an algorithm that guar-
antees the same constant approximation ratio but allows the
removal of a larger number of elements (i.e.,τ = O(k)).
With a mild assumption, the algorithm proposed in (Mitro-
vic et al. 2017) allows the removal of an arbitrary number
of elements. The restriction on τ is relaxed in (Tzoumas
et al. 2017), while the derived approximation ratio is param-
eterized τ . This work is extended to a multi-stage setting in
(Tzoumas, Jadbabaie, and Pappas 2018) and (Tzoumas, Jad-
babaie, and Pappas 2020). The decision at each stage would
takes into account the failures that happened in the previ-
ous stages. Other constrains that are combined with the ro-
bust optimization include fairness, privacy issues and so on
(Mirzasoleiman, Karbasi, and Krause 2017; Kazemi, Zadi-
moghaddam, and Karbasi 2018).

The concept of sequence (or string) submodularity for se-
quence functions is a generalization of submodularity, which
has been introduced recently in several studies (Zhang et al.
2015; Streeter and Golovin 2008; Zhang et al. 2013) The
above works all consider element-based robust submodu-
lar maximization. Networked submodularity is considered
in (Tschiatschek, Singla, and Krause 2017; Mitrovic et al.
2018), where the sequential relationship among elements
is encoded by a directed acyclic graph. Following the net-
worked submodularity setting, the work in (Mitrovic et al.
2019) introduces the idea of adaptive sequence submodular
maximization, which aims to utilize the feedback obtained
in previous iterations to improve the current decision. In this
paper, we follow the networked submodularity setting, and
study the RoseNets problem. It is unclear whether all of the
above algorithms can be properly extended to our problem,
as converting a set function to a sequence function and sub-
modularity to networked submodularity could result in an
arbitrarily bad performance. Establishing the approximation
guarantees for RoseNets problem would require a more so-
phisticated analysis, which calls for more in-depth theoreti-
cal efforts.
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System Model and Problem Definition
In this paper, we follow the networked submodular sequence
setting (Tschiatschek, Singla, and Krause 2017; Mitrovic
et al. 2018). Let V = {v1, v2, ..., vn} be the set of n ele-
ments. A set of edges E represents that there is additional
utility in picking certain elements in a certain order. More
specifically, an edge eij = (vi, vj) represents that there is
additional utility in selecting vj after vi has already been
chosen. Self-loops (i.e., edges that begin and end at the same
element) represents that there is individual utility in select-
ing an element.

Given a directed graph G = (V,E), a non-negative mono-
tone submodular set function h : 2E → R≥0, and a param-
eter k, the objective is to select a non-repeating sequence σ
of k unique elements that maximizes the objective function:

f(σ) = h(E(σ)),

where E(σ) contains all the edges (vi, vj) ∈ E that vi is
select before vj in σ.

We say E(σ) is the set of edges induced by the sequence
σ. It is important to note that the function h is a submodular
set function over the edges, not over the elements. Further-
more, the objective function f is neither a set function, nor
is it necessarily submodular on the elements. We call such a
function f(σ) as a networked submodular function.

We define f(σ − Z) to represent the residual value of the
objective function after the removal of elements in set Z. In
this paper, the robust sequence networked submodular max-
imization (RoseNets) problem is formally defined below.

Definition 1. Given a directed graph G = (V,E), a net-
worked submodular function f(·) and robustness parame-
ter τ , the RoseNets problem aims at finding a sequence σ
such that it is robust against the worst possible removal of τ
nodes:

max
σ:|σ|≤k

min
Z∈σ,|Z|≤τ

f(σ − Z).

The robustness parameter τ represents the size of the sub-
set Z that is removed. After the removal, the objective value
should remain as large as possible. For τ = 0, the problem
reduces to the classic sequence submodular maximization
problem (Mitrovic et al. 2018).

