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Abstract

Knowledge tracing (KT) is a crucial technique to predict stu-
dents’ future performance by observing their historical learn-
ing processes. Due to the powerful representation ability of
deep neural networks, remarkable progress has been made
by using deep learning techniques to solve the KT prob-
lem. The majority of existing approaches rely on the ho-
mogeneous question assumption that questions have equiv-
alent contributions if they share the same set of knowledge
components. Unfortunately, this assumption is inaccurate in
real-world educational scenarios. Furthermore, it is very chal-
lenging to interpret the prediction results from the existing
deep learning based KT models. Therefore, in this paper, we
present QIKT, a question-centric interpretable KT model to
address the above challenges. The proposed QIKT approach
explicitly models students’ knowledge state variations at a
fine-grained level with question-sensitive cognitive represen-
tations that are jointly learned from a question-centric knowl-
edge acquisition module and a question-centric problem solv-
ing module. Meanwhile, the QIKT utilizes an item response
theory based prediction layer to generate interpretable predic-
tion results. The proposed QIKT model is evaluated on three
public real-world educational datasets. The results demon-
strate that our approach is superior on the KT prediction task,
and it outperforms a wide range of deep learning based KT
models in terms of prediction accuracy with better model
interpretability. To encourage reproducible results, we have
provided all the datasets and code at https://pykt.org/.

Introduction
Knowledge tracing (KT) is the task of using students’ his-
torical learning interaction data (e.g., responses to a series
of questions) to model their knowledge mastery over time
so as to make predictions on their future performance (e.g.,
predicting correctly on next question) (Corbett and Ander-
son 1994). Figure 1 gives an illustrative example of the KT
task. Such predictive capabilities can potentially help stu-
dents learn better and faster when paired with high-quality
learning materials and instructions and the KT models have
been widely used to support intelligent tutoring systems and
MOOC platforms (Käser et al. 2017; Cen, Koedinger, and
Junker 2006; Lavoué et al. 2018; Liu et al. 2021a).

*The corresponding author: Zitao Liu
Copyright © 2023, Association for the Advancement of Artificial
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Figure 1: A graphical illustration of the KT problem.

Recently, remarkable progress has been made by apply-
ing deep learning to solve the KT problem (Piech et al.
2015; Abdelrahman and Wang 2019; Ghosh, Heffernan, and
Lan 2020; Nakagawa, Iwasawa, and Matsuo 2019; Pandey
and Karypis 2019; Pandey and Srivastava 2020; Shen et al.
2021, 2020; Yang et al. 2020; Zhang et al. 2017, 2021; Wang
et al. 2019; Liu et al. 2023a,b). One of the representative ap-
proaches among them is the deep sequential KT modeling,
which utilizes auto-regressive architectures, such as LSTM
and GRU, to represent student’s knowledge states (e.g., the
mastery level of the concepts) as the hidden states of recur-
rent units (Piech et al. 2015; Chen et al. 2018; Guo et al.
2021; Lee and Yeung 2019; Liu et al. 2019). Due to the abil-
ity to learn sequential dependencies from student interac-
tion data, deep sequential KT models draw attention from
researchers from different communities and achieve great
success in improving prediction accuracy (Minn et al. 2018;
Nagatani et al. 2019; Su et al. 2018; Yeung and Yeung 2018).

In spite of the promising results demonstrated by previous
methods, some important limitations still exist when apply-
ing deep sequential KT models on real-world educational
data. First, most existing approaches rely on the homoge-
neous assumption that questions nested under a particular
set of knowledge components (KCs) are equivalent (Zhang
et al. 2017; Nagatani et al. 2019; Nakagawa, Iwasawa, and
Matsuo 2019; Lee and Yeung 2019). The homogeneous as-
sumption is inaccurate in two perspectives: (1) it assumes
that students have the same knowledge increment after they
give the same responses to homogeneous questions1 during
the knowledge acquisition learning processes; and (2) it as-

