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Abstract
Biomedical entity linking (EL) is the task of linking men-
tions in a biomedical document to corresponding entities in
a knowledge base (KB). The challenge in biomedical EL lies
in leveraging mention context to select the most appropriate
entity among possible candidates. Although some EL mod-
els achieve competitive results by retrieving candidate entities
and then exploiting context to re-rank them, these re-ranking
models concatenate mention context with one candidate at a
time. They lack fine-grained interaction among candidates,
and potentially cannot handle ambiguous mentions when fac-
ing candidates both with high lexical similarity. We cope with
this issue using a re-ranking model based on prompt tuning,
which represents mention context and all candidates at once,
letting candidates in comparison attend to each other. We also
propose a KB-enhanced self-supervised pretraining strategy.
Instead of large-scale pretraining on biomedical EL data in
previous work, we use masked language modeling with syn-
onyms from KB. Our method achieves state-of-the-art results
on 3 biomedical EL datasets: NCBI disease, BC5CDR and
COMETA, showing the effectiveness of cross-entity interac-
tion and KB-enhanced pretraining strategy. Code is available
at https://github.com/HITsz-TMG/Prompt-BioEL.

1 Introduction
Biomedical entity linking (EL) refers to linking mentions in
a biomedical document to corresponding entities in a curated
knowledge base (KB) such as UMLS (Bodenreider 2004)
and SNOMED-CT (Donnelly et al. 2006). Considering the
example in Figure 1, given the sentence “After a few days of
feeling emotions, I will get extreme anxiety.”, the mention
feeling emotions should be linked to the entity 408453002 -
Emotional in SNOMED-CT. Biomedical EL, as a bridge that
connects mentions in unstructured text and entities in struc-
tured KBs, serves as a fundamental component for many
downstream tasks, such as biomedical question answering
(Lee et al. 2020), information extraction (Huang, Yang, and
Peng 2020) and automatic diagnosis (Yuan and Yu 2021).
Although EL systems have achieved great success in gen-
eral domain, they cannot be directly implemented to solve
biomedical EL due to the data scarcity (Yuan, Yuan, and
Yu 2022) and KB format (Chen, Varoquaux, and Suchanek
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Figure 1: An error case of the cross-encoder proposed in
Varma et al. (2021). The cross-encoder tends to confuse can-
didates both with high lexical similarity, indicating the need
for cross attention among candidates in comparison.

2021), so it is critical to propose EL approaches particularly
for biomedical domain.

There are two main challenges of EL: (1) variety - the
same entity can appear as different words or phrases in dif-
ferent texts; (2) ambiguity - the same word or phrase can re-
fer to different entities. Previous work mainly addresses the
variety challenge. There is a common bi-encoder design for
most of previous models (Sung et al. 2020; Liu et al. 2021a):
the bi-encoder represents mention words and entity names
independently and calculates similarity through a dot prod-
uct between dense vector encodings. Although these models
achieve promising performance gains, they ignore the men-
tion context and cannot solve the ambiguity challenge, i.e.,
they link the same mention to the same entity no matter what
mention context is.

To overcome the ambiguity bottleneck, most recent meth-
ods (Angell et al. 2021; Varma et al. 2021) present a two-
stage linking algorithm: they first retrieve a small set of can-
didate entities with the bi-encoder above, and then re-rank
the candidates according to mention context with a cross-
encoder. Although the cross-encoder can capture mention-
entity interactions, each entity gets encoded with mention
context independently from all the other candidates, ignor-
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ing fine-grained entity-entity interactions. None of the pre-
vious methods attends to all candidates at once, potentially
reducing the performance on ambiguous mentions when fac-
ing candidates both with high lexical similarity.

