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Abstract
Named Entity Recognition (NER) models capable of Contin-
ual Learning (CL) are realistically valuable in areas where
entity types continuously increase (e.g., personal assistants).
Meanwhile the learning paradigm of NER advances to new
patterns such as the span-based methods. However, its po-
tential to CL has not been fully explored. In this paper, we
propose SpanKL, a simple yet effective Span-based model
with Knowledge distillation (KD) to preserve memories and
multi-Label prediction to prevent conflicts in CL-NER. Un-
like prior sequence labeling approaches, the inherently inde-
pendent modeling in span and entity level with the designed
coherent optimization on SpanKL promotes its learning at
each incremental step and mitigates the forgetting. Experi-
ments on synthetic CL datasets derived from OntoNotes and
Few-NERD show that SpanKL significantly outperforms pre-
vious SoTA in many aspects, and obtains the smallest gap
from CL to the upper bound revealing its high practiced value.
The code is available at https://github.com/Qznan/SpanKL.

Introduction
Deep neural models have demonstrated impressive perfor-
mances on standard tasks, but their abilities to continually
learn a sequence of tasks still remain a real challenge as the
requirement to learn to adapt to new information and mean-
while to retain prior acquired knowledge. It suffers from the
well-known catastrophic forgetting or interference issue par-
ticularly with the advent of new tasks from changing distri-
bution. This also troubles the studies on Continual Learn-
ing Named Entity Recognition (CL-NER) task (Biesialska,
Biesialska, and Costa-jussà 2020).

Recent explorations on CL-NER with promising results
(Monaikul et al. 2021; Xia et al. 2022) formulate the prob-
lem in a class-incremental setting, of which the most promi-
nent feature is that each task only contains the annotations
of entity types defined to be learned in that task. In this con-
text, CL-NER in NLP is more akin to continual object de-
tection than image classification in Computer Vision. Be-
cause previously learned entity type’s mentions may appear
in the samples trained in the current task but without the rel-
evant annotations. These false negative labels will unavoid-
ably compel models to forget old knowledge to fit the new
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Figure 1: The incoherent optimization across CL tasks of
sequence labeling methods (red dash arrow) compared with
SpanKL (green solid arrow) at the learning targets.

conflicting one. To address this backward incompatibility,
they leverage knowledge distillation to predict the distilled
(pseudo) labels using the previously learned model (teacher)
on current samples, and then learn a current model (student)
jointly by these labels and the current golden labels.

However, an opposite but easily neglected case is that the
non-entity mentions learning currently may belong to a cer-
tain entity type to be learned in future tasks, and we find it
forward incompatible for the traditional sequence labeling
methods to successively handle them in CL. Specifically, for
mentions whose entity types will be learned in future tasks
but not in current, sequence labeling methods will assign a
global O tag indicating non-(any)-entity in the current task.
But then they need to frequently change the learning target
of these mentions when the future relevant tasks arrive. As
shown in Fig. 1a, the model’s output logit vector should be
altered, e.g., from predicting O to predicting B-PER for the
first token of mention Chris Lawrence when PER task comes
after the ORG task. This incoherent optimization will force
the model to frequently update the previously learned pa-
rameters, thus we consider aggravates the catastrophic for-
getting or interference.

A natural solution for this is regarding any non-entity
mentions in the current task only as non-(certain)-entity, and
if possible, in a more efficient span-level, i.e., the span of
mention Chris Lawrence is O-ORG rather than O in the ORG
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task (Fig. 1b). It conforms to the Risk Minimization princi-
ple for safely taking one mention as non-ORG in ORG task,
and thus without conflict further taking it as PER in the fu-
ture PER task, which essentially converts the entity recogni-
tion into a binary classification problem.

Motivated by this, we propose SpanKL, a better CL-
adapted architecture for NER. As a span-based model, it
enumerates all spans and learns their representations to clas-
sify entities. For CL, it is equipped with the multi-label
learning seamlessly at the span classification, and with the
knowledge distillation in span and entity-level on the yield-
ing Bernoulli distribution. This gives the following advan-
tages towards coherently optimizing: 1) It’s backward com-
patible yet in CL as freely fusing the KD technique to pre-
serve old knowledge. 2) It’s also forward compatible in CL
as identifying each entity type by binary classifying to re-
duce interference in future tasks. 3) The independent mod-
eling in span and entity-level has better learning and distil-
lation ability and is flexible for sequentially learning various
entity types. 4) Benefiting from the span-based method any
case of nested entities1 are supported in CL-NER.

