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Abstract

There has been increasing concern within the machine learn-
ing community and beyond that Artificial Intelligence (AI)
faces a bias and discrimination crisis which needs AI fairness
with urgency. As many have begun to work on this problem,
most existing work depends on the availability of class label
for the given fairness definition and algorithm which may not
align with real-world usage. In this work, we study an AI fair-
ness problem that stems from the gap between the design of a
“fair” model in the lab and its deployment in the real-world.
Specifically, we consider defining and mitigating individual
unfairness amidst censorship, where the availability of class
label is not always guaranteed due to censorship, which is
broadly applicable in a diversity of real-world socially sensi-
tive applications. We show that our method is able to quantify
and mitigate individual unfairness in the presence of censor-
ship across three benchmark tasks, which provides the first
known results on individual fairness guarantee in analysis of
censored data.

Introduction
AI-based decision-making systems, when implemented in
real-life scenarios, have been shown to exhibit bias and
discrimination against marginalized groups or populations.
This is evidenced by instances in various fields, such as
criminal justice (Chouldechova 2017), healthcare (Chen
et al. 2020), predictive policing (Chang 2021), and employ-
ment (Miller 2015). As a result, there is a growing body of
research on quantifying and guaranteeing fairness for ma-
chine learning (Beutel et al. 2019; Meyer 2018; Skirpan and
Gorelick 2017). The vast majority of them address the prob-
lem by taking the statistical group fairness approach that first
identifies a small collection of high-level groups defined by
the sensitive attribute, such as gender or race, then ensures
similar outcome statistics of the predictor (e.g., the predic-
tion accuracy and true positive rate), across these groups,
with the aim of preventing practices that one socially salient
group is collectively allocated a more favorable outcome
(e.g., which patients need extra medical care and the tar-
geted customers to receive promotional deals) compared to
another (Mehrabi et al. 2021; Zhang et al. 2021; Saxena,
Zhang, and Shahabi 2023a,b). In addition, another common
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theme amongst all these prior works is the assumption of
fairness as a supervised learning problem– where the class
label either actual or predicted is given as a precondition
for fairness definitions as well as debiasing algorithms de-
pending on these notions to enforce fairness (Žliobaitė 2017;
Zhang and Ntoutsi 2019; Quy et al. 2022).

This setting, however, is unrealistic to many domains
leaving users with real-world socially sensitive problems
without tooling to mitigate discrimination and prejudice
concerns– echoing existing critiques that current fairness-
aware methods do not meet the real-world fair AI use
cases (Hoffmann 2019; Selbst et al. 2019). In this work, we
study such an AI fairness problem that originates from the
gap between the design of a “fair” model in the lab and their
real-world deployment. Specifically, we consider the ubiq-
uitous censorship phenomenon in real-world data analysis
in which the assumption of class label guarantee does not
hold, but still requires that similar individuals are treated
similarly (Dwork et al. 2012). Below exemplifies such a
real-life AI fairness problem that necessitates censorship
management,

Example 1. A hospital plans to create precise AI algorithm
to help streamline the clinical work flow and improve
patient outcomes for a particular type of cancer. In
addition to precision when predicting the likelihood of
experiencing relapses, the model is required to correctly
risk stratify the severity of illness for similarly situated
patients to prevent unequal treatments when allocating
critical healthcare resources. As the patients’ main
outcome under assessment, i.e., cancer recurrence which
is the class label, could be unknown for a portion of the
study group (phenomenon known as censorship, cf. a
detailed discussion below), existing fairness notions and
algorithms which assume the availability of class label
become inapplicable.