1In this paper, we refer to questions that have the same set of
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sumes that students will give the same responses to different
questions as long as these questions are homogeneous dur-
ing the problem solving process. Such unrealistic assump-
tion limits the KT performance of the previous works. While
in some cases the problem may be alleviated by implicitly
modeling the question difficulty or question discrimination
(Zhang et al. 2021; Liu et al. 2021b; Ghosh, Heffernan, and
Lan 2020), they suffer from the lack of ground truth labels
or the exclusions of cognitive modeling (e.g., only used in
pre-trained tasks), and jointly modeling the question-centric
cognitive effects on knowledge states remains a big con-
cern. Second, although deep learning based knowledge trac-
ing (DLKT) models have shown advanced progress in terms
of prediction accuracy compared with traditional cognitive
models, it is difficult to extract psychologically meaningful
explanations from their million-level parameters, that would
relate to cognitive theory. The lack of nontransparent deci-
sion processes of DLKT models is unsatisfied for tutors and
students who need to see a convincing diagnosis before they
accept results generated from DLKT models.

In this paper, we address aforementioned challenges
by proposing a novel KT model called Question-centric
Interpretable Knowledge Tracing, i.e., QIKT. More specifi-
cally, QIKT explicitly learns question-centric cognitive rep-
resentations with a knowledge acquisition module and a
problem solving module. The knowledge acquisition mod-
ule aims to model the variations in students’ knowledge
states after receiving responses to specific questions. It esti-
mates students’ question-specific knowledge acquisition by
a joint optimization including representations of students’
current knowledge states, responses, questions and the cor-
responding KCs. The problem solving module estimates stu-
dents’ problem solving abilities on each specific question by
projecting student knowledge states on the jointly learned
representations of both questions and KCs. Furthermore, the
QIKT incorporates an interpretable prediction layer to im-
prove interpretability of prediction results. The interpretable
prediction layer is built upon the Item Response Theory
(IRT) in psychometrics, and integrates the parameters of
an IRT model into the question-centric deep sequential KT
model. This enables the QIKT model to generate explain-
able personalized parameters for each student at question
level. We evaluate QIKT on three datasets by comparing it
with 13 previous approaches under a rigorous KT evaluation
protocol (Liu et al. 2022). Experimental results demonstrate
that QIKT achieves superior prediction performance and the
psychologically meaningful interpretability simultaneously.

The main contributions are summarized as follows:
• We introduce a knowledge acquisition module and a prob-

lem solving module to learn question-centric represen-
tations when students absorb knowledge after answering
questions and apply knowledge to solve problems.

• We design a simple yet effective interpretable prediction
layer based on the IRT theory and manage to seamlessly
combine it with existing deep sequential KT models.

• We conduct comprehensive quantitative and qualitative
experiments to validate the performance of QIKT on three

KCs as “homogeneous questions”.

public datasets with a wide range of baselines. The well-
designed experiments illustrate the superiority of our ap-
proach in both prediction performance and model inter-
pretability. To the best of our knowledge, our QIKT
model is able to achieve the best prediction perfor-
mance in terms of AUC on the publicly available repro-
ducible KT experimental settings.

Background and Related Work
Deep Sequential Modeling for Knowledge Tracing
Deep sequential KT models utilize an auto-regressive ar-
chitecture to capture the intrinsic dependencies among stu-
dents’ chronologically ordered interactions (Chen et al.
2018; Guo et al. 2021; Lee and Yeung 2019; Liu et al. 2019;
Minn et al. 2018; Nagatani et al. 2019; Piech et al. 2015; Su
et al. 2018; Yeung and Yeung 2018). Since the very first and
successful research work of deep knowledge tracing (DKT)
that applies recurrent neural networks to model students’ dy-
namic learning behaviors by Piech et al. (2015), a large num-
ber of works have been done to improve DKT’s performance
(Yeung and Yeung 2018; Chen et al. 2018; Su et al. 2018;
Nagatani et al. 2019; Lee and Yeung 2019; Liu et al. 2019;
Guo et al. 2021). For example, Yeung and Yeung (2018) pro-
posed to use two regularization terms to address the recon-
struction and waviness issues in the DKT model. Chen et al.
(2018) incorporated prerequisite relations between pedagog-
ical concepts to enhance DKT model. Su et al. (2018) pre-
sented to aggregate textual representations to monitor stu-
dent knowledge states. Nagatani et al. (2019) developed ap-
proaches to capture students’ forgetting behaviors and Guo
et al. (2021) leveraged adversarial training samples to en-
hance the deep sequential KT models’ generalization.