Robust Algorithm and Theoretical Results
Direct applying the Sequence Greedy algorithm (Mitrovic
et al. 2018) to solve the RoseNets problem would return
an arbitrary bad solution. We can construct a very sim-
ple example for an illustration. See in Figure 2. Let the
edge weights of (A,B), (B,C), (B,E), (B,F ) be 0.9 and
(C,D), (C,G), (D,G) be 0.5. Let the net-submodular util-
ity function f of the selected sequence be the summation of
all weights of the induced edge set by the sequence. Sup-
pose we are to select a sequence with 5 elements. Using the
Sequence Greedy algorithm, sequence ⟨A,B,C,E, F ⟩ will
be selected2 for maximizing the utility, i.e., (0.9 · 4 = 3.6).

2Suppose elements are selected in the alphabetic order if the
edge weights are equal. Similar examples can be easily constructed
when elements are selected at random.

Figure 2: Example of Sequence Greedy

However, if τ = 2, i.e., two elements would be removed,
removing B and any other one element (worst case) makes
the utility become 0.

RoseNets Algorithm
We wish to design an algorithm that is robust against the re-
moval of an arbitrary subset of τ selected elements. In this
paper, we propose the RoseNets Algorithm, which can ap-
proximately solves the RoseNets problem and is shown in
Algorithm 1. Note we consider the case that k ≥ 3.

The limitation of the Sequence Greedy algorithm is that
the selected sequence is vulnerable. The overall utility might
be concentrated in the first few elements. Algorithm 1 is mo-
tivated by this key observation and works in two steps. In
Step 1 (the first while loop), we select a sequence σ1 of τ ele-
ments from V in a greedy manner as in Sequence Greedy. In
Step 2 (the second while loop), we select another sequence
σ2 of k − τ elements from V \σ1, again in a greedy manner
as in Sequence Greedy. Note that when we select sequence
σ2, we perform the greedy selection as if sequence σ1 does
not exist at all. This ensures that the value of the final re-
turned sequence σ = σ1 ⊕ σ2 is not concentrated in either
σ1 or σ2. The complexity of Algorithm 1 is O(k|E|), which
is in terms of the number of function evaluations used in the
algorithm.

To show the differences and benefits of the RoseNets al-
gorithm, we go back to see the example in Figure 2. When
k = 5 and τ = 2, the RoseNets algorithm will select the se-
quence σ1 = ⟨A,B⟩ and sequence σ2 = ⟨C,D,G⟩. When
selecting σ2, the RoseNets algorithm would not consider el-
ement B in σ1. Thus element E and F are regarded as mak-
ing not contribution to the utility function. The RoseNets
algorithm will return the sequence σ = ⟨A,B,C,D,G⟩.
The worst case of removing τ = 2 elements, is to remove
B and any one element in {C,D,G}. The residual utility is
0.5. Remember the case for Sequence Greedy algorithm, the
residual utility of the worst case is 0. This example shows
the benefits of the RoseNets algorithm.

Both the examples in Figure 1 and Figure 2 imply that
a robust sequence should have complex network structure.
The utility should not concentrate in a center element, but
aggregated from all the edges among elements in the se-
quence. Such a robust sequence can only be selected by mul-
tiple trials of greedy selection, with the trials neglecting each
other. Otherwise, the central element (if exists) with its high
edge weight neighbors are probability selected, as node B in
Figure 2. If such a node is removed, the utility would slump.
In this paper, we implement such intuitive strategy by us-
ing two trials of greedy selection. Intuitively, invoking more
times of greedy selection trial may improve the approxi-
mation ratio. However, as we are to take a first step in the
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Algorithm 1: RoseNets Algorithm
1 σ = ∅, σ1 = ∅, σ2 = ∅;
2 while |σ1| < τ do
3 if |σ1| = τ − 1 then
4 E′ = {eij |vj /∈ σ1) ∧ (vi = vj ∨ vi ∈ σ1)};
5 eij = argmaxeij∈E′ h(e|E(σ1));
6 σ1 = σ1 ⊕ vj ;