In this example, we see that the presence of censorship
nullifies any bias quantification and mitigation of the class
label dependent fair training procedure when the model is
deployed. Such censorship can arise in various ways as
shown in Figure (1): the individual has not yet experienced
the event of interest prior to the study ends so this individ-
ual’s class label remains unknown, e.g., the individual d4
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is censored; the studied individual is impossible to further
follow-up due to various reasons such as withdraw from
the study, lost to follow-up during the study period and ex-
perience a competing event, e.g., the individual d2. More-
over, censored data prevails beyond clinical prediction, e.g.,
marketing analytics (KKBOX dataset) (Kvamme, Borgan,
and Scheel 2019), recidivism prediction instrument (COM-
PAS (Larson and Kirchner 2016) and ROSSI (Fox, Carvalho
et al. 2012) dataset), to name a few in which the event of in-
terest/class label can be unknown due to the same reasons
discussed in the clinical prediction task (Kvamme, Borgan,
and Scheel 2019). However, existing fairness notions and
algorithms typically focus on the “processed” benchmark
datasets that either drop observations with uncertain class la-
bels due to censorship (Chouldechova 2017; Quy et al. 2022;
Hort et al. 2022) or omit the censorship information of these
instances (Wan et al. 2020; Vasudevan and Kenthapadi 2020;
Zhang and Ntoutsi 2019) which does not center realistic data
characteristics, thus preventing “fair” models developed in
the lab being applicable in real-world applications. In addi-
tion, although individual fairness, compared with group fair-
ness, enjoys the merits of free of sensitive attribute specifi-
cation and harder to fail by scrutinizing at the finer granu-
lar individual level (Barocas, Hardt, and Narayanan 2017),
it demands the distance calibration resulted from the Lips-
chitz condition (Lahoti, Gummadi, and Weikum 2019b). In
practice, however, even though metrics evaluating both input
and output space similarities can be properly defined by do-
main experts, such a Lipschitz condition is non-trivial to be
specified and has therefore been another major obstacle for
wider adoption of existing individual fairness in real-world
applications.

Figure 1: An illustrative example of censoring phenomenon:
individuals in grey, i.e., d2 and d4, are censored while others,
i.e., d1 and d3, are non-censored; individuals are arranged
in the increasing time order of their survival times with the
lowest, i.e, t1, being at left most; the study ends at the time
shown as the vertical dash line; there is no edge originate
from a censored individual due to censorship.

Summary of our contributions. To tackle the aforemen-
tioned challenges, we introduce a new individual fairness
with censorship setting with the goal of encouraging wider
use through attending to the unaddressed challenges of real-
istic fair model deployment. Explicitly: (i.) We formulate a
new research problem for fairness guarantee which relies on
the more in line with the realistic assumption that individual

outcomes are possibly censored. (ii.) We present a new def-
inition along with a debiasing algorithm which are indepen-
dent from Lipschitz condition but also are capable of quanti-
fying and mitigating individual unfairness amidst censorship
for real-world socially sensitive applications. (iii.) Empiri-
cal evaluations on three complete rather than “processed”
benchmark datasets confirm the utility of the proposed ap-
proach in practice.

Problem Formulation and Related Work
Censored Data
To represent the essence that the data is censored because
each individual may eventually experience the event of in-
terest but such information is not present, the censored data
can be typically described by three pieces of information:
(i.) the observed covariates/features x, (ii.) the survival time
T and (iii.) the event indicator δ. The first piece of informa-
tion characterizes the certain information that is observed for
each individual while the possible uncertainty arises from
the last two: when δ equals to 1 the event is observed in-
dicating certainty on the event time T or class label (i.e.,
the event is observed at time T ), otherwise the event time is
censored resulting unavailability of the class label (i.e., the
individual is censored at time T ).