Besides deep sequential KT models, other types of neural
network based approaches are applied in the KT domain as
well, such as memory augmented KT models that explic-
itly model latent relations between KCs with an external
memory (Abdelrahman and Wang 2019; Shen et al. 2021;
Zhang et al. 2017), graph based KT models that capture in-
teraction relations with graph neural networks (Nakagawa,
Iwasawa, and Matsuo 2019; Tong et al. 2020; Yang et al.
2020), and attention based KT models that use the attention
mechanism and its variants to capture dependencies between
interactions (Ghosh, Heffernan, and Lan 2020; Pandey and
Srivastava 2020; Pu et al. 2020; Zhang et al. 2021).

Interpreting Deep Learning Based Knowledge
Tracing Models
Recently, many interpretable approaches have been incor-
porated into DLKT models for both student modeling and
prediction tasks. These techniques can be divided into the
following three categories:

• C1: Post-hoc local explanation. Post-hoc local explana-
tion techniques are used in the KT task aiming to exam-
ine each individual prediction result and figure out why
the DLKT models make the decisions they make (Lu et al.
2020, 2022). For example, Lu et al. (2022) applied a layer-
wise relevance propagation method to interpret a deep se-
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Figure 2: Graphical illustrations of our QIKT model along with some representative DLKT models including DKT (Piech et al.
2015), qDKT (Sonkar et al. 2020), DKT-IRT (Converse, Pu, and Oliveira 2021), and Deep-IRT (Yeung 2019).

quential KT model by back propagating relevance scores
from the model’s output layer to its input layer.

• C2: Global interpretability with explainable struc-
tures. Embed an interpretable cognitive module into ex-
isting DLKT architectures to better understand the knowl-
edge state modeling process (Wang et al. 2020a; Zhao
et al. 2020; Pu et al. 2022). For example, Wang et al.
(2020a) designed an intermediate interaction layer based
on multidimensional IRT and explicitly modeled both stu-
dent factors and exercise factors. Pu et al. (2022) proposed
to utilize an automatic temporal cognitive method to better
capture the changes in students’ knowledge states.

• C3: Global interpretability with explainable parame-
ters. Directly use cognitively interpretable models to esti-
mate the probability that a student will answer a question
correctly. Explainable parameters in these models are ob-
tained from outputs of the DLKT models (Converse, Pu,
and Oliveira 2021; Yeung 2019). For example, Converse,
Pu, and Oliveira (2021) linearly transformed the hidden
states of the DKT model and then applied a hard thresh-
olding operator to cast the parameters into the IRT-like
form. Yeung (2019) proposed to explicitly learn levels of
student abilities and KC difficulties with a dynamic key-
value memory network for KT task and feed the learned
results to an IRT layer for final prediction.

Our QIKT belongs to the C3 category since we utilize the
IRT function for interpretable prediction. Different from ex-
isting approaches (Yeung 2019; Converse, Pu, and Oliveira
2021) that only optimize the model performance based on
interpretable predicted outcomes, our QIKT approach di-
rectly incorporates the explainable parameter learning into
the final model optimization objective, which improves the
model interpretability and preserves the prediction perfor-
mance as well. Compared with the methods developed based
on memory networks such as Deep-IRT (Yeung 2019), our
approach is based on the deep sequential architectures,
which is more applicable and has better prediction accuracy
(Liu et al. 2022).

Problem Statement
Our objective is given an arbitrary question q∗ to predict the
probability of whether a student will answer q∗ correctly
based on the student’s historical interaction data. Specifi-
cally, for each student S, we assume that we have observed a
chronologically ordered collection of t past interactions i.e.,
S = {sj}tj=1. Each interaction is represented as a 4-tuple s,
i.e., s =< q, {k|k ∈ Nq}, r, s >, where q, {k}, r, s repre-
sent the specific question, the associated KC set, the binary
valued student response2, and student’s response timestamp
respectively. Nq is the set of KCs that are associated with
question q. We would like to estimate the probability r̂∗ of
the student’s future performance on arbitrary question q∗.

Interpretable KT Modeling with
Question-centric Cognitive Representations

In this section, we discuss the five components QIKT
model in detail: (1) the interaction encoder that assem-
bles and encodes both question-level and KC-level informa-
tion; (2) the question-centric knowledge acquisition (KA)
module that examines students’ knowledge acquisition af-
ter answering specific questions over time; (3) the question-
agnostic knowledge state (KS) module that models the
general knowledge state dynamics; (4) the question-centric
problem solving (PS) module that estimates the capabilities
of students to tackle a specific question with their current
knowledge states; and (5) the interpretable prediction layer
that aims to leverage the psychological theory of IRT to gen-
erate more interpretable results for both tutors and students.