7 else
8 eij = argmax{eij |vj /∈σ1} h(e|E(σ1));
9 if vj = vi or vi ∈ σ1 then

10 σ1 = σ1 ⊕ vj ;
11 else
12 σ1 = σ1 ⊕ vi ⊕ vj ;

13 while |σ2| < k − τ do
14 if |σ2| = k − τ − 1 then
15 E′ = {eij |vj /∈ σ1 ∪ σ2 ∧ (vi = vj ∨ vi ∈ σ2)};
16 eij = argmaxeij∈E′ h(e|E(σ2));
17 σ2 = σ2 ⊕ vj ;

18 else
19 eij = argmax{eij |vi /∈σ1,vj /∈σ1∪σ2} h(e|E(σ2));
20 if vj = vi or vi ∈ σ2 then
21 σ2 = σ2 ⊕ vj ;
22 else
23 σ2 = σ2 ⊕ vi ⊕ vj ;

24 σ = σ1 ⊕ σ2;
25 return σ

RoseNets problem while our theoretical analysis is already
non-trivial, we leave the design of multi-part selection algo-
rithm and the approximation ratio analysis for future works.

Theoretical Results
Let α = 2din+1, β = 1+din+dout, γ = e

k−3
k−2 , η = e

k−2τ−1
k−τ−1 .

Note din and dout are the maximum in and out degree of the
network respectively. For convience, we denote f(v|σ) and
f(σ′|σ) as the marginal gain of attending v and σ′ to se-
quence σ respectively. We denote σ∗(V, k, τ) as the optimal
solution of the RoseNets problem with element set V , cardi-
nality k and robust parameter τ , and gτ (σ) be the minimum
value of f(σ) after τ elements are removed from σ.
Theorem 1. Consider τ = 1, Algorithm 1 achieves an ap-
proximation ratio of

max{1− e−(1−1/k)

αβ
,
γ

1
din − 1

βγ
1
din − 1

}.

Theorem 2. Consider 1 ≤ τ ≤ k, Algorithm 1 achieves an
approximation ratio of

max{1− e−(1−1/k)

αβ
,

ταβ(η
1
din − 1)

ταη
1
din − β(1− e−(1−1/k))

}.

In Theorem 1, it is hard to compare the two approxima-
tion ratios directly due to their complex mathematical ex-
pression. Thus we consider specific network setting to show
the different advantages of the two terms.

First, it is easy to verify that both the two terms are mono-
tonically increasing function of k. When k = 3, we have
1−e−(1−1/k)

αβ − γ
1
din −1

βγ
1
din −1

= 1−e−2/3

αβ > 0. Thus we know that

when k is small, the first term is larger. When k → ∞, the
first term has a limit value of (1− 1/e)/αβ, and the second

term has a limit value of e
1
din −1

βe
1
din −1

.When din = 1, then α = 3

and (1 − 1/e)/αβ − e
1
din −1

βe
1
din −1

= (1 − 1/e)/3β − e−1
βe−1 =

−1−2βe+ 1
e+2β

3β(βe−1) < 0. In this case, the second term is larger
than the first term in Theorem 1. Thus we can conclude that
under specific network structure, the second term would be
larger with large k.

Similarly, for Theorem 2, when k = 3 and τ = 1,
1−e−(1−1/k)

αβ − ταβ(η
1
din −1)

ταη
1
din −β(1−e−(1−1/k))

= 1−e−2/3

αβ > 0. Thus

we know when k and τ is small, the first term is larger. When
k → ∞ while τ remains a constant, the first term has a limit
value of (1− 1/e)/αβ, the second term has a limit value of

ταβ(e
1
din −1)

ταe
1
din −β(1−e−1)

. When din = 1 and dout <
3τe2

e−1 − 2, then

α = 3, β < 3τe2

e−1 and (1 − 1/e)/αβ − ταβ(e
1
din −1)

ταe
1
din −β(1−e−1)

=

(1− 1
e )(3τe−β(1− 1

e ))−9β2τ(e−1)

3β(3τe−β(1− 1
e ))

< 0. In this case, the second
term is larger than the first term in Theorem 2. Thus we can
conclude that under specific network structure, the second
term would be larger with large k.