AI Fairness
Much progress has been made to quantify and mitigate un-
fair or discriminatory manner of AI algorithm. These ef-
forts, at the highest level, can be typically divided into two
families: individual fairness and group fairness. A vast ma-
jority of existing works focus on group notions, aiming to
ensure members of different groups, e.g., gender or race
aka sensitive attributes, achieve approximate parity of some
statistic over class labels, such as statistical parity (Zhang
and Ntoutsi 2019), disparate impact (Zafar et al. 2017),
equality of opportunity (Hardt et al. 2016) and calibra-
tion (Kleinberg, Mullainathan, and Raghavan 2016). Then,
related group based debiasing algorithms are designed to en-
force respective fairness notions, typically as a constraint or
regularizer, and therefore require the availability of class la-
bel as well. While enjoying the merit of operational ease,
group-based fairness approaches are prone to fail when guar-
anteeing fairness at the individual level in addition to several
other drawbacks (Barocas, Hardt, and Narayanan 2017).

On the other hand, individual fairness alleviates such
a drawback through “awareness”, requiring individuals
who are similarly situated, with respect to the task at
hand, receive similar probability distributions over class la-
bels (Dwork et al. 2012). Formally, this objective can be for-
mulated as the Lipschitz property and fairness is achieved
iff:

D̂(f(xa), f(xb)) ≤ LD(xa, xb) (1)

where L is the Lipschitz constant, D(·) and D̂(·) are corre-
sponding functions used to measure the similarly situated in
input space, e.g., features x, and similar probability distribu-
tions over class labels in output space, e.g., outcomes of the
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prediction function f(·), respectively. One of the major ob-
stacles for wider adoption of individual fairness, though, is
the distance calibration between the input and output space
resulted from L. In addition, existing studies of individual
fairness assume availability of the class label, which is im-
practical in many real-world applications due to the prevail-
ing censorship. Our new fair methodology is a member of
this group of individual-based approaches, but resolves these
two main questions left open in current literature, thus pro-
viding a fairness guarantee across individuals with censor-
ship and the “awareness” is free from Lipschitz condition.

Survival Analysis
The prevalent censored data in real-world AI applications
makes survival analysis necessary (Clark et al. 2003; Wang
et al. 2021; Turner et al. 2022). For example, to build a
model used to aid in the prognosis of disease relapse, the col-
lected raw data will include individuals who experience re-
lapses but also those whose relapse status remains unknown,
i.e., censored. A related function commonly used is the haz-
ard function, modeling the rate of event occurrence at a spec-
ified time t conditioned on surviving to t:

h(t|x) = lim
△t→0

Pr(t < T < t+△t|T ≥ t, x)

△t
(2)

Among the various proposed survival analysis methods,
the Cox proportional hazards model (CPH) (Cox 1972) has
become the standard for modeling censored data in which
the multiplicative relationship between the risk, as expressed
by the hazard function and covariates is described, i.e.,

h(t|x) = h0(t) exp(β
Tx) (3)

where h0(t) is called the baseline hazard function (i.e., when
x = 0) while β is a set of unknown parameters, which can
be estimated by applying the partial likelihood estimation
written as follows:

L(β) =
∏

Ti uncensored

exp(βTxi)∑
Tj≥Ti

exp(βTxj)
(4)

Various approaches have been proposed to model the haz-
ard function from the prevailing censored data (Katzman
et al. 2018; Ishwaran et al. 2008; Wang, Li, and Reddy 2019;
Bou-Hamad et al. 2011). In addition, care must be taken to
ensure the fairness of survival models, the same as other
AI approaches. Our work situates in this under-explored re-
search direction to tackle fairness in the presence of cen-
sorship. Starting with (Zhang and Weiss 2021, 2022, 2023),
there is a different line of work studying fairness with cen-
sorship but subject to group-based constraints. Relevantly,
the survival model is modified to ensure fair risk predictions
as in (Keya et al. 2021). However, their work necessitates the
Lipschitz condition as in the conventional individual fairness
definitions and does not explicitly considers survival infor-
mation to address discrimination in the presence of censor-
ship. Our method aims to alleviate these two limitations.

