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Abstract

Accuracy and individual fairness are both crucial for trust-
worthy machine learning, but these two aspects are often in-
compatible with each other so that enhancing one aspect may
sacrifice the other inevitably with side effects of true bias or
false fairness. We propose in this paper a new fairness crite-
rion, accurate fairness, to align individual fairness with ac-
curacy. Informally, it requires the treatments of an individ-
ual and the individual’s similar counterparts to conform to
a uniform target, i.e., the ground truth of the individual. We
prove that accurate fairness also implies typical group fair-
ness criteria over a union of similar sub-populations. We then
present a Siamese fairness in-processing approach to mini-
mize the accuracy and fairness losses of a machine learning
model under the accurate fairness constraints. To the best of
our knowledge, this is the first time that a Siamese approach
is adapted for bias mitigation. We also propose fairness con-
fusion matrix-based metrics, fair-precision, fair-recall, and
fair-F1 score, to quantify a trade-off between accuracy and
individual fairness. Comparative case studies with popular
fairness datasets show that our Siamese fairness approach can
achieve on average 1.02%-8.78% higher individual fairness
(in terms of fairness through awareness) and 8.38%-13.69%
higher accuracy, as well as 10.09%-20.57% higher true fair
rate, and 5.43%-10.01% higher fair-F1 score, than the state-
of-the-art bias mitigation techniques. This demonstrates that
our Siamese fairness approach can indeed improve individ-
ual fairness without trading accuracy. Finally, the accurate
fairness criterion and Siamese fairness approach are applied
to mitigate the possible service discrimination with a real
Ctrip dataset, by on average fairly serving 112.33% more cus-
tomers (specifically, 81.29% more customers in an accurately
fair way) than baseline models.

Introduction
Machine learning aided intelligent systems have exhibited
competitive performances in decision-making tasks such as
loan granting (Hardt, Price, and Srebro 2016), criminal jus-
tice risk assessment (Berk et al. 2021), and online recom-
mendations (Lambrecht and Tucker 2019). However, the
widespread deployments of such machine-learning systems
have also spawned social and political concerns, particularly
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on the fairness of the decisions or predictions made by these
systems.

Accuracy and fairness are both crucial for trustworthy ma-
chine learning (Huang et al. 2022b,a; Zhang et al. 2021; Su
et al. 2022; Makhlouf, Zhioua, and Palamidessi 2021), but
these two aspects may be incompatible fundamentally from
their own unilateral perspectives, that is, enhancing one as-
pect may sacrifice the other inevitably with unacceptable
consequences (Dutta et al. 2020; Kim, Chen, and Talwalkar
2020; Pinzón et al. 2022). For instance, more accurate pre-
dictions on loan applicants’ incomes can benefit banks with
less lending risks, but the underlying ground truth distribu-
tion may tend to prefer applicants with the majority or priv-
ileged backgrounds, due to historical practices. Thus, ac-
curate predictions would reflect, even exaggerate such dis-
crimination against minority or unprivileged applicants. In
contrast, enhancing just fairness, e.g., by blindly enforcing
all the applicants to have the same access to loans, would
result in trivially fair but unsound predictions for actually
non-qualified applicants. Therefore, accurate but biased, and
fair but faulty predictions do not yield a mutually beneficial
trade-off between accuracy and fairness. Such incompatibil-
ity has recently been shown in (Pinzón et al. 2022) specifi-
cally between non-trivial accuracy and equal opportunity, a
group fairness criterion.

In this paper, we propose a new fairness criterion, accu-
rate fairness, to align individual fairness (Dwork et al. 2012;
Galhotra, Brun, and Meliou 2017) with accuracy by uni-
formly bounding both the accuracy difference and the fair-
ness difference for similar sub-populations. Any two indi-
viduals are similar if both differ only on their sensitive at-
tributes, e.g., genders, races, and ages. Then, an individual
is treated by a machine learning model in an accurately fair
way, if its prediction results for both the individual and the
individual’s similar counterparts conform to the ground truth
of the individual; otherwise, the prediction result for this in-
dividual is either faulty or biased. Thus, under the notion of
accurate fairness, an individual and the individual’s similar
counterparts shall be treated similarly in conformance with
a uniform target (i.e., the ground truth of the individual),
without acknowledging their differences in the sensitive at-
tributes.

As an individual-level fairness criterion, accurate fair-
ness refines the general definition of individual fairness
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(Dwork et al. 2012) by explicitly focusing on similar sub-
populations, where the individuals are exactly the same on
their non-sensitive attributes, instead of on any individuals
that are close to each other. Thus, fair but faulty predic-
tions can be potentially reduced because a machine learning
model does not have to learn “fair” predictions for close in-
dividuals, who though differ on some of their non-sensitive
attributes, without regard to their different ground truths.
Accurate fairness further captures the intuition that fair-
ness criteria shall be truthfully built upon accurate predic-
tions. Consequently, as a by-product, we show that accurate
fairness implies group fairness, specifically statistical par-
ity (Calders, Kamiran, and Pechenizkiy 2009; Kamiran and
Calders 2009) and confusion matrix-based fairness (Caton
and Haas 2020)) over a union of similar sub-populations.