In evaluation, compared with synthesizing CL dataset
from OntoNotes restricted to learning only single entity type
per task recently, we newly use the elaborate Few-NERD
with adequate entity types that enable at least 6 types in each
of the 8 synthetic tasks for a comprehensive study. We also
detect 4 synthetic setups existing in recent work influential
to the performance, and thus report results in all these setups
for a fair comparison.

Results on both datasets empirical show that SpanKL sig-
nificantly outperforms the existing CL-NER baselines and
achieves new SoTA. The performance gaps between CL
and the upper bound non-CL also suggest that SpanKL
can almost eliminate forgetting on the relatively simple
OntoNotes, reaching a new level in practice.

Our contributions are: (i) We build a simple span-based
architecture to achieve coherent optimization in CL-NER,
which can serve as a immediate and strong baseline empiri-
cally. (ii) We align the comparison in different synthetic se-
tups for recent models, and explore the more realistic CL-
NER scenario by a new benchmark for future research.

Related Work
Named Entity Recognition is a fundamental task in in-
formation extraction to recognize the predefined entity
types from text (Lample et al. 2016). Recently, the learn-
ing paradigm shift of NER models such as converting the
traditional sequence labeling-based manner into the span-
based is widely explored and obtains promising results (Yu,
Bohnet, and Poesio 2020; Fu, Huang, and Liu 2021; Xu et al.
2021). Instead of tagging each token under the elaborate tag-
ging scheme, e.g., IOB, span-based methods directly enu-
merate all possible spans and classify them into predefined
entity type or non-entity. It provides more granular modeling
in each span and supports the case of nested entities.

1Overlapped spans are same or different entities, single span
has different entities, entity types in one or across multiple tasks.

Continual Learning solves the problem where the train-
ing signals arrive as a stream. Commonly these training data
may be sampled from a progressively changing distribution
(i.e., non-stationary distribution) or simply belong to a se-
quence of different tasks (Chen and Liu 2018). Compared
to the standard full data training, CL models are vulnera-
ble to catastrophic forgetting (CF), especially when the in-
coming new tasks have different data distributions from the
old tasks (Goodfellow et al. 2013). Early studies mainly fo-
cus on the task-incremental learning regime, which relies on
explicit task-IDs during inference (Van de Ven and Tolias
2019). By contrast, class-incremental learning is more chal-
lenging since it needs to concurrently distinguish between
all classes from all tasks learned so far, incurring confusion
(Masana et al. 2020).

Generally three veins exist to resolve the CF issue: 1)
Regularization-based methods constrain the model weights
updating to maintain the performance of old tasks or impose
sparsity on the weights in order to activate a subset of neu-
rons regarding different tasks (Kirkpatrick et al. 2017; Serra
et al. 2018). This can be also archived by KD (Li and Hoiem
2017). 2) Rehearsal-based methods typically reserve a small
set of samples from old tasks in memory for jointly training
in new tasks, which mimic the i.i.d protocol. These replayed
samples also can be generated by a generative model (Re-
buffi et al. 2017; Castro et al. 2018; Shin et al. 2017). 3)
Isolation-based methods explicitly allocate different param-
eters to each task by dynamically growing architecture (Xu
and Zhu 2018).
Continual Learning NER. Prior CL-related works mostly
focused on Computer Vision, but recent explorations dedi-
cated to NLP typically NER have emerged. Chen and Mos-
chitti (2019) first study the knowledge transfer of the se-
quence labeling NER model from the source domain to tar-
get domain with new entities. They use a neural adapter
module for diverse distributions of entities between tasks.

