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Abstract

One approach to guaranteeing safety in Reinforcement
Learning is through cost constraints that are imposed on tra-
jectories. Recent works in constrained RL have developed
methods that ensure constraints can be enforced even at learn-
ing time while maximizing the overall value of the policy. Un-
fortunately, as demonstrated in our experimental results, such
approaches do not perform well on complex multi-level tasks,
with longer episode lengths or sparse rewards. To that end, we
propose a scalable hierarchical approach for constrained RL
problems that employs backward cost value functions in the
context of task hierarchy and a novel intrinsic reward func-
tion in lower levels of the hierarchy to enable cost constraint
enforcement. One of our key contributions is in proving that
backward value functions are theoretically viable even when
there are multiple levels of decision making. We also show
that our new approach, referred to as Hierarchically Lim-
ited consTraint Enforcement (HiLiTE) significantly improves
on state of the art Constrained RL approaches for many
benchmark problems from literature. We further demonstrate
that this performance (on value and constraint enforcement)
clearly outperforms existing best approaches for constrained
RL and hierarchical RL.

Introduction
Reinforcement learning (RL)(Sutton and Barto 2018) is
a framework to represent decision learning problem in
Markov Decision Problem (MDP) environments. Recent
works of (Lillicrap et al. 2015; Mnih et al. 2015; Silver et al.
2016) have shown that Deep Reinforcement Learning can
be used to solve large and complex decision making prob-
lems. As RL methods permeate the real world it becomes
paramount for the agent to handle difficult tasks effectively
while having safety measures in place.

In this paper, we are specifically interested in imposing
safety constraints associated with cumulative cost or risk
accrued by the RL agent. Such constraints defined on tra-
jectories have numerous applications in robot motion plan-
ning (Ono et al. 2015; Moldovan and Abbeel 2012; Chow
et al. 2015a), resource allocation (Bhatia, Varakantham, and
Kumar 2018; Junges et al. 2015; Lowalekar et al. 2017),
and financial engineering (Abe et al. 2010; Tamar, Di Cas-
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tro, and Mannor 2012). Such problems have been repre-
sented using the Constrained MDP (Dalal et al. 2018) frame-
work and model free approaches have been proposed to
solve such problems. One of the initial approaches to be de-
veloped for addressing such constraints is the Lagrangian
method (Chow et al. 2015b). However, such an approach
does not provide either theoretical or empirical guarantees
in ensuring the constraints are enforced. To counter the issue
of safety guarantees, next set of approaches focused on im-
posing surrogate constraints (El Chamie, Yu, and Açıkmeşe
2016; Gábor, Kalmár, and Szepesvári 1998) on individual
state and action pairs. Since the surrogate constraints are
typically stricter than the original constraint on the entire tra-
jectory, they were able to provide theoretical guarantees on
safety. However, the issue with such type of approaches is
their conservative nature, which can potentially hamper the
expected reward objective. The next set of approaches, CPO
(Constrained Policy Optimization) (Achiam et al. 2017),
Lyapunov (Chow et al. 2019), BVF (Satija, Amortila, and
Pineau 2020) have since improved the state of art in guar-
anteeing safety while providing high quality solutions (with
regards to expected reward). The most recent of these, re-
ferred to as BVF (Satija, Amortila, and Pineau 2020) con-
verts the trajectory based constraint into an instantaneous
state dependent constraint by using forward and backward
cost value functions thus ensuring that the constraints are
fulfilled at every time step. While these approaches have im-
proved the state of art significantly, they primarily work on
simple tasks (as shown in our experimental results) and do
not work on real-world tasks that are typically a sequence of
multiple sub-tasks (e.g., a combination of movement, object
detection and discrete decision making) or of a long horizon.

To that end, a second aspect of focus in this paper is
handling hard exploration problems, typically multi-level
tasks or long horizon tasks. Traditionally, such hard explo-
ration problems have been addressed via hierarchical RL ap-
proaches, where the top level of the hierarchy is responsi-
ble for taking decisions on the next sub-goal (from a not so
large set of sub-goals) and the bottom level takes decisions
to achieve the sub-goal. The work of (Kulkarni et al. 2016)
introduced a two level Deep HRL, where the top level se-
lects the next sub-goal to be achieved and the lower level
takes primitive actions to achieve the sub-goal. But using hi-
erarchies can result in a non stationary transition function
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due to the changing policy at the lower level. In order to re-
duce the issue caused by the non stationarity the work of
(Nachum et al. 2018) used a sampling based sub goal rela-
belling while the work of (Levy, Jr., and Saenko 2017) used
a hindsight based sub-goal relabelling. Hierarchical RL has
seen significant improvements in the last few years (Pateria
et al. 2021) and our work in this paper is complementary to
those new approaches.