Censored Individual Fairness
To fill the gap between “fair” models in the lab and their de-
ployment in the real-world, this section introduces a first of
its kind individual fairness notion that specifically account
for censoring while jointly evaluating bias from a ranking
perspective to remove the dependence on Lipschitz condi-
tion, along with a debiasing algorithm in the presence of
censorship.

Quantifying Censored Individual Unfairness
The existing individual fairness notions necessitate the avail-
ability of class label while ignoring the censoring informa-
tion. However, the survival information is important and re-
quires special attention, otherwise substantial bias could be
introduced if it is simply neglected. In addition, current in-
dividual unfairness quantification depends on the Lipschitz
condition for fairness formulation which is non-trivial due to
the similarity metric difference between the input and output
space. To overcome these, we propose to evaluate unfair-
ness from a ranking perspective while jointly considering
survival information for the evaluation of individual fairness
with censorship.

Figure 2: An illustration of quantifying and mitigating in-
dividual unfairness from a ranking perspective; SimD and
SimD̂ are similarity matrices obtained from the input and
output space respectively; the number of star(s) next to each
individual represents corresponding pairwise level of simi-
larity; a check mark indicates the ranking order is consistent
between input and output space while a cross mark means
inconsistency.

Discounted Cumulative Fairness. As previously dis-
cussed in Example 1, similarly situated patients should re-
ceive similar treatment in regard to allocation of critical
healthcare resources. Such a fair clinical prediction could
be reflected as the ranking order when receiving the service,
thus requiring the ranking order in the input space is pre-
served in the output space as decided by the AI model, which
also aligns with the typical individual fairness idea that sim-
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ilar individuals situate similarly. Motivated by this, we pro-
pose Discounted Cumulative Fairness (DCF) to quantify
censored individual unfairness from a ranking perspective to
alleviate the challenge of Lipschitz condition-based distance
calibration. Specifically, DCF first obtains two ranking lists
based on the similarity matrices SimD and SimD̂ from the
input and output space respectively then evaluates the con-
sistency between these two lists. To this end, DCF looks at
one individual at a time checking whether other individu-
als’ relative orders to this focused individual are consistent
across the input and output space. Take Figure 2 as the ex-
ample, assume the list derived from SimD when focusing on
d1 is {d3, d2, d4} (i.e., d3, d2, d4 are the most, second and
least similar to d1) while the encoded list from SimD̂ is {d3,
d4, d2}. As the expected encoded list from SimD̂ should be
{d3, d2, d4} as well, d2 is individually unfair treated as d2
should be ranked closer to d1 than d4. Armed with this idea
also motivated by learning to rank (Burges, Ragno, and Le
2006), DCF@k is formally defined as below to quantify such
a type of inconsistent ranking showing individual unfairness
amidst censorship,

DCF@k =
1

N

N∑
n=1

DCGSimD(dn)(p̂)

DCGSimD(dn)(p)
(5)

where N represents the total number of individuals, p and
p̂ denote the ranking orders based on the input and ouput
space simiarilities respectively, and k is the length of the top-
k ranking list (we focus on the top-k individuals following
the basic principle of individual fairness which only requires
similar people are treated similarly), while the formulation
for DCGSim(dn), which represents Discounted Cumulative
Gain for each focused individual dn, is expressed as follows,

DCG
{p,p̂}∈posSimD(dn)

(pos) =

k∑
pos=1

SimD(pos)

ln(pos+ 1)
(6)

where pos is the position of each individual in the ranking
list derived from the corresponding similarity matrix for in-
dividual dn characterized by feature xn, while SimD(pos)
is the input space similarity between the individual in this
position of the ranking list (obtained from either input or
output space) and the individual dn (we will use xn and
dn interchangeably in the following for ease of expression).
Note that the input space similarity matrix SimD is often
a given apriori as it is problem-specific (Lahoti, Gummadi,
and Weikum 2019a,b), while we define SimD̂ as follows,

SimD̂(xi, xj) =
1

1 + (1− C△(xi, xj))|h̄(t|xi)− h̄(t|xj)|
(7)

where h̄(t|x) is the hazard function with the base function
h0(t) dropped as it is not individual specific, i.e., h̄(t|x) =
exp(βTx), and C△(xi, xj) measures the concordance dif-
ference to adjust the similarity between two individuals as
evaluated by the hazard function while taking important sur-
vival information into consideration.