Interaction Encoder
In real-world educational scenarios, the question bank is
usually much bigger than the set of KCs, for example, the
number of questions is more than 1500 times larger than the
number of KCs in the well cited Algebra2005 dataset3 (see
Table 1). Therefore, most existing research works like DKT

2Response is a binary valued indicator variable where 1 repre-
sents the student correctly answered the question, and 0 otherwise.

3Details of Algebra2005 is described in the Datasets section.
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Figure 3: Illustrations of different interaction encoding approaches. eis and cis are defined in eq.(1) and eq.(2) respectively.

(Piech et al. 2015), DKT-IRT (Converse, Pu, and Oliveira
2021), and Deep-IRT (Yeung 2019) alleviate the data spar-
sity issue by using KCs to index questions and all questions
cover the same KC are treated as a single question. Although
this conversion greatly relieves the sparsity problem (Ghosh,
Heffernan, and Lan 2020; Liu et al. 2022), it enforces the
DLKT models to follow the homogeneous assumption and
hence omits different learning effects brought by questions
of the same concepts. Please note that this conversion lets
the DLKT models be learned from the extended KC-level se-
quences instead of the original question-level sequences, as
illustrated in Figure 3. On the other hand, question-centric
models like qDKT (Sonkar et al. 2020) completely ignore
the relations between questions and KCs and purely uses the
question sequence to track students’ knowledge states.

In this work, we aim to improve the aforementioned
DLKT models by capturing the intrinsic relations between
questions and KCs at a more fine-grained level. More specif-
ically, we have two different raw interaction encodings for
the KA module and the KS module. For the KA module,
similar to a recent work by Long et al. (2021), each ques-
tion level interaction et is represented as a combination of
question, response and the corresponding set of KCs, i.e.,

et =

{
qt ⊕ k̄t ⊕ 0, rt = 1
0⊕ qt ⊕ k̄t, rt = 0

(1)

where qt is the question embedding, qt ∈ Rd×1 and k̄t is
the average embeddings of all the KCs to the question, i.e.,

k̄t =
1

|Kqt |

m∑
j=1

kj ∗ I(kj ∈ Nqt)

where kj is the KC embedding, kj ∈ Rd×1. m is the total
number of KCs in the question bank. Kqt is the size of Nqt .
I(·) is the indicator function and ⊕ is the concatenate opera-
tion. The response in each interaction is encoded as a 2d× 1
all-zero vector, 0. We use concatenation directions (left or
right) to indicate different responses, i.e., correct or wrong.

We conduct a similar encoding mechanism for the KS
module. Since the KS module only focuses on the general
knowledge state changes regardless of question specific vari-
ations, the interaction embedding ct of KS is

ct =

{
k̄t ⊕ 0, rt = 1
0⊕ k̄t, rt = 0

(2)

Question-centric Knowledge Acquisition Module
Students absorb knowledge as they interact with questions
and their knowledge acquisition varies after solving the

homogeneous questions. Hence, we propose to estimate
students’ question-specific knowledge acquisition with the
joint representations ets of the questions, concepts and re-
sponses. Similar to the standard DKT model, we use the
LSTM cell to update the student’s question-level knowledge
state at after answering each question at timestamp t:

it = σ (W1 · et + U1 · at−1 + b1)

ft = σ (W2 · et + U2 · at−1 + b2)

ot = σ (W3 · et + U3 · at−1 + b3)

c̃t = σ (W4 · et + U4 · at−1 + b4)

ct = ft � ct−1 + it � c̃t
at = ot � tanh (ct)

where Wis, Uis, bis are trainable parameters and Wi ∈
Rd×4d, Ui ∈ Rd×d, bi ∈ Rd×1 and i = 1, 2, 3, 4. σ, �, and
tanh denote the sigmoid, element-wise multiplication and
hyperbolic tangent functions.