Our objective in this paper is to ensure safety in decision
making of the RL agent through trajectory level cost con-
straints in hard exploration problems. Unfortunately, exist-
ing hierarchical approaches cannot directly be applied to the
constrained RL setting by introducing a cost associated with
each sub-goal, as the number of sub-goals will then become
continuous or extremely large and that makes it quite chal-
lenging to learn at the top level. To that end, we develop
a scalable approach (with detailed theoretical analysis) for
constrained hierarchical RL to improve safety in hard explo-
ration problems.

Contribution Summary
More specifically, our key contributions can be summarized
as follows:

• A backward value function based hierarchical approach
for real world tasks that are typically a sequence of mul-
tiple sub-tasks (e.g., a combination of movement, object
detection and discrete decision making) or long horizon
tasks. Our approach, referred to as HiLiTE (Hierarchi-
cally Limited consTraint Enforcement) limits trajectory
level cost constraints to the upper level of the hierarchy
and creates a new intrinsic reward for lower levels of hi-
erarchy, thereby providing a scalable approach that guar-
antees enforcement of safety constraints even in hard ex-
ploration problems.

• We prove the existence of a unique steady state stationary
distribution across all levels of the hierarchy with lim-
ited assumptions on exploration in episodic tasks. This
uniqueness result is used to showing the equivalence of
the steady state distributions induced by the forward and
backward semi-Markov decision process at the upper
level. These two results facilitate the practical feasibil-
ity of backward value functions in a hierarchical frame-
work and also allows us to use the theoretical guarantees
on safety that were provided in the original paper (Satija,
Amortila, and Pineau 2020).

• We provide detailed experimental evaluation that demon-
strates the utility of HiLiTE on multiple hard exploration
benchmark problems from literature. Existing Hierarchi-
cal RL and constrained RL methods fail to either solve
the tasks effectively (low expected reward) or are unable
to satisfy the cost constraint or both.

Constrained Reinforcement Learning
In constrained RL, the underlying decision making problem
can be represented as a Constrained Markov Decision Prob-
lem (CMDP), where the rewards, costs and transitions are

not known a priori. A CMDP is defined as the tuple:〈
S,A, r, c, γ, p, s0, C

〉
where S,A are a set of states and actions.r : S × A → R
is a reward signal associated with every state action pair.
Along similar lines, c : S → R is a cost signal associated
with every state (can also be extended to state, action pairs).
p : S × A → ∆(S) is the probability of transitioning to a
new state given the current state action pair. s0 refers to the
starting state.

The objective in a CMDP is to compute a policy, π :
S × A → [0, 1], which maximizes long term cumulative
reward over a horizon, τ , while ensuring the cumulative cost
accumulated is less than cost threshold, C. Formally,

max
π

E
[ τ∑

t=0

r(st, at)|s0, π
]

s.t. E

[
τ∑

t=0

c (st) | s0, π

]
≤ C (1)

Backward Value Function (BVF) Approach
We now describe the BVF approach by Satija et al. (Satija,
Amortila, and Pineau 2020), which converts the trajectory
based constraints to state based constraints through the use
of backward cost value functions in conjunction with for-
ward cost value functions. While the forward value func-
tion estimates the expected cost that would be accumulated
starting from the current state st till the end of the episode
(similar to that of a traditional value function on reward),
the backward value function is defined as the expected cost
that was accumulated by the agent until the current state st
starting from s0. M(π) and B(π) define the forward and
backward Markov chains when following policy π, while
V C
π (st) and

←−
V C

π(st) refer to the forward and backward cost
value functions defined on the respective Markov chains.