According to the above analysis, we know that the value
of k and τ , together with the network topology, significantly
affect the approximation ratio. It would be an interesting fu-
ture direction to explore how the approximation ratio change
when the parameters and network topology change.

To prove the above two theorems, we need the following
three auxiliary lemmas. Due to space limitations, we here
assume Lemma 1, 2 and 3 hold and show the proof of The-
orem 1 below. We provide the proofs of Lemma 1, 2, 3 and
Theorem 2 in the supplementary material.

Lemma 1. There exists an element v for sequence σ1 and
σ2 satisfies that f(v|σ1) ≥ 1

din|σ2|f(σ2|σ1).

Lemma 2. Consider c ∈ (0, 1] and 1 ≤ k′ ≤ k. Sup-
pose that the sequence selected is σ with |σ| = k and
that there exists a sequence σ′ with |σ′| = k − k′ such
that σ′ ⊆ σ and f(σ′) ≥ cf(σ). Then we have f(σ) ≥
e

k′
dink −1

e
k′

dink −c

f(σ∗(V, k, 0)).

Lemma 3. Consider 1 ≤ τ ≤ k. The following holds for
any Z ⊆ V with |Z| ≤ τ : gτ (σ∗(V, k, τ)) ≤ f(σ∗(V −
Z, k − τ, 0)).

Proof of Theorem 1
Given τ = 1, the selected sequence σ1 has one element. And
we have σ2 = k−1. Let σ1 = {v1}. Then the final sequence
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is σ = {v1} ⊕ σ2. Suppose the the removed vertex from the
sequence is z.

First, we show a lower bound on f(σ2):

f(σ2) ≥
1− e−(1−1/k)

α
f(σ∗(V \v1, k − 1, 0))

≥ 1− e−(1−1/k)

α
gτ (σ

∗(V, k, τ))

(1)

The first inequality is due to the approximation ratio of
Sequence Greedy algorithm for net-submodular maximiza-
tion (Mitrovic et al. 2018). The second inequality is due to
Lemma 3.

Now, we can see the removed element z can be either v1
or an element in σ2. In the following, we will consider these
two cases:

Case 1. Let z = v1. Then we have

f(σ − z) = f(σ2) ≥
1− e−(1−1/k)

α
gτ (σ

∗(V, k, τ)) (2)

Case 2. Let z ∈ σ2. We then further consider two cases:
Case 2.1. Let f(σ2) ≤ f(σ2 − z).
In this case, the removal does not reduce the overall value

of the remaining sequence σ2 − {z}. Then we have

f(σ − v) = f(v1 ⊕ (σ2 − z)) ≥ f(σ2 − z)

≥ f(σ2) ≥
1− e−(1−1/k)

α
gτ (σ

∗(V, k, τ))
(3)

Case 2.2. Let f(σ2) > f(σ2 − z).
We define q = f(σ2)−f(σ2−z)

(din+dout)f(σ2)
, to represent the ratio of the

loss of removing element z from sequence σ2 to the value of
the sequence σ2. Obviously, we have q ∈ (0, 1

din+dout
] since

f(σ2) > f(σ2 − z).
First, we have
(din+dout)qf(σ2) = f(σ2)− f(σ2 − z)

= f(σ1
2 ⊕ z ⊕ σ2

2)− f(σ1
2 ⊕ σ2

2)

= f(σ1
2) + f(z|σ1

2) + f(σ2
2 |(σ1

2 ⊕ z))

− f(σ1
2)− f(σ2

2 |σ1
2)

= f(z|σ1
2) + f(σ2

2 |(σ1
2 ⊕ z))− f(σ2

2 |σ1
2)

≤ dinh(e
in
z ) + douth(e

out
z )

≤ (din + dout)max{h(ein
z ), h(e

out
z )}

(4)

where h(ein
z )/h(e

out
z ) are the edge that has maximum utility

over all the incoming/outgoing edges of z. The first inequal-
ity is due to the fact that the marginal gain of a vertex z to
the prefix and subsequent sequence is at most dinh(e

in
z ) and

douth(e
out
z ). Then the second inequality follows intuitively.