Different from existing approaches that directly use the
learned knowledge state (at) to predict the student knowl-
edge mastery, we apply a knowledge acquisition network to
first extract the knowledge states with a fully connected neu-
ral layer and then project it into the question-centric space
via non-linear transformation. The knowledge acquisition
score αt is computed as αt = S-Pool

(
wa � ReLU

(
Wa

2 ·

ReLU(Wa
1 · at +ba

1) +ba
2

))
where Wa

1 , Wa
2 , wa, ba

1 and

ba
2 are trainable parameters and Wa

1 ∈ Rd×d, Wa
2 ∈ Rn×d,

wa ∈ Rn×1, ba
1 ∈ Rd×1, ba

2 ∈ Rn×1, n is the total number
of questions, and S-Pool means sum pooling.

Question-agnostic Knowledge State Module
In real educational contexts, students may frequently guess
or slip when they interact with questions. This may cause the
KA module overly sensitive to each interaction and hence
lead prediction confusion during the inference stage. There-
fore, as an important complement, we model the general
question-agnostic changes of students’ knowledge state in
the KS module. Similar to knowledge state modeling in the
KA module, we apply another LSTM cell to update the
student’s question-agnostic knowledge state (gt) after re-
ceiving each response. The LSTM cell in the KS module
takes question-agnostic input ct instead of et. The itera-
tive update equations of gt are described in Appendix A.1
due to the space limit. Furthermore, we design a knowl-
edge state extraction network to capsule the general knowl-
edge states of a student by applying non-linear transforma-
tions to project the mastery level into the space of KCs
and computing the knowledge mastery score βt i.e., βt =
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S-Pool
(
wg � ReLU

(
Wg

2 · ReLU(Wg
1 · gt + bg

1) + bg
2

))
where Wg

1 , Wg
2 , wg , bg

1 and bg
2 are trainable parameters

and Wg
1 ∈ Rd×d, Wg

2 ∈ Rm×d, wg ∈ Rm×1, bg
1 ∈ Rd×1,

bg
2 ∈ Rm×1.

Question-centric Problem Solving Module
Correctly answering a question not only depends on the stu-
dents’ knowledge mastery, but is highly relevant to the ques-
tion itself such as its difficulty and discrimination. There-
fore, we present a question-centric problem solving mod-
ule to estimate students’ knowledge application abilities to
specific questions by projecting their knowledge mastery on
questions. Specifically, we design a problem solving net-
work to conduct such knowledge projection as follows:

pt+1 = gt ⊕ qt+1 ⊕ k̄t+1

ζt+1 = wp · ReLU
(
Wp

2 · ReLU(Wp
1 · pt+1 + bp

1) + bp
2

)
+bp

where ζt+1 denotes the students’ knowledge application
score on question qt+1. pt+1 contains both the student
knowledge mastery at time t and all the available informa-
tion about question qt+1 and pt+1 ∈ R3d×1. Wp

i s, wp,
bp
i s and bp are trainable parameters and Wp

i ∈ R3d×3d,
bp
i ∈ R3d×1,wp ∈ R1×3d, bp is scalar and i = 1, 2.

Interpretable Prediction Layer
Generally, explaining DLKT models’ parameters and
decision-making is challenging. Thus, we design an IRT
based prediction layer to enhance the prediction inter-
pretability of the proposed QIKT model. Similar to previous
work by Yeung (2019), we use the IRT function to calculate
the probability of a correct answer. Furthermore, we strict
the IRT function only takes the linear combined scores of
question-centric knowledge acquisition score from the KA
module, the knowledge mastery score from the KS module
and the knowledge application score from the PS module
i.e., r̂t+1 = σ(αt + βt + ζt+1). And we explicitly choose
not to include any learnable parameters inside the IRT based
prediction function for better interpretability.

Optimization of QIKT
All learnable parameters of our QIKT model are optimized
by minimizing the binary cross entropy loss between the
ground-truth responses ris and the estimated probabilities
r̂is from the IRT layer as the objective function i.e., LIRT =
−
∑

i

(
ri log r̂i + (1 − ri) log(1 − r̂i)

)
. Furthermore, to

directly improve the discriminative ability of the internal
knowledge related scores from the KA, KS and PS modules,
we explicitly cast these scores via sigmoid function and add
the optimization terms about question-centric knowledge ac-
quisition scores (αts), knowledge mastery scores (βts) and
knowledge application scores (ζts) into the overall model
training process. Therefore, the final optimization function
is L = LIRT + λ

(
L∗(α) +L∗(β) +L∗(ζ)

)
, where λ is tun-

ing hyper-parameter. α, β, and ζ denote the collections of
the corresponding scores, i.e., α = {αi}, β = {βi}, and
ζ = {ζi} and L∗(z) is defined as follows:

L∗(z) = −
∑
i

(
ri log σ(zi) + (1− ri) log(1− σ(zi))

)
Experiment

In this section, we present details of experiment settings and
the results. We conduct comprehensive analyses and investi-
gations to illustrate the effectiveness of the QIKT model.