We then present and implement a Siamese fairness ap-
proach to mitigate individual bias without trading accuracy.
It simultaneously receives multiple similar individuals as
training inputs, and aims to minimize the accuracy and fair-
ness losses of a machine learning model (e.g., a neural net-
work model, a logistic regression model, or a support vector
machine) under the accurate fairness constraints. We further
propose a fairness confusion matrix to evaluate how well
a machine learning model can balance accuracy with indi-
vidual fairness, yielding fair-precision, fair-recall, and fair-
F1 score metrics. Fair-precision is the proportion of indi-
vidually fair predictions in accurate predictions, while fair-
recall is the proportion of accurate predictions in individu-
ally fair predictions. Fair-F1 score is the harmonic mean of
fair-precision and fair-recall.

Empirical studies with popular fairness datasets Adult
(UCI Machine Learning Repository 1996), German Credit
(Hofmann 1994) and ProPublica Recidivism (Angwin et al.
2022), show that the accurate fairness criterion contributes
well to delivering a truthfully fair solution for decision-
making, and balances accuracy and individual fairness in
a win-win manner. Compared with the state-of-the-art bias
mitigation techniques, our Siamese fairness approach can
on average promote the individual fairness (fairness through
awareness) of a machine learning model 1.02%-8.78%
higher, and the model accuracy 8.38%-13.69% higher, with
10.09%-20.57% higher true fair rate and 5.43%-10.01%
higher F-F1 score.

Finally, we apply the accurate fairness criterion to eval-
uate a service discrimination problem with a real dataset
(Ctrip 2019) from Ctrip, one of the largest online travel ser-
vice providers in the world. This problem concerns whether
customers who pay the same prices for the same rooms are
recommended the same room services, irrespective of their
consumption habits. Two neural network models are trained
as baseline models, which do suffer service discrimination
against customers with different consumption habits. Our
Siamese fairness approach can mitigate such discrimination
to a great extent, by on average fairly serving 93.00% cus-
tomers (112.33% more than the baseline models). More im-
portantly, 81.29% more customers are served in an accu-
rately fair way.

The main contributions of this paper are as follows.
• We propose an individual level fairness criterion, accu-

rate fairness, such that any individual and the individ-
ual’s similar counterparts shall all be treated similarly up
to the ground truth of the individual. This makes it a new
individual fairness criterion that is accuracy-enhanced
and can imply certain group-level fairness criteria in the
context of sub-populations.

• We present and implement a Siamese fairness approach
to optimize the accurate fairness of a machine learning
model, by taking similar individuals as parallel training
inputs. To the best of our knowledge, this is the first time
that a Siamese approach is adapted for individual bias
mitigation.

• The accurate fairness criterion and the Siamese fairness
approach are applied with popular fairness datasets and
a real Ctrip dataset, under the evaluation of what we
propose as fairness confusion matrix-based metrics: fair-
precision, fair-recall, and fair-F1 score. The case stud-
ies reveal the defects of true bias and false fairness in
the learned classifiers. Our approach can indeed miti-
gate these defects and improve individual fairness with-
out trading accuracy.

The rest of this paper is organized as follows. We briefly
discuss the related work in Section 2, followed by the formal
definition and discussion of the accurate fairness criterion in
Section 3. We present the Siamese fairness approach in Sec-
tion 4. Its implementation and evaluation results are reported
and analyzed in Section 5. The paper is concluded in Section
6 with some future work.

Related Work
Fairness Criteria
Fairness criteria presented in the literature are usually par-
titioned into two categories: group fairness and individual
fairness. Please refer to (Galhotra, Brun, and Meliou 2017;
Dwork et al. 2012; Kusner et al. 2017; Caton and Haas 2020;
Makhlouf, Zhioua, and Palamidessi 2021; Berk et al. 2021)
for a comprehensive survey about machine learning fairness
notions.

Group fairness criteria concern equal treatments for sub-
groups with the same sensitive attribute values, and hence
are usually defined statistically in terms of conditional in-
dependence. Statistical parity (Calders, Kamiran, and Pech-
enizkiy 2009; Kamiran and Calders 2009, 2012) requires
predictions independent of sensitive attributes so that all the
sub-groups have the same positive prediction rates. Con-
fusion matrix-based fairness criteria, e.g., equality odds
(Hardt, Price, and Srebro 2016) and accuracy equality (Berk
et al. 2021), require predictions independent of sensitive at-
tributes under the given ground truths. However, group fair-
ness criteria may be satisfied with carefully selected indi-
viduals, who are unfavorably discriminated against in con-
trast to their similar counterparts (Makhlouf, Zhioua, and
Palamidessi 2021). Thus, individual fairness for these indi-
viduals is unnecessarily neglected.