V C
π (st) = EM(π)

[
τ∑

k=t

c (st)

]
(2)

←−
V C

π(st) = EB(π)

[
τB∑
k=0

c (st−k)

]
(3)

τB is the finite horizon of the backward Markov chain with
terminal state s0. Further as shown in Satija et al. (Satija,
Amortila, and Pineau 2020), the samples from the forward
Markov chain can be used to estimate the backward value
function as the steady state distribution of both the Markov
chains are the same. Formally,

←−
V C

π(st) = EM(π),st−K∼ηπ(·)

[
K∑

k=0

c (st−k)

]
(4)

where ηπ is the steady state distribution induced by
policy π. Thus, the cumulative cost constraint of
E
[∑T

t=0 c (st) | s0, π
]
≤ C can now be estimated as

constraint for each state, st
←−
V C

π (st) + V C
π (st)− c (st) ≤ C, ∀st (5)

15056



In practice, for the instantaneous constraints above to work,
both the backward and forward value functions need to be
estimated correctly. It has been shown that distribution in-
duced by the backward and forward value functions are
equal (Satija, Amortila, and Pineau 2020) and hence experi-
ences of the forward markov chain can be used to estimate
the backward value function. Even-though this method en-
sures constraint satisfaction at all time steps, the method
heavily relies on the correct estimation of the cost value
functions as they were used to constraint the agents ex-
ploration space at every time step. In practice, it comes to
multi level, long horizon tasks this estimation can be harder
thus constraining he agent’s search in a non feasible space
thereby affecting the overall performance.

Constrained RL for Hard Exploration Tasks
Deep reinforcement learning has been employed in robots
to learn continuous control tasks such as locomotion, move-
ment of arms in accomplishing a task etc. However, most of
these tasks are atomic and rarely require complex reasoning
and planning to accomplish complex multi-level tasks that
are a combination of movement, object interaction and dis-
crete decision making. When required to accomplish such
hard exploration tasks with complex multi-level tasks safely
in the presence of cumulative cost constraints , existing
works in constrained RL fail either with regards to optimiz-
ing reward or minimizing cost. This is because the objec-
tive in optimization 1 cannot be optimized with regular RL
approaches and cost estimation required in enforce the con-
straint of optimization 1 is significantly more challenging
(spread across multiple tasks).

Hierarchical RL methods (Kulkarni et al. 2016; Nachum
et al. 2018; Levy, Jr., and Saenko 2017; Dietterich 1999)
have shown promise in considering such complex multi-
level tasks when optimizing reward, so we adapt them to also
consider constraints on cumulative costs (trajectory cost).
There are multiple challenges involved in achieving this
goal:

1. Challenge 1: Handling dependencies and proving the
existence of steady state distribution at all levels. Occu-
pancy measure at a level of the hierarchy is dependent
on the occupancy measure at the lower level and vice
versa. Thus, the first challenge is in characterizing the de-
pendencies and proving that the steady state distribution
exists for all levels of the hierarchy, so that we can uti-
lize backward value functions to covert cumulative con-
straints to state based constraints.

2. Challenge 2: Equivalence of forward and backward
semi-MDP at the upper level. In hierarchical RL, the up-
per levels of the hierarchy are solving a semi-MDP in-
stead of a regular MDP. To utilize backward value func-
tions in a similar vein to that of in constrained RL at these
upper levels, the second challenge is in showing that the
steady state distribution of the backward semi-MDP and
the forward semi-MDP will remain the same.

3. Challenge 3: Implementation of hierarchy in con-
strained RL. There are multiple challenges with regards
to implementing the hierarchy in constrained RL. There

is only one overall cost constraint, so the first challenge
is in resolving the cost constraints for the lower level. In
hierarchical RL, there is typically an intrinsic reward de-
fined based on the distance from sub-goal. When work-
ing with a cost, distance as an intrinsic reward does not
work as it can incentivize the agent to not achieve a sub-
goal so as to meet the cost threshold. So, the second chal-
lenge is in defining a new intrinsic reward.

Model: Hierarchical Constrained MDP
We extend the constrained RL model from Section to con-
sider two levels of decision making1. There is an extra ele-
ment in the constrained MDP tuple, which is the set of sub-
goals, G2. The higher level (coarser) policy, πu : S → G
provides the next sub-goal, g to be considered from the set
of goals and sub-goals, G over a temporally extended period.
The lower level policy, πl : S × G → A dictates the lower
level atomic action to be taken given the current state and
sub-goal being pursued.

Since higher level decisions are made every few time steps
(depending on how long the lower level takes to accomplish
the goal), there is temporal abstraction and because of this,
upper level is no longer an MDP, but a Semi-MDP. It is given
by the tuple:

⟨S,G, ru, γ, pu, s0,M⟩
The key difference in a semi-MDP compared to an MDP is
with regards to the transition probability matrix, p, which
now also has to account for the duration of executing the ac-
tion (a discrete set of values less than M ) . Specifically, we
have pu(s′,m|s, a) instead of pu(s′|s, a), where m(≤ M)
refers to the duration of moving from s to s′ on taking action
a. Existing works (Limnios and Swishchuk 2020; Limnios
and Opri¢an 2003) has shown that the state transition proba-
bilities and duration probabilities in semi-MDP can be made
independent given the source state and action. Hence,:

pu(s′,m|s, a) = pu(s′|s, a) · pu(m|s, a)

where pu(m|s, a) is referred to also as the sojourn time
probability (probability of duration taken is m to transition
from state s on taking action a) while pu(s′|s, a) is the reg-
ular state transition probability. ru refers to sum of all the
rewards accumulated while moving towards the goal.