To understand this key component C△(xi, xj), let’s con-
sider evaluation amidst censorship as a ranking problem.

Specifically, when pairwise comparing one individual xg

with other individuals, e.g., x′
g , the individual with a shorter

non-censored time, i.e., δt⋉ = 1 in Equation (9), should be
assigned a higher hazard score than another individual with a
longer survival time, regardless of the longer survival time’s
censorship status. This can be visualized by means of an or-
der graph as shown in Figure 1 in which edges are originated
from individuals with a shorter time and are not censored ex-
clusively, i.e., individual d1 and d3, thus reflecting the com-
parability of pairwise comparisons. In addition, the model
should assign a higher hazard score for individual d1 than all
other individuals as well as a higher hazard score for individ-
ual d3 than d4. This can be interpreted as the fraction of all
pairs whose predicted outcome are correctly ordered among
all individuals that can actually be ordered. From individ-
ual fairness’ perspective, similar individuals should receive
similar fractions as similar outputs are expected for them
from the model, resonating the typical individual fairness
idea that similar individuals situated similarly. Ensembling
these ideas, C△(xi, xj) measuring the concordance differ-
ence between xi and xj within the corresponding ranking
list is mathematically represented as:

C△(xi, xj) = Cxi − Cxj (8)
where the concordance Cxn

of individual dn is defined as:

Cxn =
1

M

k∑
n′=1

1[h̄(t⋊|x⋊) < h̄(t⋉|x⋉)|δt⋉ = 1] (9)

where k is the number of individuals in the ranking list, M is
the number of permissible pair whose shorter survival time
is observed, i.e., M=

∑
1[δt⋉ = 1], and x⋊ or x⋉ is the

individual with a longer, i.e., t⋊ = max(tn, t
′
n), or shorter,

i.e., t⋉ = min(tn, t
′
n), survival time.

The concordance difference effectively adjusts the sim-
ilarity values defined in formula (7). In the general case,
we would like the original similarity in the output space to
be downscaled according to the prediction deviation as re-
flected by the concordance difference, which also explicitly
includes survival information when quantifying unfairness
in the censoring setting.

Align with the existing individual fairness notions, the
values of DCF@k is also within the interval of [0,1]. In ad-
dition, the higher the DCF@k score, the more consistency
between the ranking list encoded from the input and output
space and thus, the fairer the model.

Mitigating Censored Individual Unfairness
Our bias mitigation algorithm, Individual Fair Survival
(IFS) is built upon the deep neural network based survival
model DeepSurv (Katzman et al. 2018), one of the most pop-
ular survival learners. DeepSurv enjoys its popularity as it
has sound guarantees of performance when the number of
features and interactions increases, in which the linear pro-
portional hazards condition is relaxed to better encode the
nonlinearity of censored data. Mathematically, the loss func-
tion of DeepSurv is formulated as the negative log partial
likelihood:
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L(θ) = −
∑

i:Ei=1

(
h̄θ(xi)− log

∑
j∈R(Ti)

eh̄θ(xj)

)
(10)

where NE=1 is the number of individuals with observed
events, R(Ti) stands for all the remaining patients at time
Ti, h̄θ(xi) is the risk output of the neural network and θ are
weights of the model.

Such a loss function aims to optimize for predictive per-
formance and does not take fairness into consideration.
Here, we propose IFS to generate tailored forecasts while
providing fair risk predictions to ensure similar individuals,
in the presence of censorship, are treated similarly for real-
world socially sensitive applications.