In a more formal CL protocol, recently AddNER, Extend-
NER (Monaikul et al. 2021) and L&R (Xia et al. 2022) are
designed to solve CL-NER first under a class-incremental
setting, where data of each task are only annotated by the
currently learning entities practically. They all base on the
sequence labeling methods with knowledge distillation. Cat-
egorized by the layout of the model output (De Lange et al.
2021), AddNER is multi-head as each task uses an indi-
vidual head, while ExtendNER is single-head as all tasks
share a unified head. The main difference is AddNER pro-
vides distinct O tags for each head whereas ExtendNER only
preserves a global O tag. L&R basically equips ExtendNER
with a reviewing stage to generate synthetic samples by a
language model, to prevent deterioration of distillation in
case samples learning currently lack the old entity mentions.

Although AddNER uses multiple O tags, each one is spe-
cific to a task instead of to an entity type as in SpanKL. It
will still face the forward incompatibility issue existing in
ExtendNER typically when tasks with multiple entity types
arrive. Moreover, AddNER need to design a heuristic strat-
egy to combine all heads outputs for valid prediction, and
ExtendNER need to manually pad small constants to dis-
tilled labels for alignment. Their cooperations with KD are

13994



also cumbersome with the frequent switch on the learning
labels (distilled or golden) at each token. Without these de-
fects, SpanKL, to our best knowledge, is the first study on
the potential of span-based model to solve CL-NER.

Method
Problem Formulation
We follow the recent works to formulate CL-NER under
class-incremental setting (Monaikul et al. 2021; Xia et al.
2022). Given a sequence of tasks T1, T2, ...Tl and the cor-
responding sets of entity types E1, E2, ...El defined to be
continually learned, the l-th task has its own training set Dl

only annotated for the the entity types El = {el1, el2, ...}.
Entity types in different tasks are non-overlapping, e.g., if
ORG is learned in T1 then it will not be learned in other
tasks. But mentions of diverse entity types are allowed to
overlap whether learned from one or different tasks, i.e., no
restriction to any case of nested entities.

At the first step (l = 1), we train model M1 on D1 from
scratch to recognize entities of types E1. At the following l-
th incremental step (l > 1), we train Ml on Dl based on the
previous learned model Ml−1 to recognize entities of types
learned so far ∪l

i=1Ei.

SpanKL NER Model
We introduce the simple yet effective SpanKL (see Fig. 2)
to sequentially learn each task. Given an input sentence X
with n tokens [x1, x2, ..., xn], we define sij as span compris-
ing continuous tokens that starts with xi and ends with xj ,
1⩽ i ⩽j ⩽n. Assume there are K entity types to be learned
at the l-th incremental step, the goal of SpanKL is to repre-
sent each span into hsij = [h

sij
1 , h

sij
2 , ...h

sij
k ] by span mod-

eling and to perform binary classification of these K entity
types. It consists of the contextual encoder, span represen-
tation layer and multi-label loss layer with the knowledge
distillation, as described below.
Contextual Encoder captures the dependence between to-
kens within input sentences and can be implemented with
the widely-used CNN, RNN or PLM models. We use E =
[e1, e2, ..., en] ∈ Rn×de

to denote the embedding vectors
of input X after embedding, then feed it into the contex-
tual encoder to get the contextualized hidden vectors H =

[h1,h2, ...,hn]∈Rn×dh

for each token as:

E = Embed(X),H = CtxEnc(E), (1)

where Embed is embedding layer, CtxEnc is contextual en-
coder. de and dh is dimension of embedding and hidden,
respectively. The encoder is shared for all tasks.
Span Representation Layer performs span modeling as:

hsij =SpanRep(hi,hi+1, ...,hj), (2)

where the span representation is generated from the related
token representations and various design have been fully ex-
plored. As the boundary tokens of entities are most infor-
mative, Yu, Bohnet, and Poesio (2020) models both the start
and end feature space of tokens constituting the spans with
the biaffine interaction. Xu et al. (2021) further models the

Figure 2: Overall architecture of SpanKL including a shared
contextual encoder for all tasks and the distinct span repre-
sentation layer for the entity types in each task. Bernoulli KL
loss and BCE loss are computed for previously learned and
currently learning entities, respectively, on the correspond-
ing entity-related span matrix.

entity types feature space as the heads in multi-head (addi-
tive) attention and Su (2021) uses multi-head (dot-product)
attention2. We adopt the latter simple manner with the com-
plete weights separation in these three feature space. Specif-
ically, for each entity type two distinct single-layer feed-
forward networks (FFN) regarding the start and end mod-
eling (totaled 2K distinct FNNs) are used before the scaled
dot-product interaction as:

h
sij
k = FFNs,k(hi)

⊺FFNe,k(hj)× (do)−0.5, (3)
where s, e, k denote the start, end, k-th entity type. do is out-
put dimension of all the 2K FNNs. We believe this clearly
separated modeling w.r.t each entity type at each span (i.e.,
in span and entity-level) can facilitate the learning and distil-
lation and alleviate the interference between multiple tasks.
As tasks increase, we simply add more span representation
layers (essentially the inner FFNs) dedicated to the new task.