At the lower level, we have a regular MDP given by:〈
S,A, rl, γ, pl, s0

〉
The transition function is the same as the original transition
function. However, the reward, rl refers to the intrinsic re-
wards and typically represent a distance measure from the
sub-goal. We now address the three challenges mentioned
earlier.

Challenge 1
The steady state probability distribution induced by the pol-
icy πu on the upper level’s semi-MDP, i.e., duπu(s′|s0) is re-

1This can easily be extended to more than 2 levels, but for ease
of exposition, we will focus on two level hierarchy.

2We can potentially also utilize options instead of subgoals
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cursively defined as follows:

duπu(s′|s0) =βu(s′) +
∑

m≤M

∑
s∈S

∑
g∈G

pu(s′|s, g)·

pu(m|s, g) · πu(g|s) · duπu(s|s0)

Since the lower level is defined by a MDP the steady state
probability distribution at the lower level can be defined re-
cursively as follows

dlπl(s
′|s, g) =βl(s′, g)+∑

s̃

∑
a′

T l(s′|s̃, a′).πl(a′|s̃).dlπl(s̃|s, g) (6)

Since the lower level is triggered corresponding to a goal,
g at a given state s of the upper level, the start state distri-
bution for the lower level can be computed from the steady
state distribution of the upper level:

βl(s, g) = πu(g|s) · duπu(s|s0)

Similarly, pu(s′|s, g) at the upper level can be replaced by
the steady state probability distribution of the lower level
dlπl(s

′|s, g) since the start state of the lower level is given by
the current state and goal at the lower level (s, g).

In order to show that the Hierarchical RL has a unique
steady state probability distribution, we need to first show
that there exists a unique stationary distribution at both lev-
els.
Theorem 1. (Huang 2020) Both the semi-markov process
and a markov process have a unique steady state distribution
if the corresponding process is ergodic. A MDP is ergodic if
all the markov chains/ semi markov chains induced by all
possible policies are ergodic.

In summary, according to the Theorem 1 proving the er-
godicity of the MDPs would suffice as a proof for the exis-
tence of a unique stationary distribution. Consequently, to
prove ergodicity of the MDP or the Semi-MDP, we need
to prove the ergodicity of the induced Markov and Semi-
Markov chain (regardless of the policy).

Steady state probability distribution at lower level: To
prove the existence of a unique steady state probability dis-
tribution at the lower level, we make the following assump-
tions on existence of a starting state distribution and finite-
ness of the lower level MDP.
Assumption 1. The start state distribution of the lower level
hierarchy is a mixture of probability distribution of the upper
level’s steady state probability distributions induced by all
possible upper level policies. (Homogeneity)

Homogeneity is a common assumption, as also indicated
in (Huang 2020). With finite duration episodes, if there is
only one starting state, there is a chance that not all states
are reachable and this homogeneity assumption is needed
Assumption 2. The reinforcement learning problem at the
lower level always lasts for a finite time steps. That is there is
a guarantee that the lower level problem will always termi-
nate after some finite time steps regardless of the end state.
(Finiteness)

This is a reasonable assumption, as most (sub-)tasks of
interest are of finite duration. However, in continual

By using these assumptions and closely following the
work of (Huang 2020) we prove the ergodicity of the in-
duced Markov chain regardless of the policy.
Lemma 1. Problem at the lower level is ergodic and has a
unique stationary distribution.

Proof Sketch : We prove ergodicity by showing that the
Markov chain at the lower level is irreducible (every state is
reachable from every other state) and positive recurrent:
• Lower Level is irreducible: Any reachable state that

would be reachable in a single episode from the termi-
nal state. Due to the homogeneity the set of reachable
states from the terminal state is the same through out the
training time. Thus any two states can be reached in a fi-
nite number of steps in the span of two episodes via the
terminal state.