Given Equation (4), we need to prove four inequalities for
finally proving the theorem.

First, suppose the first vertex of σ2 is v2. By the mono-
tonicity of function f(·) and Equation (4), we have

f(σ − {z}) ≥ f(v1 ⊕ v2)

≥ max{h(ein
z ), h(e

out
z )} ≥ qf(σ2), and

f(σ − {z}) = f(v1 ⊕ (σ2 − z))

≥ f(σ2 − z) ≥ (1− (din + dout)q)f(σ2)

(5)

Given Equation (5), we have Inequality 1 as below.
Inequality 1:
f(σ − z) ≥ max{q · f(σ2), (1− (din + dout)q) · f(σ2)}.
We know max{x, 1 − bx} ≥ 1

1+b for x ∈ (0, 1
b ] and

b > 0.3 Thus we have Inequality 2 as below.
Inequality 2: max{q, 1− (din + dout)q} ≥ 1/β.
Note that the first two elements v2, v3 in σ2 satisfy that

f(v2 ⊕ v3) ≥ max{h(ein
z ), h(e

out
z )} ≥ qf(σ2)

Thus by replacing the parameters in Lemma 2 and Lemma
3, we have the following result, which implies Inequality 3.

f(σ2) ≥
γ

1
din − 1

γ
1
din − q

f(σ∗(V \v1, k − τ, 0))

=⇒ Inequality 3: f(σ2) ≥
γ

1
din − 1

γ
1
din − q

gτ (σ
∗(V, k, τ))

Now define ℓ1(q) = q γ
1
din −1

γ
1
din −q

and ℓ2(q) = (1 − (din +

dout)q)
γ

1
din −1

γ
1
din −q

} ≥ γ
1
din −1

βγ
1
din −1

. It is easy to verify that for

k ≥ 3 and q ∈ (0, 1
din+dout

], ℓ1(q)/ℓ2(q) is monotonically
increasing/decreasing. Note when q = 1

β , ℓ1(q) = ℓ2(q) =

γ
1
din −1

βγ
1
din −1

. We consider two cases for q: (1) when q ∈ (0, 1
β ],

we have max{ℓ1(q), ℓ2(q)} ≥ ℓ2(
1
β ) as ℓ2(q) is mono-

tonically decreasing; (2) when q ∈ ( 1β ,
1

din+out ], we have
max{ℓ1(q), ℓ2(q)} ≥ ℓ1(

1
β ) as ℓ1(q) is monotonically in-

creasing. Thus we have the Inequality 4 as below.
Inequality 4:

max{q γ
1
din − 1

γ
1
din − q

, (1− (din + dout)q)
γ

1
din − 1

γ
1
din − q

} ≥ γ
1
din − 1

βγ
1
din − 1

Combining Inequality 1, Inequality 2 and Equation (1),
we can have the first lower bound in Theorem 1:
f(σ − z) ≥ max{q · f(σ2), (1− (din + dout)q)f(σ2)}

≥max{q, 1− (din + dout)q}
1− e−(1−1/k)

α
gτ (σ

∗(V, k, τ))

≥1− e−(1−1/k)

αβ
gτ (σ

∗(V, k, τ))

Combining Inequality 1, Inequality 3 and Inequality 4, we
can have the second lower bound in Theorem 1:
f(σ − z) ≥ max{q · f(σ2), (1− (din + dout)q) · f(σ2)}

≥ max{q · γ
1
din − 1

γ
1
din − q

,

(1− (din + dout)q)
γ

1
din − 1

γ
1
din − q

}gτ (σ∗(V, k, τ))

≥ γ
1
din − 1

βγ
1
din − 1

gτ (σ
∗(V, k, τ))

3As x is monotone increasing and 1− bx is monotone decreas-
ing, the function achieves the maximum value when x = 1− bx
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Now we are done.