Span Matrix is conceptually introduced for better descrip-
tion (Fig. 2). We organized all hsij

k related to the k-th entity
into the upper triangle region of matrix Mk∈Rn×n,Mk

ij=

h
sij
k , where the row and column indicate the start and end.

Multi-Label Loss Layer. To ensure the forward compara-
bility expectantly, we formulate the final span classification
as multi-label prediction. Specifically, we compute the Bi-
nary Cross Entropy (BCE) loss after sigmoid activation on
the predicted logit in the span matrix with the golden la-
bel. Compared with the popular multi-class manner, i.e., the
Cross Entropy (CE) loss with softmax activation, it disentan-
gles different entity types when normalizing the logit into

2Essentially a decomposed non-bias biaffine (i.e., bilinear) as
h⊺
iW

s⊺Wehj ⇔ h⊺
iWhj .
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the probability over whether a single or multiple tasks. Each
entity type is independently binary classified and the BCE
loss is computed as:

p̂(k|sij) = sigmoid(hsij
k ), (4)

LBCE = −
n∑

i=1

n∑
j=1

L∑
k=1

p(k|sij) log(p̂(k|sij)

+(1− p(k|sij)) log(1− p̂(k|sij)), (5)

where p(k|sij) is the golden label, p̂(k|sij) is the predicted
label. LBCE is computed only upon the current entity types’
span matrices.
Knowledge Distillation. To ensure the backward compara-
bility yet, we use KD (Hinton et al. 2015; Gupta et al. 2020)
to prevent forgetting old entities. At the l-th incremental step
(l > 1), we first make a one-off prediction using the previ-
ously learned model Ml−1 (teacher) on the whole current
training set Dl for the entity types learned up to previous
step ∪l−1

i=1Ei. This yields the Bernoulli distribution as the
soft distilled label p̃ of every span for every old entity type.
These pseudo labels are used to compute the Bernoulli KL
divergence loss with the current model Ml (student) as:

LKD =

n∑
i=1

n∑
j=1

L∑
k=1

p̃(k|sij)(log(p̃(k|sij)−log(p̂(k|sij))

+(1−p̃(k|sij))(log(1−p̃(k|sij))−log(1−p̂(k|sij))), (6)

where p̃(k|sij) is the soft distilled label to be imitated. LKD

is computed only upon the span matrices of old entity types.
The final loss used in the multiple epochs training after

the one-off prediction at each step is the weighted sum as:

L = αLBCE + βLKD, (7)

where α and β are the weights of both losses.

Experiments
Datasets
We follow recent works (Monaikul et al. 2021; Xia et al.
2022) to convert the widely used standard NER corpora into
separated datasets acting as a series of CL synthetic tasks in
class-incremental setting. Besides their usage of OnteNotes
(Pradhan et al. 2013) with only a single entity type per task,
we further use the larger and more complicated Few-NERD
(Ding et al. 2021) that enables multiple entity types per task.
OntoNotes-5.0 English3 is annotated for 18 entity types, we
follow the recent works to select the following types to en-
sure sufficient samples for training: Organization (ORG),
Person (PER), Geo-Political Entity (GPE), Date (DATE),
Cardinal (CARD), Nationalities and Religious Political
Group (NORP). Each type is assigned to a synthetic CL task.
Few-NERD (SUP)4 is hierarchically annotated for 8 coarse-
grained and 66 fine-grained entity types. It’s proposed for
few-shot research but we adopt the normal supervised full
version. We construct each task via each coarse-grained

3https://catalog.ldc.upenn.edu/LDC2013T19
4https://ningding97.github.io/fewnerd

types and thus each task contains its related multiple fine-
grained entity types that will be evaluated. This is more prac-
tical since each task is a domain with multiple relative en-
tity types. The coarse-grained types include Location (LOC),
Person (PER), Organization (ORG), Other (OTH), Product
(PROD), Building (BUID), Art (ART), Event (EVET) and the
related fine-grained types are shown in Appendix5.