• Lower Level HRL problem is positive recurrent: Follow-
ing in the lines of the work (Huang 2020) let’s assume
T l
s as the first recurrence time of a state s. Define a set of

rollouts ϵ ∈ Φl
s such that each rollout ϵ starts at state s

and terminate once it first encounters the state s. That is
ϵ = [s........s]. By definition Eι∼M l

πl
[T l

s] = Eϵ∈Φl
s
[T l

s].
Let ns be the number of lower level episodes encoun-
tered before T l

s then Eϵ∈Φl
s
[T l

s] =
∑

k>0 Pr(ns =

k).Eϵ∈Φl
s
[T l

s|ns = k]. Due to the homogeneity argu-
ment there is a probability of hitting the state s given by
Pr(s ∈ ϵ) at every k + 1 episodes. If Pr(s ∈ ϵ) = αs

then the Pr(ns = k) = (1−αs)
k.αs. By that the proba-

bility of Pr(ns =∞) = 0. Thus k is finite. By definition
T l
s happens to fall in the k + 1th episode and since the

episode length of each of those episodes is finite by finite-
ness property Eϵ∈Φl

s
[T l

s|ns = k] ≤ (k+1).T l
max < +∞

where T l
max is the maximum length of a lower level

episode.
If we substitute the conclusion we get the following

Eϵ∈Φl
s
[T l

s] =
∑
k>0

Pr(ns = k)Eϵ∈Φl
s
[T l

s|ns = k] (7)

Eϵ∈Φl
s
[T l

s] ≤
∑
k>0

(1− αs)
kαs(k + 1)T l

max (8)

Eϵ∈Φl
s
[T l

s] ≤ T l
maxαs

∑
k>0

(1− αs)
k(k + 1) (9)

Eϵ∈Φl
s
[T l

s] ≤ T l
max

αs

(1− αs)

∑
k>0

(1− αs)
k+1(k + 1)

(10)

Eϵ∈Φl
s
[T l

s] ≤ T l
max

αs

(1− αs)

(1− αs)

α2
s

(11)

Eϵ∈Φl
s
[T l

s] ≤
T l
max

αs
(12)

(13)

by using the infinite sum of the Gabriel’s Staircase series.
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Since αs > 0 due to the irreducibly and T l
max is finite

by the finiteness property. Thus the problem at the lower
level is positive recurrent.

Steady state probability distribution at upper level: Based
on the Theorem 3.3 from (Limnios and Oprisan 2001), we
have:

Theorem 2. A semi-Markov chain is irreducible and posi-
tive recurrent if the corresponding embedded Markov chain
is irreducible and positive recurrent.

Proof Sketch We now show that the upper level induces a
semi-Markov chain that is ergodic (irreducible and positive
recurrent)

Lemma 2. Problem at the upper level is ergodic and has a
unique steady state distribution.

Proof Sketch :

• Upper level Semi Markov chain is irreducible: This trans-
lates to showing that the Markov chain induced by any
policy and specifically the state transition matrix is irre-
ducible. Using Chapman Kolmogorov equation we can
write the probability of going from a state si to sj in n
time steps as

pu(sj , n|si) =
∑
k

pu(sk,m|si)·pu(sj , n−m|sk) (14)

where m ≤ n and sk is an intermediate state. Sim-
ilarly using the same Chapman Kolmogorov equation
we recursively further break down pu(sk,m|si) and
pu(sj , n − m|si) until the transition is atomic (i.e.,
no other state can be reached in fewer time steps).
These atomic transitions are obtained from the lower
level steady state probabilities (as mentioned earlier:
∀g, pu(s′|s, g) = dlπl(s

′|s, g)) and since lower level is
ergodic, all the states are sufficiently visited. Therefore,
upper level Markov chain is irreducible.

• Upper Level Semi Markov chain is positive recurrent:
Similar to the lower level’s markov chain a we can formu-
late an infinite series for the first time recurrence Tu

s of a
state s and prove that the series is convergent thus prov-
ing the positive recurrence of the embedded semi markov
chain at the upper level.