To this end, we devise an individual fairness loss func-
tion to mitigate individual unfairness amidst censorship.
Specifically, we cast individual fairness guarantee as a rank-
ing problem to alleviate the existing individual fairness ap-
proaches’ drawback on the dependence of non-trivial Lips-
chitz condition, while jointly dealing with the censoring of
the data. This in practice can be instantiated as the constraint
enforcing consistency between the two ranking lists that are
obtained from the input and output space, respectively. Still
in Figure 2, the first two relative ranking order, i.e., d3 vs d2
and d3 vs d4, are consistent in the input and output space,
while d2 and d4 swap their respective order in the input and
output space, i.e., inconsistent. The loss function should thus
promote the first two relative ranking order while penalizing
the last one. Motivated by this, we formulate the loss func-
tion as a probabilistic function below,

F(k) =
N∑

n=1

∑
i,j

Fdi,dj
(dn) (11)

where N is the number of individuals, di and dj are two
among the top ranked k individuals from the input space
focusing on each individual dn, and Fdi,dj

(dn) is the cross-
entropy loss on order consistency based probability distribu-
tion difference from the input and output space:

Fdi,dj
(dn) = −Pdi,dj

logP̂di,dj
−(1−Pdi,dj

)log(1−P̂di,dj
)

(12)
where Pdi,dj

and P̂di,dj
are the probability scores of the rel-

ative order in the input and output space:

Pdi,dj
=


1, SimD(dn, di) > SimD(dn, dj)

0.5, SimD(dn, di) = SimD(dn, dj)

0, SimD(dn, di) < SimD(dn, dj)

(13)

P̂di,dj
=

1

1 + e−(SimD̂(dn,di)−SimD̂(dn,dj))
(14)

Intuitively, Pdi,dj
formulates the known probability, typ-

ically given as a priori, on whether di is more similar to dn
than dj when centering on dn in the input space, while P̂di,dj

does the same but in the output space based on model pre-
diction based probability. Then, this similarity based rela-
tive ranking difference in the input and output space rep-
resents the ranking inconsistency loss and is quantifies as
Fdi,dj

(dn). Last, F(k) aggregates the loss over all individu-
als. As a note, the proposed Fdi,dj

(dn) encourages the con-
sistency between the two ranking lists that are obtained from
the input and output space, respectively. Enforcing this, in-
dividuals’ similarity in the input space (e.g., severity of the
illness) will be preserved in the output space (e.g., allocating
critical healthcare resources), thus encouraging similar indi-
viduals (in the input space) being treated similarly (in the
output space) while accounting for censorship. In addition,
IFS focuses on the top-k ranking to encourage locally simi-
lar without requiring global similarity as individual fairness
only asks for similar outcomes for similar individuals.

With these, the overall objective function of IFS, to be
minimized, can be formulated as:

L(θ, k) = L(θ) + λF(k) (15)
where λ is the trade-off parameter controlling the strength
of individual fairness constraint.

Charac.
Dataset ROSSI COMPAS KKBOX

Sample # 432 10,325 2.8M
Censored% 0.736 0.732 0.347
Feature # 9 14 18

Table 1: The summary of datasets for empirical evaluations.

Empirical Evaluations
Datasets
We evaluate our approach on three real-world datasets
explicitly include survival information and with socially
sensitive concerns: i) The ROSSI datase (Fox, Carvalho
et al. 2012) comprises information on 432 convicts who
were discharged from a Maryland state prison during the
1970s and monitored for a year following their release.
The study involved a randomized experiment in which half
of the randomly assigned individuals were given financial
assistance, while the other half received no aid. Roughly
73.6% of the dataset comprises censored observations, all
of which are censored at the 52-week mark. ii) The COM-
PAS dataset (Larson and Kirchner 2016), a landmark dataset
in algorithmic unfairness, bears similarities to the ROSSI
dataset used to forecast recidivism of convicts released from
Broward County, Florida, but with significantly larger sam-
ple size of 10,325 instances. Additionally, like the ROSSI
dataset, the COMPAS dataset exhibits a censored rate of
73%. iii) The KKBOX dataset from the WSDM-KKBox’s
Churn Prediction Challenge 2017 (Kvamme, Borgan, and
Scheel 2019). Its objective is to predict whether a user of
KKBox, which is a music streaming service, will renew their
subscription within 30 days after the expiration of their cur-
rent streaming subscription. With a relatively low censored
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Datasets Method
Metrics DCF@10%↑ C-index% ↑ Brier Score%↓ Time-dependent AUC%↑