Synthetic Setup
Beyond the model architecture, an important but easily ne-
glected detail that we consider largely affects the perfor-
mance is how to divide the original dataset to construct the
synthetic CL dataset. However, we find the diversity of this
synthetic setup in recent works thus making their compar-
isons unreliable.

The synthetic setup includes two aspects: 1) To separate
the original training/dev set into a series of CL tasks, Mon-
aikul et al. (2021) commonly divides samples randomly into
disjoint tasks, while Xia et al. (2022) typically filter sam-
ples having the entity types defined to be learn in that task to
compose its datasets, which we refer to as Split and Filter,
respectively. 2) To form the test set evaluated in the series of
CL tasks, Monaikul et al. (2021) maintain full of samples in
original test set, while Xia et al. (2022), again, filter samples
having the entity types learned so far as test set, which we
refer to as All and Filter, respectively.

There hence exist 4 combinations of synthetic setup from
the two aspects above: Split-All, Split-Filter, Filter-All,
Filter-Filter. In the training, compared to the disjoint Split-∗
setups, Filter-∗ enable repetitive learning of the sample with
multiple entity types assigned to different tasks, but lack the
learning of samples without any entity mentions (namely
non-entity sample). During testing, ∗-All setups are more
challenging than ∗-Filter with non-entity samples that re-
quire the model’s denial ability. Due to the above influences,
we test all of them for comprehensive evaluation.

After synthesizing, the training/dev set of each task is only
allowed to contain the task-predefined single/multiple entity
type(s) for OntoNotes/Few-NERD, which means we will re-
place the irrelevant entity types with non-entity, e.g., erasing
the annotations of ORG on samples assigned to task learn-
ing PER. Similarly, the test set of each task is only allowed
to contain the entity types learned up to that task.

Metrics
Given a certain task at each step, we train the models on
its training set and report the performance of the following
metrics on its test set relying on the best performance of its
dev set. We follow the existing 6 permutations of tasks on
OntoNotes, and randomly sample 4 permutations on Few-
NERD to factor out the influence of the learning order (see
Appendix). Results are averaged over all permutations un-
less otherwise specified.
Macro-average F1. For OntoNotes, we follow (Monaikul
et al. 2021; Xia et al. 2022) to compute the F1 score for
each entity type and report the macro-average F1 score over
all types learned so far at each step. For Few-NERD, we

5Appendix is available at https://github.com/Qznan/SpanKL.
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Train/Dev(Split) Train/Dev(Filter)
Step1 Step2 Step3 Step4 Step5 Step6 Step1 Step2 Step3 Step4 Step5 Step6

non-CL 82.52 86.42 87.32 88.84 89.62 89.27 69.22 79.84 83.86 83.22 85.22 85.14
AddNER⋆ 82.52 83.90 84.66 85.02 85.48 85.03 69.22 76.72 78.22 78.29 79.44 79.03

∆ -0.00 -2.52 -2.66 -3.82 -4.14 -4.24 -0.00 -3.12 -5.64 -4.93 -5.78 -6.11

non-CL 82.79 86.49 87.70 88.46 89.02 89.19 69.90 77.76 81.50 81.60 83.16 81.28
ExtendNER⋆ 82.79 83.54 84.48 84.67 85.12 84.96 69.90 74.14 73.72 72.88 72.58 69.29

∆ -0.00 -2.95 -3.22 -3.79 -3.90 -4.23 -0.00 -3.62 -7.78 -8.72 -10.58 -11.99

non-CL 85.60 88.16 88.64 89.39 89.69 89.74 72.78 79.60 83.48 84.28 87.46 86.48

Test
(All)