Individual fairness criteria can be defined qualitatively or
quantitatively by interpreting the notions of similar individ-
uals and similar treatments (Lahoti, Gummadi, and Weikum
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2019b), in order to assess whether similar individuals are
treated similarly. Causal discrimination (Galhotra, Brun, and
Meliou 2017; Xie and Wu 2020) is such a qualitative defini-
tion, where similar individuals are those who differ only on
sensitive attributes, and only equal predictions are accounted
as similar treatments.In a quantitative or algorithmic defi-
nition, task-specific distance metrics are adapted to charac-
terize the similarities between individuals and between pre-
diction outcomes. Fairness through awareness (Dwork et al.
2012) requires that the similarity distance between individ-
uals lays an upper bound on the similarity distance between
the corresponding prediction outcomes by the Lipschitz con-
dition.

Individual fairness criteria concern directly the predic-
tions themselves, which nonetheless are possibly (partly)
faulty. Accurate fairness presented in this paper refactors the
individual fairness criteria from a viewpoint of accuracy to
clarify and quantify such incompatibility and also implies
certain group fairness criteria over sub-populations.

Bias Mitigation
As summarized in (Caton and Haas 2020; Bellamy et al.
2019), the bias of a machine learning model can be miti-
gated through pre-processing the training data, in-processing
the model itself, or post-processing the predictions (Petersen
et al. 2021).

Pre-processing methods aim to learn non-discriminative
data representations (Sharma et al. 2020). A fair representa-
tion learning (LFR) approach (Zemel et al. 2013) obfuscates
any information about sensitive attributes in the learned
data representation. iFair (Lahoti, Gummadi, and Weikum
2019a) minimizes the data loss to reconcile individual fair-
ness with application utility.

In-processing methods train a machine learning model
with fairness as an additional optimization goal. SenSR
(Yurochkin, Bower, and Sun 2020) improves the sensi-
tive subspace robustness against certain sensitive pertur-
bations through a distributionally robust optimization ap-
proach. SenSeI (Yurochkin and Sun 2021) enforces the treat-
ment invariance on certain sensitive sets by minimizing a
transport-based regularizer through a stochastic approxima-
tion algorithm.

These methods separate model accuracy from mitigating
individual bias and hence may unilaterally improve individ-
ual fairness with accuracy decreasing. Our Siamese fairness
approach minimizes the model accuracy and fairness losses
uniformly subject to the new accurate fairness criterion, thus
mitigating individual bias does not necessarily trade accu-
racy.

Accurate Fairness
We present in this section the notion of accurate fairness and
discuss its connections with other individual fairness and
group fairness criteria.

Assume a finite and labeled dataset V ⊆ X × A with
the domains of the non-sensitive attributes, the sensitive at-
tributes, and the ground truth labels denoted A,X, Y , re-
spectively. Each input (x, a) ∈ V is associated with a

ground truth label y ∈ Y . Let I(x, a) ⊆ X × A be the
similar sub-population of (x, a), which is the set of the indi-
viduals sharing the same non-sensitive attributes values with
(x, a), i.e.,

I(x, a) = {(x, a′) | a′ ∈ A}
Obviously, (x, a) ∈ I(x, a). Let card(S) be the cardinal
number of set S.

Let f : X × A → Y denote a classifier learned from
a training dataset V , and ŷ = f(x, a) the prediction result
of classifier f for input (x, a). Then, the accurate fairness
criterion can be defined as follow.
Definition 1 (Accurate Fairness). A classifier f : X ×A→
Y is accurately fair to an input (x, a) ∈ V , if for any in-
dividual (x, a′) ∈ I(x, a), the distance D(y, f(x, a′)) be-
tween the ground truth y of input (x, a) and the predic-
tion result f(x, a′) is at most K ≥ 0 times of the distance
d((x, a), (x, a′) between (x, a) and (x, a′), i.e.,

D(y, f(x, a′)) ≤ Kd((x, a), (x, a′)) (1)
where D(·, ·) and d(·, ·) are distance metrics.

Herein, the accurate fairness constraint (1) captures uni-
formly the accuracy and individual fairness requirements
with respect to input (x, a) ∈ V :
• (Accuracy) Since (x, a) ∈ I(x, a), constraint (1) reduces

to D(y, f(x, a)) = 0 (i.e., y = f(x, a) due to the iden-
tity of indiscernibles of a distance metric) for input (x, a)
itself;

• (Individual Fairness) For any similar individual (x, a′) ∈
I(x, a) with a′ ̸= a, constraint (1) reduces the Lipschitz
condition (Dwork et al. 2012) D(f(x, a), f(x, a′)) ≤
Kd((x, a), (x, a′)) for similar individual (x, a′) within
sub-population I(x, a), as shown by the following theo-
rem.