Datasets
We use three widely used publicly available datasets to eval-
uate the performance of QIKT:

• ASSISTments20094 (ASSIST2009): is collected from
ASSISTment online tutoring platform in the school year
2012-2013 that students are assigned to answer similar ex-
ercises from the skill builder problem sets.

• Algebra 2005-20065 (Algebra2005): is provided by the
KDD Cup 2010 EDM Challenge where students need to
complete steps to achieve the mastery of the related KCs.

• NeurIPS2020 Education Challenge6 (NeurIPS34): is
released in Task 3 and Task 4 of NeurIPS2020 Educa-
tion Challenge, it includes students’ answers to multiple-
choice math diagnostic questions (Wang et al. 2020b).

To conduct reproducible experiments, we rigorously fol-
low the data pre-processing steps suggested in (Liu et al.
2022). We remove student sequences shorter than 3 at-
tempts. Data statistics are summarized in Table 1.

Baselines
We compare our QIKT with the following state-of-the-art
DLKT models to evaluate the effectiveness of our approach:

• DKT: leverages an LSTM layer to encode the student
knowledge state to predict the students’ performances
(Piech et al. 2015).

• DKT+: an improved version of DKT to solve the recon-
struction and non-consistent prediction problems (Yeung
and Yeung 2018).

• KQN: uses student knowledge state encoder and skill en-
coder to predict the student response performance via the
dot product (Lee and Yeung 2019).

• qDKT: predicts the future performance of student knowl-
edge state at the question level (Sonkar et al. 2020).

• DKT-IRT: incorporates IRT to improve the interpretabil-
ity of DKT (Converse, Pu, and Oliveira 2021).

• IEKT: models student knowledge state via the student
cognition and knowledge acquisition estimation (Long
et al. 2021).

• DKVMN: designs a static key matrix to store the relations
between the different KCs and a dynamic value matrix to
update the students’ knowledge state (Zhang et al. 2017).

4https://sites.google.com/site/assistmentsdata/home/2009-
2010-assistment-data/skill-builder-data-2009-2010

5https://pslcdatashop.web.cmu.edu/KDDCup/
6https://eedi.com/projects/neurips-education-challenge
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Dataset # of Ss # of Is # of Qs # of KCs Avg. KCs Avg. Qs
ASSIST2009 3,852 282,605 17,737 123 1.197 144.2
Algebra2005 574 607,013 173,109 112 1.364 1545.6
NeurIPS34 4,918 1,382,661 948 57 1.015 16.6

Table 1: Data statistics of three datasets. # of Ss/Is/Qs denote the number of students, interactions and questions. Avg. KCs and
Avg. Qs denotes the number of KCs per question and the number of questions per KC.

Method Model Type Usage of
Questions

Usage of
KCs

Is
interpretable

AUC
ASSIST2009 Algebra2005 NeurIPS34

DKT Sequential No Yes No 0.7541±0.0011* 0.8149±0.0011* 0.7689±0.0002*
DKT+ Sequential No Yes No 0.7547±0.0017* 0.8156±0.0011* 0.7696±0.0002*
KQN Sequential No Yes No 0.7477±0.0011* 0.8027±0.0015* 0.7684±0.0003*
qDKT Sequential Yes No No 0.7016±0.0049* 0.7485±0.0017* 0.7995±0.0008*

DKT-IRT Sequential No Yes Yes 0.7591±0.0007* 0.8290±0.0004* 0.7695±0.0004*
IEKT Sequential Yes Yes No 0.7861±0.0027* 0.8416±0.0014• 0.8045±0.0002•

DeepIRT Memory No Yes Yes 0.7465±0.0006* 0.8040±0.0013* 0.7672±0.0006*
DKVMN Memory No Yes No 0.7473±0.0006* 0.8054±0.0011* 0.7673±0.0004*