SpanKL 85.60 87.92 88.22 88.76 89.02 88.98 72.78 79.46 81.89 81.96 81.81 79.31
∆ -0.00 -0.24 -0.42 -0.63 -0.67 -0.76 -0.00 -0.14 -1.59 -2.32 -5.65 -7.17

non-CL 84.74 87.74 88.44 89.84 90.35 90.00 90.78 91.54 90.76 90.60 90.50 90.48
AddNER⋆ 84.74 85.44 85.73 86.00 86.28 85.98 90.78 89.82 88.92 87.20 86.16 85.82

∆ -0.00 -2.30 -2.71 -3.84 -4.07 -4.02 -0.00 -1.72 -1.84 -2.40 -3.34 -4.66

non-CL 84.81 87.86 88.73 89.36 89.74 89.88 90.62 91.70 91.02 90.79 90.92 90.10
ExtendNER⋆ 84.81 85.10 85.76 85.83 86.07 86.00 90.62 88.92 87.55 86.30 84.77 81.37

∆ -0.00 -2.76 -2.97 -3.53 -3.67 -3.88 -0.00 -2.78 -3.47 -4.49 -6.15 -8.73
L&R◦ - - - - - - 92.06 88.09 85.69 83.79 83.38 83.02

non-CL 87.81 89.58 89.97 90.48 90.34 90.43 92.37 92.65 92.78 92.06 92.10 91.90

Test
(Filter)

SpanKL 87.81 89.28 89.46 89.74 89.80 89.78 92.37 90.81 90.38 89.50 89.18 88.07
∆ -0.00 -0.30 -0.51 -0.74 -0.54 -0.65 -0.00 -1.84 -2.40 -2.56 -2.92 -3.83

Table 1: Macro-F1 of different models at each step in four synthetic setups on OntoNotes. The gap (∆=CL−non-CL) is shaded.
⋆ is our reimplementation, ◦ is result referred to the original paper. Highest value at the final step in CL is bolded with its gap.

compute the F1 score for each fine-grained type. Since the
fine-grained types under the same coarse-grained type are
unbalanced, we compute the micro-average F1 score for
the aggregated coarse-grained type but still, fairly report
the macro-average F1 score over all coarse-grained types
learned so far at each step.
Gap between CL and non-CL. For each model, we also
individually evaluate a non-CL complete setting (Monaikul
et al. 2021; Xia et al. 2022) at each step as the upper bound
of CL, which means we add all datasets of previous tasks
to the current with the fully-annotated entity types defined
to be learned so far during current task’s training. We report
the gap between CL and non-CL involving each model to
fairly consider their differential learning capacities.

Baselines & Implementation Details
We compare SpanKL with the following baselines (Mon-
aikul et al. 2021; Xia et al. 2022): single head AddNER,
multi-head ExtendNER and its enhanced version L&R.
Notably, these sequence labeling models do not adopt usual
CRF possibly to avoid the intractable structural KD (Wang
et al. 2021), thereby the tag transition risk may increase with
more entity types introduced typically in single-head Ex-
tendNER. This interests us in verifying whether multi-head
AddNER is relatively better via more tests. We reimplement
AddNER, ExtendNER, and refer to the results from the orig-
inal paper for L&R. Note that AddNER and ExtendNER are
only evaluated in Split-All setup in the original paper, while
the current SoTA L&R is only evaluated in Filter-Filter.

We use bert-large-cased from HuggingFace (Wolf et al.
2019) as the contextual encoder for all models (dh =1024)
followed by a 0.1 dropout. we set do=50 for all subsequent

FFNs in SpanKL. We set α = β = 1 for all models. All
parameters are fine-tuned by AdamW optimizer (Loshchilov
and Hutter 2017), with learning rate (lr) 5e−5 and 1e−3 for
bert encoder and the rest networks. The lr is scheduled by
warmup at first 200 steps followed by a cosine decay. We

Train/Dev(Split)
Step1 Step2 Step3 Step4 Step5 Step6 Step7 Step8

Test(All)
non-CL 64.01 62.25 61.88 61.07 61.28 62.43 63.83 63.65

AddNER⋆ 64.01 61.32 60.54 59.43 58.74 59.32 60.41 59.32
∆ -0.00 -0.93 -1.34 -1.64 -2.54 -3.11 -3.42 -4.33

non-CL 64.06 62.08 61.76 60.94 61.29 62.02 63.62 63.32
ExtendNER⋆ 64.06 59.02 57.05 55.72 55.46 55.96 56.85 56.16