Theorem 1. If a classifier f : X × A → Y is accurately
fair to an input (x, a) ∈ V , then

D(f(x, a), f(x, a′)) ≤ Kd((x, a), (x, a′))

for any similar individual (x, a′) ∈ I(x, a) with a′ ̸= a.

Proof. Due to the triangle inequality and symmetry of a dis-
tance metric,
D(f(x, a), f(x, a′)) ≤ K(D(y, f(x, a)) +D(y, f(x, a′)))

where a′ ̸= a and y is the ground truth of input (x, a) ∈ V .
Then, By Definition 1, if classifier f is accurately fair to

input (x, a), for any similar individual (x, a′) ∈ I(x, a) with
a′ ̸= a,

D(y, f(x, a)) ≤ Kd((x, a), (x, a)) = 0

D(y, f(x, a′)) ≤ Kd((x, a), (x, a′))

Thus, D(f(x, a), f(x, a′)) ≤ Kd((x, a), (x, a′))

It can be seen from Theorem 1 that accurate fairness
refactors the general definition of individual fairness (Dwork
et al. 2012) over similar sub-populations on the basis of ac-
curacy.

Accurate fairness also collectively endorses group fair-
ness criteria over the union of similar sub-populations. Con-
sider the following definition of accurate parity, which is a
qualitative version of accurate fairness.
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Definition 2 (Accurate Parity). A classifier f : X×A→ Y
is accurately equal to an input (x, a)∈V , if for any individ-
ual (x, a′) ∈ I(x, a),

y = f(x, a) = f(x, a′) (2)

where y is the ground truth of input(x, a).

Obviously accurate parity entails accurate fair-
ness because with the accurate parity constraint (2),
D(y, f(x, a′)) = 0 for any individual (x, a′) ∈ I(x, a).

Let X, A, Y, and Ŷ denote the random variables repre-
senting the non-protected attributes, the protected attributes,
the ground truths, and the prediction results. The follow-
ing theorem shows that accurate parity implies statistical
parity and confusion matrix-based fairness over I(W ) =
∪(x,a)∈W I(x, a) for certain W ⊆ V . As far as the group
fairness criteria are concerned, assume each individual
(x, a′) ∈ I(W ) is associated with the same ground truth
as some (x, a) ∈W is.

Theorem 2. If a classifier f : X × A → Y is accurately
equal to each input in W ⊆ V , then f satisfies statistical
parity and confusion matrix-based fairness over I(W ).

Proof. The accurate parity constraint (2) implies that

P(Ŷ = Y|A = a) = P(Ŷ = Y|A = a′)

over I(W ) for any a ̸= a′, and hence

P(Ŷ ̸= Y|A = a) = P(Ŷ ̸= Y|A = a′)

over I(W ). Thus, the accuracy (or inaccuracy) for the sim-
ilar individuals are independent on the sensitive attributes.
Therefore, f satisfies the confusion matrix-based fairness
over I(W ). Furthermore, f also satisfies statistical parity
over I(W ), because P(Ŷ = ŷ|A = a) = P(Ŷ = ŷ, Ŷ =

Y|A = a)+P(Ŷ = ŷ, Ŷ ̸= Y|A = a) for any ŷ ∈ Y .

Note that Proposition 3 in (Barocas, Hardt, and
Narayanan 2019) shows that statistical parity (indepen-
dence) and confusion matrix-based fairness (separation)
cannot both hold unless A⊥Y or Ŷ⊥Y, while the former
is admitted on I(W ) under the accurate parity constraints.

Generally speaking, accurate fairness lays an upper bound
on the treatment differences between groups with different
sensitive attribute values. Let Ia(W ) be the set of individuals
in I(W ) with the same sensitive attribute values a ∈ A, i.e.,
Ia(W ) = {(x, a)|(x, a) ∈ I(W )}.
Theorem 3. If a classifier f : X × A → Y is accurately
fair to each input in W ⊆ V , for any (x, a∗) ∈ W , a ∈ A
and a ̸= a∗, then over Ia(W ),

E[D(Y, f(X, a))] ≤ KE[d((X, a∗), (X, a))]

E[D(f(X, a∗), f(X, a))] ≤ KE[d((X, a∗), (X, a))]

Proof. Recall that over Ia(W ), E[D(Y, f(X, a))] =∑
(x,a)∈Ia(W ) P(y, x, a)D(y, f(x, a)),

E[d((X, a∗), (X, a))] =∑
(x,a)∈Ia(W ) P(x, a)d((x, a∗), (x, a)),

and E[D(f(X, a∗), f(X, a))] =

∑
(x,a)∈Ia(W ) P(x, a)D(f(x, a∗), f(x, a)), where y is

the ground truth of (x, a∗), P(y, x, a) is the joint proba-
bility of Y = y and (X,A) = (x, a), and P(x, a) is the
probability of (X,A) = (x, a).