ATKT Adversarial No Yes No 0.7470±0.0008* 0.7995±0.0023* 0.7665±0.0001*
GKT Graph No Yes No 0.7424±0.0021* 0.8110±0.0009* 0.7689±0.0024*

SAKT Attention No Yes No 0.7246±0.0017* 0.7880±0.0063* 0.7517±0.0005*
SAINT Attention Yes Yes No 0.6958±0.0023* 0.7775±0.0017* 0.7873±0.0007*
AKT Attention Yes Yes No 0.7853±0.0017* 0.8306±0.0019* 0.8033±0.0003*
QIKT Sequential Yes Yes Yes 0.7878±0.0024 0.8408±0.0007 0.8044±0.0005

Table 2: The overall prediction performance of all the baseline models and our QIKT. We highlight the highest results with
bold. Marker ∗, ◦ and • indicates whether the proposed model is statistically superior/equal/inferior to the compared method
(using paired t-test at 0.01 significance level).

• DeepIRT: a combination of the IRT and DKVMN to en-
hance the interpretability of memory augmented models
(Yeung 2019).

• ATKT: performs adversarial perturbations into student in-
teraction sequence to improve model’s generalization abil-
ity (Guo et al. 2021).

• GKT: utilizes the graph structure to predict the students’
performance (Nakagawa, Iwasawa, and Matsuo 2019).

• SAKT: uses self-attention to capture relations between ex-
ercises and student responses (Pandey and Karypis 2019).

• SAINT: uses the Transformer-based layer to capture stu-
dents’ exercise and response sequences (Choi et al. 2020).

• AKT: leverages an attention mechanism to characterize
the time distance between questions and the past interac-
tion of students (Ghosh, Heffernan, and Lan 2020).

Experimental Setup
We set the maximum length of model input sequence to 200
and perform 5-fold cross-validation for every combination
of models and datasets. We use 80% of student sequences
for training and validation, and use the rest 20% of student
sequences for model evaluation. We adopt ADAM optimizer
to train all the models (Kingma and Ba 2015). The number
of training epochs is set to 200. We choose to use early stop-
ping strategy that stops optimization when the AUC score is
failed to get the improvement on the validation set in the lat-
est 10 epochs. The hyper-parameter λ, the learning rate and
the embedding size d are searching from [0,0.5,1,1.5,2], [1e-
3, 1e-4, 1e-5], [64, 256] respectively. All the models are im-

plemented in PyTorch and are trained on a cluster of Linux
servers with the NVIDIA RTX A5000 GPU device. Follow-
ing all existing DLKT research, we use the Area Under the
Curve (AUC) as the main evaluation metric. We also choose
to use Accuracy as the secondary evaluation metric.

Results
Overall Performance. Due to the space limit, results in
terms of accuracy and the details of statistical tests are
provided in Appendix A.2 and Appendix A.3. The over-
all model performance is reported in Table 2. From Table
2, we make the following observations: (1) Our proposed
model QIKT significantly outperforms 13 baselines on all
three datasets (except we have two loss with IEKT on AS-
SIST2009 and NeurIPS34 datasets). More importantly, as
a representative of the deep sequential KT models, com-
pared with DKT, our proposed model improves the AUC
by 3.30%, 2.60% and 3.60% on three datasets. That show
our proposed modules can significantly improve the perfor-
mance. (2) When comparing performance on ASSIST2009,
Algebra2005 to NeurIPS34, DLKT models behave quite
differently. For example, DKT significantly outperforms
qDKT on the ASSIST2009 and Algebra2005 datasets by
5.30% and 6.60% but is beaten by qDKT by 3.10% on
the NeurIPS34 dataset. Meanwhile, SAINT performs terri-
ble in ASSIST2009 and Algebra2005 datasets, but is pretty
good on NeurIPS34 data. We believe this is because the AS-
SIST2009 and Algebra2005 datasets are much sparser than
NeurIPS34 dataset. As we can see from Table 1, the average
number of questions per KC is 16.6 in NeurIPS34 dataset,
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Figure 4: An example of a student knowledge states of 6 concepts as student’s solve 50 questions of NeurIPS34.