ROSSI

FDCPH 44.12 55.81 19.83 76.18
CPH 33.41 64.24 17.67 77.12
RSF 36.17 65.56 15.12 79.32

DeepSurv 31.43 66.67 14.71 78.18
IFS 57.68 65.87 15.05 77.85

COMPAS

FDCPH 72.27 63.54 24.12 65.16
CPH 73.51 69.24 20.35 65.15
RSF 74.64 72.61 15.62 71.76

DeepSurv 74.18 75.12 13.42 71.83
IFS 86.78 73.17 13.89 71.77

KKBOX

FDCPH 58.64 70.44 21.23 69.73
CPH 47.32 80.02 18.17 72.95
RSF 42.41 82.32 14.24 78.18

DeepSurv 43.45 83.01 14.33 80.71
IFS 69.64 84.15 14.35 81.12

Table 2: Comparison of IFS against various baselines on diverse datasets with best results marked in bold and second best in
italics. A higher value is desired for the metrics followed by an ↑ while followed by ↓ are the opposite.

rate of 34.7%, the KKBox dataset comprises over 2.8 million
subscribers. Table 1 summarizes their statistics and proper-
ties.

IFS Implementation
The IFS is optimized with Adam optimizer via backpropa-
gation and automatic differentiation, with learning rate 0.01
using PyTorch, and in a mini-batch setting for 50 epochs
with a mini-batch size of 128. In addition, the number of top
k in the ranking list is set as 10 while λ as 1 in the overall
objective function for quantitative performance comparison.
IFS follows the hyperparameter settings (e.g., hidden unit
number) of our base model DeepSurv (Katzman et al. 2018)
and further does grid search for fairness specific tuning pa-
rameters (the search space of k is 4-50 and λ is 1e−4-1e4).

Benchmark Performance
This section first investigates the theoretical design of IFS.
For comparison: i) we implemented the recently proposed
fair survival model FDCPH (Keya et al. 2021) which is the
only work touching on debiasing across censored individu-
als, to the best of our knowledge (note that only the most
competitive one is considered among different variants pro-
posed therein). We also compare against: ii) the commonly
used survival analysis model CPH (Cox 1972), iii) the state
of the art random survival forests (RSF) (Ishwaran et al.
2008) which is a meta-estimator that builds multiple sur-
vival trees on different subsets of a given censored dataset,
as well as: iv) deep neural network based DeepSurv to en-
code the nonlinearity of censored data (Katzman et al. 2018)
which is also the base model of our method as the additional
baselines. Other competing fairness methods are not con-
sidered as none of them can be transferred to censored set-
tings. Neither are group-based fair survival models (Larson
and Kirchner 2016; Zhang and Weiss 2021, 2022; Sonabend

et al. 2022) as they necessitate the extra effort in specifying
sensitive attribute for bias mitigation which is unspecified in
individual fairness setup.