Figure 1 shows an error case of the cross-encoder. When
re-ranking candidates which both have high lexical similar-
ity with the mention, the cross-encoder tends to give both
candidates high scores, even ranking wrong entities higher
than gold entities (e.g., in the error case of Figure 1, based on
our implementation of Varma et al. (2021), the probability
for the gold entity is 0.16, but the probability for the wrong
candidate is 0.84), indicating the need for entity-entity inter-
action among candidates in comparison. More examples will
be discussed in Section 4.5. In addition, it has shown signifi-
cant potential in other semantic tasks to let the model see all
of its possible candidates (Barba, Pasini, and Navigli 2021).
Motivated by the above example and the conclusion from
other tasks, we propose a re-ranking model which attends to
mention context and all candidates jointly, explicitly mod-
eling both mention-entity interaction and entity-entity inter-
action. Since prompt learning can reduce the gap between
pretraining objectives of language models and downstream
tasks, here we use a cloze prompt (Liu et al. 2021b), rooted
from the widely-used masked language modeling (MLM),
to make choices among candidates.

As a knowledge-intensive task, the progress of biomed-
ical EL is hindered by incomplete structural resources of
KB and the scarcity of annotated training data (Varma et al.
2021; Yuan, Yuan, and Yu 2022). Previous researches inte-
grate data from other domains (e.g., Wikipedia) or gener-
ate data by filling manual templates with entity descriptions.
With more EL data, they perform large-scale pretraining and
boost the results of their models. However, the above ap-
proaches are not suitable for our setting: following Chen,
Varoquaux, and Suchanek (2021), for each entity in KB, ex-
cept for a list of names, we do not assume the availability
of any other information (e.g., entity types or descriptions)
or any external resources (e.g., entity co-occurrence). Our
formulation is general and suitable for a wide range of real-
world settings. In our setting, we propose a KB-enhanced
self-supervised pretraining strategy. Since we use a cloze
prompt to do prompt tuning, we use MLM with entity syn-
onyms for pretraining to keep the consistency between pre-
training objective and downstream finetuning task.

We perform experiments on 3 biomedical EL datasets:
NCBI disease (Doğan, Leaman, and Lu 2014), BC5CDR
(Li et al. 2016) and COMETA (Basaldella et al. 2020). We
find that, without pretraining, our model achieves the best
results on BC5CDR and COMETA compared with all pre-
vious results with finetuning only, showing the effectiveness
of cross-entity interaction. With pretraining, our model sets
new state-of-the-art results on all the datasets above. The
performance gain through our self-supervised pretraining is
greater than the previous supervised pretraining on NCBI
disease, showing the efficiency of our KB-enhanced pre-
training strategy.

Our contributions are summarized as follows:
• We propose a re-ranking model based on prompt tuning,

which attends to mention context and all candidate en-

tities together, capturing both mention-entity interaction
and entity-entity interaction.

• We propose a KB-enhanced self-supervised pretraining
strategy, using masked language modeling (MLM) with
entity synonyms in KB, no need for large-scale pretrain-
ing with more EL data from external resources.

• We achieve state-of-the-art results on 3 biomedical EL
datasets: NCBI disease, BC5CDR and COMETA, show-
ing the effectiveness of cross-entity interaction and KB-
enhanced pretraining strategy.

2 Related Work
2.1 Entity Linking
Recent work in entity linking (EL) of the general domain
follows a “retrieve and re-rank” two-stage approach. For
candidate retrieval, recent years have seen dense embed-
dings from bi-encoders working accurately and efficiently
(Gillick et al. 2019; Botha, Shan, and Gillick 2020). In the
re-ranking stage, Transformer-based models are proposed
and achieve promising performance gains: a BERT-based
cross-encoder that concatenates the context and entity de-
scription is frequently used (Logeswaran et al. 2019; Wu
et al. 2020). The cross-encoder outputs whether or not the
mention in context refers to the concatenated entity. Besides
formulating re-ranking as a classification problem, Barba,
Procopio, and Navigli (2022) formulate ED as a text extrac-
tion problem, and De Cao et al. (2021) use BART (Lewis
et al. 2020) to generate corresponding entity name in an au-
toregressive manner.