Then, since f is accurately fair to each input in W , the
proof is concluded by Definition 1.

Theorems 3 suggest that under the accurate fairness crite-
rion, the treatment differences between individuals and their
similar counterparts are also bounded by the distances be-
tween these individuals themselves, hence leading to quan-
titatively fair treatments over groups with different sensitive
attributes values.

Siamese In-Processing for Accurate Fairness
We present in this section the Siamese fairness in-processing
approach to achieve accurate fairness. It intends to train
a machine learning model for the following optimization
problem, which minimizes the cumulative loss for the union
I(V ) of similar populations, subject to the accurate fairness
constraints.

min
f

∑
(xi,ai)∈V

∑
(xi,aij)∈I(xi,ai)

L(yi, f(xi, aij)) (3)

s.t. D(yi, f(xi, aij)) ≤ Kd((xi, ai), (xi, aij))

for any (xi, ai) ∈ V, (xi, aij) ∈ I(xi, ai)

where yi is the ground truth of (xi, ai) ∈ V , 1 ≤ i ≤
card(V ), 1 ≤ j ≤ card(I(xi, ai)) and L(·, ·) is a loss func-
tion for training the machine learning model.

By appealing to Karush–Kuhn–Tucker conditions (Boyd
and Vandenberghe 2004), it is equivalent to solve the follow-
ing max-min optimization problem with the Lagrange mul-
tipliers λij ≥ 0 for each (xi, ai) ∈ V, (xi, aij) ∈ I(xi, ai),
assuming that the loss function L(·, ·) and the distance met-
rics D(·, ·) and d(·, ·) are all convex.

max
λ

min
f

∑
(xi,ai)∈V

∑
(xi,aij)∈I(xi,ai)

(
L(yi, f(xi, aij))+

(4)

λij

(
D(yi, f(xi, aij))−Kd((xi, ai), (xi, aij))

))
It can be seen that the objective function in (4) renders

a possibility of stochastic estimation with observations on
the union I(V ) of the similar sub-populations, instead of
just the training dataset V ⊆ I(V ). A Siamese network can
accept multiple inputs in parallel to train multiple models
with shared parameters (Chopra, Hadsell, and LeCun 2005).
Thus, it provides a training mechanism to treat individuals
in a similar sub-population in a uniform manner.

Therefore, we propose to adapt a Siamese network for
accurate fairness in-processing. The architecture of our ap-
proach is shown in Figure 1. It first generates the similar
sub-population I(xi, ai) for each training input (xi, ai) ∈ V
with 1 ≤ i ≤ card(V ) through fair augmentation. Then, it
trains m = card(I(xi, ai)) copies of a machine learning
model with shared parameters θ for the sake of minimizing
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Fair Augmentation

𝑀𝑜𝑑𝑒𝑙1 𝑀𝑜𝑑𝑒𝑙𝑚
Shared Parameters 𝜃

⋯

⋯

𝐿𝐴𝐹(𝑥𝑖 , 𝑎𝑖 , 𝜆𝑖)

𝑣𝑖 = (𝑥𝑖 , 𝑎𝑖)

𝑣𝑖1 = (𝑥𝑖 , 𝑎𝑖1) 𝑣𝑖𝑚 = (𝑥𝑖 , 𝑎𝑖𝑚)

𝑙𝑜𝑠𝑠

Figure 1: Siamese fairness approach

the accurate fairness loss LAF (xi, ai, λi) over the similar
sub-population I(xi, ai):

LAF (xi, ai, λi) =
∑

(xi,aij)∈I(xi,ai)

(
L(yi, f(xi, aij))+

λij(D(yi, f(xi, aij))−Kd((xi, ai), (xi, aij)))
)

where λi = (λi1, · · · , λij , · · · , λim).
Algorithm 1 shows the workflow of our Siamese fairness

approach in detail. At Lines 1-6, the training dataset V is
augmented with the similar counterparts of each input vi =
(xi, ai) ∈ V , resulting in I(V ) for the subsequent Siamese
training. At Lines 10-12, each Modelj in Figure 1 run a
copy of classifier fθ with the shared parameters θ, accepting
the j-th similar individual (xi, aij) ∈ I(xi, ai) and produc-
ing fθ(xi, aij) for 1 ≤ j ≤ card(I(xi, ai)). At Lines 13-
16, the Lagrange multipliers λi and the shared parameters θ
for vi are obtained by applying an error Back-Propagation
(BP) algorithm (Werbos 1974; Rummelhart, Hinton, and
Williams 1986a,b) to optimize

∑
(xi,ai)∈V LAF (xi, ai, λi)

(i.e., the objective function in (4)).
The Siamese in-processing architecture in Figure 1 allows

treating individuals in one similar sub-population simulta-
neously and uniformly as a whole during each iteration of
back-propagation in Algorithm 1, while classical training al-
gorithms usually handle inputs one by one, unable to accom-
modate the accurate fairness criterion for bias mitigation.