In addition to the proposed censored individual fairness
metric, we also report the commonly used survival model
utility metrics: i) the C-index which equals the area under
ROC curve (AUC) in the absence of censorship (Harrell
et al. 1982); ii) the Brier score also attends to the calibra-
tion of the model by quantifying the mean squared differ-
ence between the predicted probability and the actual out-
come (Brier and Allen 1951); and iii) the Time-dependent
AUC testing the discriminative power of the model when
distinguishing individuals who experience the event of inter-
est from those who have not up to the time t (Chambless and
Diao 2006). Furthermore, the similarity matrix in the input
space SimD, as per standard, is given as a priori (Lahoti,
Gummadi, and Weikum 2019b,a). To show the generaliza-
tion of IFS, we construct SimD using the euclidean distance
with feature scaling (Han, Pei, and Tong 2022). In addition,
the number of top k in the ranking list is set as 10 while λ
as 1 in the overall objective function for quantitative perfor-
mance comparison. All methods are trained the same way
for fair comparison with the 5-fold cross validation results
summarized in Table 2.

As shown in Table 2, our new IFS method dominates all
other baseline models in terms of mitigating bias in the pres-
ence of censorship, and is second-best on the majority of
model utility metrics. We note that IFS’ superior discrimina-
tion minimizing capability over other second-best baselines
can be as high as 73.07%, while still being highly competi-
tive with narrow margins being at most 2.6% within the top
utility performer. This shows the desirable fairness-utility
trade-off of our approach amidst censorship. On the other
hand, the inferior performance of FDCPH shows the draw-
backs of Lipschitz condition based distance calibration as
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Figure 3: The model utility and individual fairness trade-off fined grained by the tunable parameter λ.

Figure 4: The effects on the choice of k on model utility and individual fairness.

a result of variation in data as well as not explicitly con-
sidering survival information in the model design. This also
demonstrates that fairness amidst censorship cannot be triv-
ially solved by a simple combination of existing fairness ap-
proaches in the absence of censorship techniques.

The Effect of λ and KKK on Model Utility and
Individual Fairness
The design of IFS also provides a clear mechanism to fine-
tune the trade-off between utility and fairness, allowing the
end-user to adjust the model when the initial model does
not meet the discrimination or utility requirements. To illus-
trate this mechanism, Figure 3 shows the results of adjusting
the value of λ, which controls the degree of trade-off be-
tween utility and fairness in the IFS model. As we can see,
when λ is set as a small value, the model utility and indi-
vidual fairness performance are not significantly impacted.
This suggests that the model is able to achieve an excellent
balance between utility and individual fairness when λ is
small. When the value of λ further increases, the model’s
performance in promoting individual fairness is on the rise
then reaches a peak or drops while the utility declines. This
could be due to the fact that top-ranked individuals are hard
to be obtained within reasonable training epochs when λ is
relatively large. Clients can therefore explore an appropri-
ate λ to accommodate their realistic needs according to their
respective constraints.

We also investigate the effect of different top-k values as

shown in Figure 4. From the obtained results, a larger value
of k typically leads to increased individual fairness perfor-
mance while model utility remains relatively steady. These
results are expected as the identification of top-k is mainly
for optimizing the individual fairness part of the overall
learning function. This also validates the previous results on
benchmark performance and the effect of λ demonstrating
that IFS achieves a desirable fairness-utility trade-off amidst
censorship. It can be noted that, compared to other metrics,
the DCF performance of IFS shows more frequent fluctua-
tions during the parameter variation process. This indicates
the need for an additional fairness metric that takes the sta-
bility perspective into account, in order to comprehensively
evaluate the model’s performance.

Conclusion
Given the observed gap between the prevailing real-world
applications with censorship and the assumption of class la-
bel availability of existing AI fairness methods, this work
made an initial investigation on individual fairness with cen-
sorship. In addition, this work also took a step further to
quantify and mitigate individual unfairness from a ranking
perspective, thus alleviating the drawback of the non-trivial
Lipschitz constant specification of the existing individual
fairness studies. The proposed notion and algorithm are ex-
pected to be versatile in quantifying and mitigating bias in
various real-world socially sensitive applications. In addi-
tion, this work defines a new task and opens possibilities for
future work on a comprehensive study of AI fairness.
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