∆ -0.00 -3.06 -4.71 -5.22 -5.83 -6.06 -6.77 -7.16

non-CL 67.81 65.22 64.97 64.18 64.22 64.94 66.10 65.76
SpanKL 67.81 64.16 63.62 62.31 61.67 62.17 63.24 62.15

∆ -0.00 -1.06 -1.35 -1.86 -2.55 -2.77 -2.86 -3.61

Test(Filter)
non-CL 66.97 64.22 63.28 62.32 62.44 63.16 64.30 64.04

AddNER⋆ 66.97 63.08 61.80 60.62 59.86 60.07 60.92 59.74
∆ -0.00 -1.14 -1.48 -1.70 -2.58 -3.09 -3.38 -4.30

non-CL 66.89 64.05 63.22 62.31 62.48 62.79 64.10 63.70
ExtendNER⋆ 66.89 61.66 59.04 57.52 57.16 57.07 57.58 56.75

∆ -0.00 -2.39 -4.18 -4.79 -5.32 -5.72 -6.52 -6.95

non-CL 70.59 67.06 66.24 65.35 65.34 65.66 66.58 66.13
SpanKL 70.59 65.80 64.75 63.36 62.69 62.87 63.69 62.50

∆ -0.00 -1.26 -1.48 -1.99 -2.66 -2.79 -2.90 -3.63

Table 2: Macro-F1 on Few-NERD in Split-∗ setups.
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Figure 3: Detailed F1 solid curve per entity type (different colors) at each step on OntoNotes/Few-NERD (rows) of different
models (columns), with a certain learning order (shown downward on legend) in the Split-All setup. Additional black dashed
curves denote the macro-average over all types learned up to each step. Shaded areas of each curve denote the corresponding
gap between CL and the upper non-CL.

limit to 512 max length of sentence after the widely used
BPE tokenization in PLMs and only use the representation
of the first piece of word to represent this word after bert
contextual encoder. For the SpanKL output, we aggregate
the predicted overlapped entities into a flat one (only keep
the entity with the highest predicted score and discard the
overlapping others). We do not over-tune hyperparameters
between corpora, except setting batch size 32, 24 and max-
imum epoch 10, 5 on OntoNotes, Few-NERD, respectively,
to train on a V100 GPU.

Results
Synthetic Setups. The Split-All, Split-Filter, Filter-All and
Filter-Filter setups are preliminarily evaluated. As shown in
Tab. 1 on OntoNotes, the distinction between their perfor-
mances for each model is consistent and also reasonable: In
terms of the adequacy of training data, Split-∗ setups contain
plenty of non-entity samples whereas Filter-∗ do not, which
promotes the training. In terms of the difficulty of test data,
∗-All are also more challenging than ∗-Filter with the non-
entity samples requiring the model’s denial ability. The over-
all performance ranking is: Split-Filter>Split-All>Filter-
Filter>Filter-All, where Filter-All is the worst due to the
contradictory requirements for the non-entity samples.
Overall Comparison. On OntoNotes, SpanKL significantly
outperforms others in three setups except for the irrational
Filter-All setup. It performs better at each step and is also
closer to the upper bound all along. Compared with the sec-
ond best model accordingly, SpanKL achieves an absolute
of 3.95, 3.78, 2.25 F1(%) of improvements, and reduces the
gaps by an absolute 3.48, 3.23, 0.83 into -0.76, -0.65, -3.83
at the final step, in Split-All, Split-Filter, Filter-Filter setups

respectively. Note that in these setups all models perform
much the same in their non-CL settings but perform quite
diversely in CL, revealing each model is theoretically strong
enough to learn all task’s entities but only stumbles in the
CL settings. In the most difficult Filter-All setup, SpanKL is
slightly better than AddNER but with a little larger gap. And
the ExtendNER is severely trapped in this setup.