Challenge 2
In this section, we show equivalence of forward and back-
ward semi-MDP at the upper level. As mentioned in
Lemma 2, the embedded Markov chain of the semi-markov
chain at the upper level has a unique stationary distribution
duπu . Thus

duπu(s′) =
∑
s

pu(s′|s, πu(s)).duπu(s) (15)

We can define a MDP backwards in time using the state
transition probability ←−p u(s, a|s′) which gives us the prob-
ability that the previous state and action s, a had led to the

current state s′ where the transition probability can be writ-
ten in terms of the forward MDP using bayes rule as

←−p u(s, a|s′) =
pu(s′|s, a).duπu

(s, a)∑
s̃,ã p

u(s′|s̃, ã).duπu
(s̃, ã)

(16)

Due to the existence of a unique probability distribution
for the higher level MDP we have:

duπu
(s, a) = duπu

(s).πu(a|s) (17)

pu(s′, a|s, t) = pu(s′|s, a).πu(a|s) (18)

duπu
(s′) =

∑
s̃

∑
ã

pu(s′|s̃, ã).duπu
(s̃, ã) (19)

Including these equations in Equation 16, we have:

←−p u(s, a|s′) =
pu(s′, a|s).duπu

(s)

duπu
(s′)

(20)

We can define a backward semi Markov process (consid-
ering the duration probability) via the backward transition
probability as follows

←−p u(s, a|m, s′) =←−p u(s, a|s′) · pu(m|s′, a) (21)

We will refer to the forward and backward semi-markov
chain induced by the upper level policy as Mu

πu
and Bu

πu

where each of those chains are governed by the forward
and backward transition probabilities pu(s′,m|s, a) and
←−
P u(s, a|m, s′) respectively.

We now define the backward and forward value functions
at the upper level. Given a single lower level episode of max-
imum length M let us define the cumulative cost accumu-
lated during the episode starting from a state st as

Cl(st) =

M+t∑
k=t

c(sk). (22)

The forward cost value function V C
πl

is the expectation of
the cumulative cost over the steady state probabilities of the
lower level. The backward and forward cost function at the
upper level can thus be defined as:

V C
πu
(st) = EMu(πu)

 T∑
j=t

Cl (sj)

 (23)

←−
V C

πu
(st) = EBu(πu)

 TB∑
j=0

Cl (st−j)

 (24)

where the deterministic cost function c is now replaced by
a stochastic cumulative cost Cl. Index k is used to index the
lower level while the index j is used to index the episode at
the higher level. The stochasticity can be alleviated to some
level if we replace the single cumulative return of the cost
at lower level Cl with the expected estimation given by the
lower tier’s value function V C

πl
thus resulting an alternative

definition given by

V C
πu
(st) ≈ EMu(πu)

 T∑
j=t

V C
πl
(sj)

 (25)
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←−
V C

πu
(st) ≈ EBu(πu)

 TB∑
j=0

V C
πl
(st−j)

 (26)

Theorem 3. The samples from the forward and the back-
ward semi-MDP can interchangeably be used to estimate the
backward value function.

Proof Sketch
• The proof follows the same line as the proof in (Satija,

Amortila, and Pineau 2020). Lets define a sequence of
states s1, s2, s3, ...sn that were obtained by the agent
performing the upper level policy πu on the embedded
markov chain of the upper level Pu(t). Let the actions
taken by the agent those states be a1, a2, a3, ...an. By
markov property and eq. 20

←−
P (s1, a1, s2, a2...sn−1, an−1|sn, t) =
←−
P (sn−1, an−1|sn, t)...

←−
P (s1, a1|s2, t)

←−
P (s1, a1, s2, a2...sn−1, an−1|sn, t) =

P (sn, an−1|sn−1, t)...P (s2, a1|s1, t).duπu
(s1)

duπu
(sn)

←−
P (s1, a1, s2, a2...sn−1, an−1|sn, t) ∝

P (sn, an−1|sn−1, t)...P (s2, a1|s1, t).duπu
(s1)

Furthermore, Cu(t,m) ∝ Pu(t) and
←−
C u(t,m) ∝

←−
P u(t). Thus the samples from the forward semi-MDP
can be used interchangeably with the backward MDP.
That completes the proof.

Thus, the backward value function can alternatively be
calculated as

←−
V C

πu
(st) ≈ EMu(πu)

 TB∑
j=0

V C
πl
(st−j)

 (27)

Hence, the instantaneous estimation of the of total cumula-
tive rewards for the upper level is given by

Est∼du
πu

(·)

[←−
V C

πu
(st) + V C

πu
(st)− V C

πl
(st)

]
≤ C (28)

V πl

C is the forward cost function at the lower level and
it is used to estimate the cumulative cost of the lower level
episode.