Implementation and Evaluation
We implement the Siamese fairness approach (Algorithm
1) in Python 3.8 with TensorFlow 2.4.1. Our implemen-
tation is evaluated on a Ubuntu 18.04.3 system with Intel
Xeon Gold 6154 @3.00GHz CPUs, GeForce RTX 2080 TI
GPUs, and 512G memory, in comparison with the state-of-
the-art individual fairness bias mitigation techniques with
regard to binary or multi-valued sensitive attributes, or the
combinations thereof. The source code and the experimen-
tal datasets and models are available at https://github.com/
Xuran-LI/AccurateFairnessCriterion.

Datasets and Models
The three popular fairness datasets Adult, German Credit
and COMPAS, and a real dataset from Ctrip are used for

Algorithm 1: Siamese Fairness (SF)
Input: dataset V , classifier fθ, learning rate η
Output: classifier fθ

1: for each vi = (xi, ai) ∈ V do
2: I(xi, ai)← {vi};
3: for each a ∈ A and a ̸= ai do
4: I(xi, ai)← I(xi, ai) ∪ {(xi, a)}
5: end for
6: end for
7: Initialize λ1, · · · , λcard(V ) and θ;
8: repeat
9: for each vi = (xi, ai) ∈ V do

10: for each (xi, aij) ∈ I(xi, ai) do
11: Compute fθ(xi, aij);
12: end for
13: for each λij ∈ λi, w ∈ θ do
14: λij ← max(0, λij + η ∂LAF (xi,ai,λi)

∂λij
);

15: w ← w − η ∂LAF (xi,ai,λi)
∂w

16: end for
17: end for
18: until θ converges or the maximal number of iterations

is reached
19: return fθ

the evaluation. The instances with unknown or empty val-
ues have been removed from the datasets before training.
Table 1 reports the size and the sensitive attributes of each
dataset, and the models trained with these datasets. “A(m)”
means that attribute A has m values. An FCNN(l) model is
a fully connected neural network (FCNN) classifier with l
layers; while an LR or SVM model is a logistic regression
(LR) or Support Vector Machine (SVM) classifier, respec-
tively. These classifiers are referred to as the baseline (BL)
models in the evaluation.

Evaluation Metrics
In addition to the accuracy metric (ACC), the group fair-
ness metrics (including statistical parity difference (SPD),

Dataset Size Models Sensitive Attributes
Adult

(Census
Income)

45222
FCNN(3)

LR
SVM

gender(2)
age(71)
race(5)

German
Credit 1000

FCNN(3)
LR

SVM

gender(2)
age(51)

ProPublica
Recidivism
(COMPAS)

6172
FCNN(3)

LR
SVM

gender(2)
age(71)
race(6)

Ctrip 68191 FCNN(3)
FCNN(5)

6 customer
consumption habits

Table 1: Datasets and Models
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Accuracy
Fairness Fair Biased

True True Fair True Biased
False False Fair False Biased

Table 2: Fairness Confusion Matrix

equal odds difference (EOD), and average odds difference
(AVOD)), and the individual fairness metrics (including fair-
ness through awareness (FTA), consistency (CON)), we pro-
pose a fairness confusion matrix (as shown in Table 2), and
the following fairness confusion matrix based metrics to
evaluate the bias mitigation performance of a machine learn-
ing model in balancing its accuracy with individual fairness.
Definition 3 (Fairness Confusion Matrix Based Metrics).
For classifier f : X ×A→ Y and input (x, a) ∈ V ,
• the prediction f(x, a) is true fair if the prediction
f(x, a′) for any (x, a′) ∈ I(x, a) conforms to y, the
ground truth of (x, a);

• f(x, a) is true biased if it conforms to y, but the predic-
tion f(x, a′) for some (x, a′) ∈ I(x, a) with a′ ̸= a does
not;

• f(x, a) is false fair if it does not conform to y, but is con-
sistent to the prediction f(x, a′) for any (x, a′) ∈ I(x, a)
with a′ ̸= a;

• f(x, a) is false biased if neither the predictions f(x, a′)
for all (x, a′) ∈ I(x, a) are consistent to each other, nor
f(x, a) conforms to y.