Experiments
We compare the performance of our algorithms RoseNets
to the non-robust version Sequence Greedy (Sequence
for short) (Mitrovic et al. 2018), the existing submodu-
lar sequence baseline (OMegA) (Tschiatschek, Singla, and
Krause 2017), and a naive baseline (Frequency) which out-
puts the most popular items the user has not yet reviewed.

To evaluate the performance of the algorithms, we use
three evaluation metrics in this paper. The first one is Ac-
curacy Score, which simply counts the number of accu-
rately recommended items. While this is a sensible mea-
sure, it does not explicitly consider the order of the sequence.
Therefore, we also consider the Sequence Score, which is a
measure based on the Kendall-Tau distance (Kendall 1938).
This metric counts the number of ordered pairs that appear
in both the predicted sequence and the true sequence. These
two metrics are also used in (Mitrovic et al. 2019). The
third metric is the Utility Function Value of the selected
sequence.

We use a probabilistic coverage utility function as our
Net-submodular function f . Mathematically,

f(σ) = h(E1) =
∑
j∈V

[1−
∏

(i,j)∈E1

(1− wij)],

where E1 ∈ E is the edges induced by sequence σ. And
to simulate the worst case removal, we remove the first τ
elements to evaluate the robustness of the algorithms.

Amazon Product Recommendation
Using the Amazon Video Games review dataset (Ni, Li, and
McAuley 2019), we conduct experiments for the task of rec-
ommending products to users. In particular, given a specific
user with the first 4 products she has purchased, we want
to predict the next k products she will buy. We first build a
graph G = (V,E), where V is the set of all products and
E is the set of edges between these products. The weight of
each edge, wij , is defined to be the conditional probability of
purchasing product j given that the user has previously pur-
chased product i. We compute wij by taking the fraction of
users that purchased j after having purchased i among all the
users that purchased i. There are also self-loops with weight
wii that represent the fraction of users that purchased prod-
uct i among all the users. We focused on the products that
have been purchased at least 50 times each, leaving us with
a total of 9383 unique products. Also we select the users that
have purchased at least 29 products, leaving use 909 users.
We conduct recommendation task on these 909 users and
take the average value of each evaluation metric.

Figure 3 shows the performance of the comparison algo-
rithms using the accuracy score, sequence score and util-
ity function value respectively. In Figure 3(a), 3(b), 3(c)
and 3(d), we find that after the removal of τ elements,
the RoseNets outperforms all the comparisons. Such results
demonstrate that the RoseNets algorithm is effective and ro-
bust in real applications since accuracy score and sequence

score are common evaluation metrics in practical. In Fig-
ure 3(e) and 3(f), the only difference is that the OMegA
algorithm is outperforming when τ is small or k is large.
The OMegA algorithm aims to find a global optimal so-
lution. It topologically resorts all the candidates after each
element selection. It can return a solution with better util-
ity function value when k is large and τ is small, but runs
much slower than RoseNets or Sequence. Also, it shows
poor performance in accuracy and sequence score. Thus the
RoseNets algorithm is more effective and robust in real ap-
plications.

In addition, we also show the case of RoseNets and Se-
quence with τ = 0. We can see that in all the experi-
mental results for the three metrics, the RoseNets outper-
forms Sequence, which is consistent to our expectation. On
utility function value, the Sequence(τ = 0) is better than
the RoseNets(τ = 0). However, on accuracy score and se-
quence score, the RoseNets(τ = 0) is very close to the
Sequence(τ = 0), sometimes shows better performance.
The former result is due to the effectiveness of greedy frame-
work. The RoseNets algorithm indeed invokes Sequence for
two trials independently, which intuitively cannot achieve
comparable performance with one trial Sequence execution,
due to the Net-submodularity. But the latter result shows that
directly implementing greedy selection is not always outper-
forming. This is due to the intrinsic property of the greedy
algorithm. Though 1− 1/e is almost the best approximation
ratio, some heuristic algorithms may achieve better perfor-
mance in specific cases. However, if we invoke more trials of
Sequence algorithm, better robust experimental results and
approximation ratio might be achieved but the utility value
would become lower. This is because more trials of indepen-
dent greedy selection would give high probability of trigger-
ing the diminishing return phenomenon. In real applications,
this is a trade-off for designing robust algorithms that re-
quires a balance between high efficiency on robustness and
maximization of utility value.