which is much smaller compared to the numbers in AS-
SIST2009 and Algebra2005 (144.2 and 1545.6) datasets. (3)
Results between DeepIRT and DKVMN are very close on
three datasets, which empirically shows that the IRT func-
tion won’t sacrifice the model prediction ability too much.
(4) AKT and IEKT are very strong baselines. Both of them
use both question and KC related information, which further
empirically verifies the importance of considering question-
centric representations when building the DLKT models.
Qualitative Question-centric Effects. We qualitatively
show the question-centric effects of our QIKT model. Fig-
ure 5 shows the progressive knowledge state estimations of
one student with and without question-centric modules, i.e.,
r̂ v.s. σ(β). As we can see, predictions (σ(β)) without the
question-centric information from the KS module are rel-
atively smooth compared with results from QIKT. We be-
lieve this is because the KS module mainly focuses on the
knowledge states at KC level, which is insensitive with ques-
tion variations. When considering both the question-centric
knowledge acquisition information and the question-centric
problem solving information, the model outputs distinct pre-
dictive results even for the homogeneous questions. Due to
the space limit, more illustrative and fine-grained results of
r̂, σ(α), σ(β) and σ(ζ) are provided in Appendix A.4.

0 10 20 30 40 50 60
Length of student's interaction sequence

0.5

1.0
r ( )

Figure 5: The outputs of QIKT (r̂) and module KS (σ(β)) at
each steps in student’s interaction sequence.

Interpretable Student Diagnosis. To verify the inter-
pretable and accurate estimations of students’ knowledge
states by the QIKT model, we randomly select a student se-
quence from NeurIPS34 and observe the knowledge state
variations of the student in 50 questions with 6 KCs. From
Figure 4, we observe that: (1) since the student always gives
wrong responses to k3 after answering the question 20 (e.g.
question 21,43), the knowledge state of k3 is constantly de-
cline. On the other hand, the student always gives right an-
swers to the questions (question 22-31) which are related to

the k5 hence the knowledge acquisition of k5 is constantly
increasing. (2) The knowledge states of little-attempted KCs
are slightly lower than those of the diligent-attempted KCs.
For example, the knowledge state of k6 is relatively lower
than others until the student attempts question 39.
Ablation Study. We examine the effect of key components
by constructing four model variants in Table 3. “w/o” means
excludes such module from QIKT. From Table 3, we can ob-
serve that (1) comparing QIKT and QIKT w/o IRT, we can
see that our IRT based interpretable prediction layer is able
to make a good enough trade-off between prediction perfor-
mance and results interpretability. The AUC score of QIKT
decreases 0.09% on the ASSIST2009 dataset and increases
0.81% and 0.07% on Algebra2005 and NeurIPS34 datasets.
(2) compared to other variants (e.g., QIKT w/o KS, QIKT
w/o PS, and QIKT w/o KS & PS) that have the IRT predic-
tion layer, QIKT obtains the highest AUC score in all cases
except QIKT w/o KS in the NeurIPS34 dataset. This sug-
gests that prediction performance degrades when ignoring
any type of question-centric information. Thus, it is impor-
tant to incorporate question information in DLKT models.

Method ASSIST2009 Algebra2005 NeurIPS34
QIKT 0.7878±0.0024 0.8408±0.0007 0.8044±0.0005
w/o IRT 0.7887±0.0017• 0.8327±0.0005* 0.8037±0.0004*
w/o KS 0.7813±0.0019* 0.8365±0.0008* 0.8048±0.0002•
w/o PS 0.7822±0.0022* 0.8345±0.0005* 0.8037±0.0002*
w/o KS & PS 0.7442±0.0043* 0.7487±0.0008* 0.8032±0.0002*

Table 3: The performance of different variants in QIKT.
Marker ∗, ◦ and • indicates whether our proposed model is
statistically superior/equal/inferior to the compared method
(using paired t-test at 0.01 significance level).

Conclusions
In this paper, we propose an interpretable deep sequential
KT model learning framework with question-centric cogni-
tive representations. Comparing with existing DLKT mod-
els, our QIKT model is able to estimate students’ knowledge
acquisition and measure the student problem solving ability
for each specific question. Furthermore, we design an IRT
based interpretable layer to make the QIKT’s prediction re-
sults more explainable. Quantitative and qualitative experi-
ments on three real-world datasets show that QIKT outper-
forms other state-of-the-art DLKT models in AUC and gen-
erates explainable predictions for tutors and students.
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