Let True Fair Rate (TFR), True Biased Rate (TBR), False
Fair Rate (FFR), False Biased Rate (FBR) be the proportion
of the true fair, true biased, false fair, false biased predic-
tions in all the predictions on V , respectively. Then, Fair-
Precision (F-P), Fair-Recall (F-R) and Fair-F1 Score (F-F1)
can be defined as follows:

F -P =
TFR

TFR+TBR
F -R =

TFR

TFR+FFR

F -F1 =
2× F -P × F -R
F -P + F -R

Informally, the fairness confusion matrix summarizes the
orthogonal synergy between individual fairness and accu-
racy. F -P measures the individually fair proportion in the
accurate predictions, while F -R measures the accurate pro-
portion in the individually fair predictions. F -F1 combines
fair-precision and fair-recall to measure the compatibility
between accuracy and individual fairness.

Mitigating Individual Bias
Table 3 reports the average statistics of ten runs for each
bias mitigation approach compared over the three fairness
datasets. Columns iFair, LFR, SSI, SSR, SF, and SF 3 show
the performances of the FCNN classifiers by applying iFair
(Lahoti, Gummadi, and Weikum 2019a), LFR (Bellamy
et al. 2019; Zemel et al. 2013), SenSeI (Yurochkin and Sun
2021), SenSR (Yurochkin, Bower, and Sun 2020), and our
Siamese fairness approach on the baseline models, respec-
tively. For the SF models, all the sensitive attribute values

BL iFAIR LFR SSI

SSR SF SF_3

TFR
TBR
FBR
FFR

Figure 2: Fairness Confusion Matrix performances (FCNNs)

Figure 3: Fairea evaluation (FCNNs)

are used (whenever applicable) for augmentation, while for
the SF 3 models, only the maximum and minimum values
of the sensitive attributes are used for augmentation to save
computation consumption. The metrics with subscript I(V )
are computed over an augmented dataset I(V ), instead of
an original (default) dataset V . For our SF and SF 3 mod-
els, we use the Mean Squared Error loss function for the
FCNN and LR classifiers, and the Hinge loss function for
the SVM ones. The distance metrics in the accurate fairness
constraints are all implemented with the Mean Absolute Er-
ror. An Adam optimizer (Kingma and Ba 2015) is deployed
for training the FCNN and SVM classifiers, while a gradi-
ent descent optimizer (Sutskever et al. 2013; Robbins and
Monro 1985) is for training the LR ones.

Figure 2 and Figure 3 further demonstrates the fairness-
accuracy trade-offs in terms of fairness confusion matrix
performances and the Fairea evaluation (Hort et al. 2021),
respectively.

It can be seen in Table 3 and Figure 2 that our Siamese
fairness approach achieves the highest TFR and F-F1 per-
formances, with both accuracy (ACC) and individual fair-
ness (FTA) well improved. Compared with the state-of-the-
art individual bias mitigation approaches, our Siamese fair-
ness approach on average promotes 0.105 ACC (13.69%
higher ACC) and 0.080 FTA (8.78% higher FTA) of a clas-
sifier. This is a direct consequence of the observation that
our Siamese fairness approach promotes accurate fairness
with on average 0.148 TFR (20.57% higher TFR), reducing
0.043 TBR (85.03% lower TBR), 0.037 FBR (85.07% lower
FBR), 0.069 FFR (36.53% lower FFR), and promoting 0.085
F-F1 score (10.01% higher F-F1 score).

The Fairea evaluation approach also certifies that only the
SF and SF 3 models fall into the win-win trade-off region,
as shown in Figure 3, which supplies a sufficiently strong
signal on the bias mitigation effectiveness of our Siamese
fairness approach. The other bias mitigation approaches may
improve the individual fairness of a classifier but at the cost
of its accuracy. Moreover, our Siamese fairness approach
also achieves the highest group fairness over the union of
similar sub-populations. This suggests that accurate fairness
can help reach a synergy between individual fairness and
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Metrics BL iFAIR LFR SSI SSR SF SF 3
ACC 0.871±0.007 0.763±0.047 0.814±0.020 0.851±0.017 0.648±0.076 0.874±0.004 0.876±0.004
SPD 0.105±0.015 0.110±0.095 0.096±0.059 0.058±0.010 0.077±0.085 0.111±0.015

——

EOD 0.046±0.011 0.109±0.092 0.124±0.054 0.038±0.010 0.086±0.089 0.051±0.016
AVOD 0.037±0.020 0.093±0.123 0.146±0.076 0.041±0.013 0.088±0.112 0.030±0.017

SPDI(V ) 0.045±0.018 0.079±0.073 0.102±0.073 0.007±0.004 0.080±0.090 0.003±0.002
EODI(V ) 0.059±0.021 0.086±0.079 0.124±0.082 0.009±0.006 0.083±0.093 0.007±0.004