Challenge 3
One intuitive approach to solve hierarchical constrained RL
is for the upper level to generate a cost constraint for the
lower level along with a goal. Then, both levels can use
backward cost value functions to enforce constraints. How-
ever, such an approach has three major issues. First, the
number of possible combinations of goals and costs are in-
finite, as cost is usually a continuous number. Second, in
the lower level of a hierarchical RL, we have intrinsic re-
ward which is typically distance from goal and this results in
sub-goals not being achieved to enforce the cost constraint.
Finally, it is a non-trivial problem to break up the overall

Figure 1: (a) Grid; (b) Four Rooms. In case of the Grid, the
black blocks represent the walls while the red blocks denote
the pits that would result in the agent inducing a cost upon
visitation. The agent starts at the blue block and the goal is to
reach the green block while avoiding the red blocks as much
as possible. Here the aqua colored block denotes the key. If
the agent picks up the key before reaching the goal the agent
is rewarded +5000 points as opposed to only +1000 points
if it is to reach the goal without the key. the yellow blocks
indicate the sub goals that where used by the policy at upper
level along with the goal state(green) and key state (aqua).
In case of the Four Rooms, the black blocks represent the
walls while the red blocks denote the pits that would result
in the agent inducing a cost upon visitation. The agent starts
at the blue block and the goal is to reach the green block
while avoiding the red blocks as much as possible. Here the
yellow blocks indicate the sub goals that where used by the
policy at upper level along with the goal state(green).

cost constraint into multiple cost constraints for the lower
level without being overly conservative or aggressive. In-
stead of trying to find an approach that addresses all three
issues and learns well in hard exploration settings, we pur-
sued a slightly different approach that is significantly more
scalable and avoids some of these issues entirely. The key
idea is to enforce the constraints only at the upper level and
ensure the lower level reaches the goal with a minimum cost.
This approach completely avoids the first and third issues (of
infinite goal/cost combinations and splitting of overall cost
constraint) and has to only deal with the second issue of de-
signing a new intrinsic reward. In case of multiple level hier-
archies we can use BVF based instantaneous cost estimation
on the upper level and treat the cost as auxiliary reward (neg-
ative reward/regret) in the lower levels. Ergodicity property
can be achieved the same way as for a single level, through
the use of Assumption 1.

Since the objective is to reach the sub-goal at the min-
imum cost, we considered rewards that are positive only
when the agent reaches the goal and elsewhere it is zero.
The overall objective for the lower level is to maximize
QL(s, a) − λ.QC

L (s, a), where QL is the Q value function
at the lower level corresponding to the new intrinsic reward
and QC

L (s, a) is the cost Q value functions which is defined
as an estimation of the accumulated future cost given a cur-
rent state action pair s, a.

Meanwhile, at the upper level the constraints are enforced
as follows

Est∼ηπ
h (·)

[←−
V πh

C (st) + V πh

C (st)− V πl

C (st)
]
≤ C0 (29)

where the forward cost value function at the lower level
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V πl

C (st) as the instantaneous cost for the upper level. A
combination of all these ideas together is our new approach,
referred to as HiLite (Hierarchical Limited consTraint En-
forcement).

Experiments

Figure 2: (a) Four Rooms Environment with Costs; (b) Un-
safe SARSA in Four Rooms; (c) HiLiTE in Four Rooms.
Here the black blocks represent the walls while the red
blocks denote the pits that would result in the agent inducing
a cost upon visitation. The agent starts at the blue block and
the goal is to reach the green block while avoiding the red
blocks as much as possible. Here the yellow blocks indicate
the sub goals that where used by the policy at upper level
along with the goal state(green). The gray boxes denote the
path the agent took to reach the goal.

Figure 3: Puddle Environment: In here the red blocks denote
the puddles that would result in the agent inducing a cost
upon visitation. The agent starts at the blue block and the
goal is to reach the green block while avoiding the red blocks
as much as possible. Here the yellow blocks indicate the sub
goals that where used by the policy at upper level along with
the goal.

In this work we designed the experiments to explore the
drawbacks of existing constrained RL methods with regards
to hard exploration problems. We benchmark the algorithms
on modified (to consider costs) versions of two hard ex-
ploration environments –namely Grid (Satija, Amortila, and
Pineau 2020) and Four rooms (Jain, Khetarpal, and Precup
2018) environments.In the modified version of the Grid en-
vironment we adopt the grid world structure from the works
of (Leike et al. 2017), (Satija, Amortila, and Pineau 2020)
where the objective of an agent is to move from a given start
state (blue) reach the key state (aqua) and then move to the
goal state (green). The agent is rewarded with a +5000 re-
ward when it reaches the goal state after visiting the key
state but is only rewarded a +1000 for visiting the goal state
only. The pits (red) carry the cost of +10 every time the agent

steps on one. Thus the overall objective of the agent is to
reach the goal state after visiting the key state while keep-
ing the number of pits visited within a constraint. In case
of the Four Rooms, the environment from (Jain, Khetarpal,
and Precup 2018) was modified to facilitate costs. The agent
starting from the start state (blue) gets a reward of +1000 for
reaching the goal (green). Every time the agent steps on a
pit it accumulated a cost of +10 and the goal of the agent is
to reach the goal state while keeping the amount of pit states
visited within the minimum bound.