Wikipedia Link Prediction
Using the Wikispeedia dataset (West, Pineau, and Precup
2009), we consider users who are surfing through Wikipedia
towards some target article. Given a sequence of articles the
user has previously visited, we want to guide her to the page
she is trying to reach. Since different pages have different
valid links, the order of pages we visit is critical to this task.
Formally, given the first 4 pages each user visited, we want
to predict which page she is trying to reach by making a
series of suggestions for which link to follow. In this case,
we build the graph G = (V,E), where V is the set of all
pages and E is the set of existing links between pages. Sim-
ilarly to the recommendation case, the weight wij of an edge
(i, j) ∈ E is the probability of moving to page j given that
the user is currently at page i, i.e., the fraction of moves
from i to j among all the visit of i. In this case, we build
no self-loops as we assume we can only move using links.
Thus we cannot jump to random pages. We condense the
dataset to include only articles and edges that appeared in a
path, leaving us 4170 unique pages and 55147 edges. We run
the algorithm on paths with length at least 29, which leaves
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Figure 3: Recommendation Application

us 271 paths. We conduct link prediction task on these 271
paths and take the average value of each evaluation metric.

Figure 4 shows the performance of the comparison algo-
rithms using the accuracy score, sequence score and utility
function value respectively. In Figure 4, we find that after
the removal of τ elements, the RoseNets outperforms all the
comparisons in all the cases. These results demonstrate that
the RoseNets algorithm is effective and robust in real appli-
cations. The OMegA algorithm does not show comparable
performance to RoseNets algorithm any more. This is be-
cause that (1) the path need to be predicted is very long,
and (2) the intersection part of different paths is not as large
as the case in Amazon recommendation experiments. Thus
the global algorithm OMegA cannot exploit its advantages.
We still can find in Figure 4(a), 4(c) and 4(e) that when k
becomes larger, the performance of OMegA algorithm in-
creases faster. This in turn demonstrates that the RoseNets
algorithm is more general, effective and robust, which does
not assume specific real application scenario.

Another difference in the link prediction application is
that, the RoseNets(τ = 0) outperforms Sequence(τ = 0)
almost in all the cases on accuracy and sequence score. This
again verifies that directly implementing greedy selection
may sometimes far away from the optimal solution. As dis-
cussed in the end of the recommendation case, an interesting
future direction is to explore the trade-off between high ef-
ficiency on robustness and the maximization of utility value
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Figure 4: Link Prediction Application

by invoking more independent greedy selection trials.

Conclusion
In this paper, we are the first to study the RoseNets prob-
lem, which combines the robust optimization and sequence
networked submodular maximization. We design a robust
algorithm with an approximation ratio that is bounded by
the number of the removed elements and the network topol-
ogy. Experiments on real applications of recommendation
and link prediction demonstrate the effectiveness of the pro-
posed algorithm. For future works, one direction is to de-
velop robust algorithms that can achieve higher approxima-
tion ratio. An intuitive improvement is to invoke multiple tri-
als of independent greedy selection. Another direction is to
consider the robustness against the removal of edges. This is
non-trivial since different removal operation would change
the network topology and affect the approximation ratio.
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Bogunovic, I.; Mitrović, S.; Scarlett, J.; and Cevher, V. 2017.
Robust submodular maximization: A non-uniform partition-
ing approach. In International Conference on Machine
Learning, 508–516. PMLR.
Calinescu, G.; Chekuri, C.; Pal, M.; and Vondrák, J. 2011.
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