AVODI(V ) 0.081±0.028 0.067±0.097 0.149±0.101 0.011±0.006 0.087±0.111 0.005±0.003
CON 0.928±0.005 0.976±0.018 0.970±0.005 0.957±0.007 0.957±0.041 0.934±0.008 0.935±0.009
FTA 0.933±0.025 0.913±0.075 0.897±0.073 0.994±0.007 0.822±0.189 0.986±0.009 0.984±0.009
TFR 0.827±0.020 0.718±0.075 0.761±0.053 0.848±0.017 0.549±0.151 0.867±0.006 0.866±0.007
TBR 0.044±0.019 0.045±0.047 0.053±0.042 0.003±0.004 0.099±0.109 0.008±0.005 0.010±0.006
FFR 0.105±0.010 0.195±0.056 0.136±0.029 0.146±0.017 0.273±0.090 0.119±0.006 0.118±0.006
FBR 0.024±0.011 0.042±0.040 0.050±0.033 0.003±0.004 0.079±0.085 0.007±0.005 0.006±0.004
F-R 0.884±0.008 0.789±0.055 0.851±0.027 0.853±0.017 0.663±0.104 0.878±0.005 0.879±0.005
F-P 0.947±0.023 0.941±0.062 0.933±0.052 0.996±0.005 0.838±0.187 0.991±0.006 0.988±0.007

F-F1 0.913±0.009 0.854±0.043 0.885±0.022 0.917±0.010 0.725±0.129 0.930±0.003 0.929±0.004

Table 3: Statistics of FCNN classifiers on the three fairness datasets

group fairness, such that improving group fairness can be
manifested by improving individual fairness.

Due to the page limit, we herein discuss the performances
of the FCNN classifiers. Similar observations can be made
on the LR and SVM classifiers. Please refer to (Li, Wu, and
Su 2022) for the detailed experimental results.

Service Discrimination with the Ctrip Dataset
We then apply the accurate fairness criterion and the
Siamese fairness approach to investigate a service discrim-
ination problem, where customers with different consump-
tion habits may be recommended disparate services, even
though they pay the same prices for the same rooms. The
Ctrip dataset includes 6 consumption habits attributes of
customers (including the average time of order confirmation,
the average advance days of booking, the average star level,
class level, recommended level of hotels booked, and the av-
erage days of hotel stay) and 6 attributes of hotels (includ-
ing order date, hotel ID, room type, room ID, star level and
room price). For the service discrimination problem, the 6
customer attributes are designated as the sensitive attributes.
The ground truth labels represent the room service types.

As reported in Table 4, the baseline (BL) models get an

Metric BL(3) SF 3(3) BL(5) SF 3(5)
ACC 0.664 0.660 0.666 0.655
CON 0.940 0.978 0.927 0.988
FTA 0.524 0.902 0.352 0.958
TFR 0.412 0.620 0.281 0.637
TBR 0.251 0.040 0.385 0.018
FFR 0.112 0.282 0.071 0.321
FBR 0.225 0.058 0.263 0.024
F-R 0.792 0.688 0.804 0.666
F-P 0.621 0.940 0.423 0.972

F-F1 0.689 0.794 0.516 0.790

Table 4: Statistics of FCNNs on the Ctrip datatset

accuracy of 66.48% on average, but only 34.68% (TFR)
customers are treated both accurately and fairly. Through
Siamese fairness in-processing, the average TFR is ex-
tremely improved to 62.85%, very close to its upper bound,
which is the average accuracy of 65.77%. Our Siamese fair-
ness approach can make most (on average 93.00%) of the
customers to be fairly served irrespective of their consump-
tion habits. Thus, for a further truthful promotion of their
individual fairness, it is left to improve the accuracy of the
classifiers themselves, instead of trading it.

Conclusion
We present in this paper the accurate fairness criterion, based
on the intuition that similar sub-populations shall be treated
similarly up to the ground truths. It enhances individual fair-
ness from the perspective of accuracy and paves a way to
achieve harmony among accuracy, individual fairness, and
group fairness. Accurate fairness also induces a fairness con-
fusion matrix that can expose the side effects of trading ac-
curacy for individual fairness and vice versa, i.e., resulting
in individually fair but faulty predictions (false fairness), or
accurate but individually biased predictions (true bias).

Then we present and evaluate our Siamese fairness in-
processing approach (SF) in terms of fairness confusion ma-
trix metrics. It aims to maximize the accurate fairness of a
decision-making model with similar sub-populations as par-
allel training inputs. In this way, SF can significantly im-
prove individual fairness without trading accuracy.

We envisage that the state-of-the-art bias mitigation tech-
niques can be further refined from the perspective of accu-
rate fairness. Studies on individual fairness usually rely on
pre-specified sensitive attributes and disadvantaged groups.
As part of future work, the fairness confusion matrix can be
adapted to analyze which sensitive attributes pose more im-
pacts on prediction outcomes. The accurate fairness criterion
can be further utilized to help diagnose which groups under
these attributes are treated unfavorably.
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