In case of the modified version of the puddle environ-
ment (Jain, Khetarpal, and Precup 2018) as denoted in Fig-
ure 3, the agent needs to move in a continuous state space
and reach the goal (green) starting from the start state (blue)
while avoiding the puddles (red). The agent would receive a
reward of +1000 if it reaches the goal and it incurs a cost of
+10 every time it steps on a puddle. Here agent has to take
a longer route in order to reach the goal while avoiding the
puddles (cost states).

To demonstrate the utility of HiLiTe, we compare it with
multiple baseline approaches: (1) Unconstrained Hierarchi-
cal RL (Unsafe-HRL); (2) Backward Value Function ap-
proach (BVF) (Satija, Amortila, and Pineau 2020); (3) Lya-
punov approach (Dalal et al. 2018). The cost limit provided
to these approaches is mentioned in brackets next to the
acronym. For instance, BVF with cost constraint of 30, is
shown as BVF(30).

Results
We now provide results obtained using our HiLiTE approach
in comparison to the baseline approaches on two hierarchi-
cal problems with cost constraints. Results on continuous
state space problems in the appendix.

Example Policy: Before we delve into the performance
results, we would like to provide an example problem and
the policies provided by existing methods and our approach
to illustrate the effectiveness. Figure 2(a) provides the 4
room environment. As can be seen in this case, there ex-
ists a short path from start state to the goal state. However,
given the presence of many red cells in between and due to a
cost constraint, shortest path or anything close to that is not
a viable option. Due to this challenge, this is a hard explo-
ration problem, where a very long path has to be explored to
get to the goal. Figure 2(c) shows the path taken by our ap-
proach, which is able to find a more round about path, while
avoiding the red cells as much as it can to enforce the cost
constraint.

Results on Four rooms: The first set of results are on the
4 room problem, where agent has to explore round about
paths due to hard cost constraints. Figure 4 provides the re-
sults with regards to expected reward and expected cost. The
key observation is that none of the existing approaches are
able to satisfy the cost constraint of 30 including BVF and
Lyapunov approaches, two of the leading works for Con-
strained RL. More importantly, HiLiTE was able to obtain
the same expected reward as Unsafe-hrl and it was able to
learn that policy very quickly even in the presence of the
cost constraint.
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Figure 4: Expected reward and cost comparison of all the approaches with cumulative cost threshold of 30 on 4 room problem.
Here x axis represents x1000 episodes.
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Figure 5: Expected reward, cost comparison of all the ap-
proaches with maximum allowed cumulative cost of 60 and
90 respectively on the Grid problem. Here x axis represents
x1000 episodes.

Results on Grid: Herec in Figure. 5, 6, we varied the com-
plexity of the grid environment by having 3 and 7 sub-goals,
while also considering multiple cost limits of 60 and 90.
On this set of examples, while both BVF and Lyapunov ap-
proaches were able to satisfy the cost constraint, the reward
obtained was significantly lower than HiLiTE. Irrespective
of the number of sub-goals, we were able to observe similar
behavior in terms of high rewards (almost reaching the ex-
pected reward of Unsafe-hrl) while satisfying the cost con-
straints in a very comfortable manner.

Results of Puddle: Figure. 7 provides the results with re-
gards to expected reward and expected cost in the puddle
environment. In this case the BVF fails to achieve the goal
when the constraints were enforced. In case of the Lyapunov
approach, even though initally it manages to achieve a better
reward it does so while violating the constraint. As it learns
to satisfy the constraints it eventually fails to reach the goal.
HiLiTE was able to learn to get a better reward while keep-
ing the incurred cost below the cost constraint of 20.

We have more results in the appendix on continuous state
problems, but we were able to clearly demonstrate that our
scalable way of introducing hierarchy into constraint rein-
forcement learning framework works exceedingly well both
with regards to reward and cost enforcement.
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Figure 6: Expected reward, cost comparison of all the ap-
proaches with maximum allowed cumulative cost of 60 and
90 respectively on the Grid problem. Here x axis represents
x1000 episodes.
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