Notably, we can verify the small performance gap be-
tween AddNER and ExtendNER indeed in Split-All as
claimed in their paper. However, AddNER outperforms Ex-
tendNER largely in typically Filter-∗ setups. In addition to
this finding, the recent SoTA L&R, as claimed to be bet-
ter than ExtendNER, is in fact worse than AddNER in their
Filter-Filter setup. As expected, we confirm that AddNER is
relatively better than ExtendNER with an O tag for each task
(i,e. for each entity on OntoNotes) via sufficient test. We also
believe that SpanKL is further better by efficiently learning
and transferring the information in the span and entity-level
than the exhausted others that should combine multiple tags
to represent entities.

We believe Split-All is the most common setup for CL
typically without the redundant hypothesis. Therefore we
mainly report results in this setup on the following Few-
NERD evaluation (Tab. 2). Though the challenge that mul-
tiple entity types should be learned in each of the 8 tasks,
SpanKL still substantial outperforms others, improving F1
over the second best AddNER at the final step by abso-
lute 2.83, 2.76 and narrowing the gaps into -3.61, -3.63 in
Split-All, Split-Filter (listed deliberately by easily switching
the test set), respectively. We also find AddNER pulls away
from ExtendNER in this complicated scenario as expected.
Entity-Level Comparison. We explore the instant perfor-
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Figure 4: Values probed from the normalized logit output per model at each step on OntoNotes (Split-All setup) with a certain
learning order (shown in the upper). The rows and columns of every heatmap matrix in AddNER and ExtendNER denote the
tokens and the predicted IOB tags. AddNER learns total (1+2)×6 (O for each task) tags and ExtendNER learns total 1+2×6
(additional global O) tags at the final step. Span matrices in SpanKL relate to ORG and GPE. The random values in the place
where the current task not yet to use are also shown.

mance per entity at each step. We plot their F1 curves in dif-
ferent colors on both datasets with a certain learning order
in Split-All. We use an extra black dashed curve to denote
the macro-average F1 over the learned entities and visualize
the gap per entity using shaded areas, whose lower bound is
the CL and the upper bound is the non-CL.

As shown in Fig. 3, although different entities have di-
verse performances due to their intrinsic difficulty, we still
observe the SpanKL is more superior in that: 1) The starting
point of every entity is consistently better than others, and
almost keep this leading at each following step. 2) A flatter
curve means less forgetting. Owing to KD all models have
a flat curve in most of the entity types, but overall SpanKL
is relatively more obvious. 3) Generally the shaded area of
each entity type tends to be wider with the task increases,
revealing the increasing hardship in CL approaching to the
upper bound. But SpanKL still has much narrower shaded
areas on both datasets especially the OntoNotes.
Probe of Model. For a deeper look, we probe the value
(Fig. 4, explained in the caption) from the output on a sam-
pled sentence from the test set of OntoNotes. We observe
that SpanKL successfully predicts all entities and doesn’t
forget, whereas AddNER and ExtendNER both fail in GPE
entity Texas even just after learning the GPE task. All mod-
els achieve backward compatibility thanks to KD (i.e., keep-
ing the same succeeding outputs once learned an entity).
AddNER, typically on OntoNotes, is also as forward com-
patible as SpanKL without requiring to change any preced-

ing outputs. But SpanKL’s learning capacity is still stronger
possibly via span and entity-level separation as revealed by
these multiple span matrices. Yet AddNER is preferable to
ExtendNER by an interesting finding on the auto-correction
of the missing entity Texas at its final step. We attribute this
progressive generalization to the iterative self-supervised
distillation. It also explains some growing curves in Fig. 3
that the future distilled labels may be more accurate and
consistent than the golden but possibly noisy labels initially
learned. Note that we do not perform the ablation study since
SpanKL is very simple as designed without external archi-
tectural enhancers, and we hope it serves as a span-based
immediate baseline in future works of CL-NER.

Conclusion
In this paper, we propose a neural span-based model named
SpanKL to serve as a strong baseline for CL-NER in class-
incremental setting. We empirically find that the indepen-
dent modeling in span and entity-level is applicable to se-
quentially learning entity types, especially when cooperated
with the KD technique and the multi-label prediction to eas-
ily attain coherent optimization. SpanKL closely approaches
the upper bound of CL on OntoNotes with typically single
entity per task, demonstrating its potential for practical ap-
plication. It’s still the best on the more complicated Few-
NERD. We also align and compare existing diverse synthetic
setups for future research, whereby we validate AddNER is
preferable to other sequence labeling models.
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