Despite huge progress of EL in general domain, the above
methods cannot be transferred directly into biomedical do-
main due to the scarcity of labeled data (Yuan, Yuan, and Yu
2022) and the difference of KB format (Varma et al. 2021).
It is a common practice to pretrain models with Wikipedia
hyperlinks in general domain, but the labeled EL datasets
in biomedical domain is rare, making data-hungry gener-
ative models (e.g., De Cao et al. (2021)) hard to imple-
ment. Besides lack of data, biomedical KBs often contain
incomplete structural resources. Wikidata in the general do-
main has a highly-organized entity hierarchy and compre-
hensive entity metadata, but in the biomedical UMLS KB,
only 7% of entities have associated descriptions, i.e., most
entities only have a list of names. In addition, as Chen, Varo-
quaux, and Suchanek (2021) suggest, biomedical EL cannot
rely on external resources such as alias tables or entity co-
occurrence, which are often used in EL systems of general
domain. Therefore, it is necessary to propose EL methods
specifically for biomedical domain.

Recent biomedical EL approaches (Bhowmik, Stratos,
and de Melo 2021) use the bi-encoder architecture. They
encode mention words and entity names into the same vec-
tor space, and disambiguate mentions by nearest neighbors.
Built upon the bi-encoder, Angell et al. (2021) and Varma
et al. (2021) add a re-ranking model to boost performance,
enabling fine-grained mention-entity interaction. However,
none of the above models focus on entity-entity interaction
when re-ranking candidates in comparison. Moreover, previ-
ous pretraining methods (Yuan, Yuan, and Yu 2022; Varma
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et al. 2021) do not work in our setting (i.e., the only infor-
mation for each entity in KB is a list of names). In this work,
we focus on the these shortcomings, and propose our model
and its accompanied pretraining strategy.

2.2 Prompt Learning
As a series of pretrained language models (PLMs) like GPT
(Radford et al. 2019), BERT (Devlin et al. 2019) and BART
(Lewis et al. 2020) have been proposed, the “pretrain, fine-
tune” paradigm has demonstrated its effectiveness on var-
ious important NLP tasks, such as dialogue (Zhang et al.
2020), summarization (Liu and Lapata 2019) and question
answering (Lewis et al. 2021). Despite the success of this
paradigm, the huge objective gap between pretraining and
finetuning limits the full use of PLM’s knowledge for down-
stream tasks (Liu et al. 2021b). To this end, a new paradigm
called “pretrain, prompt and predict” has come into being.

Instead of adapting PLMs to downstream tasks through
“pretrain, finetune”, downstream tasks are reformulated to
look more like pretraining tasks with the help of a textual
prompt in the new “pretrain, prompt and predict” paradigm.
Prompting means adding instructions or examples before in-
put and output predictions to stimulate knowledge in PLMs.
There are mainly two types of prompts: (1) cloze prompt
(Cui et al. 2021): filling in the blanks of a textual string,
suitable for PLMs with MLM pretraining task. (2) prefix
prompt (Li and Liang 2021): continuing a string prefix, suit-
able for autoregressive language models. Since the emer-
gence of GPT-3 (Brown et al. 2020), which uses hand-
crafted prompts and achieves impressive zero-shot and few-
shot performance, hand-crafted prompts are trending in var-
ious knowledge-intensive tasks to elicit the knowledge in
PLMs, such as knowledge probing (Petroni et al. 2019) and
entity typing (Ding et al. 2021). In our work, we explore
prompt learning in another knowledge-intensive task, i.e.,
biomedical EL, by stimulating PLMs to capture the contex-
tual information of both mentions and all candidate entities.

3 Method
We formulate the task of biomedical entity linking (EL) as
follows: given an entity mention m in a biomedical text
and a knowledge base (KB) E consisting of N entities, i.e.,
E = {e1, e2, ..., eN}, the task is to find the entity ei ∈ E that
m refers to. Following Lai, Ji, and Zhai (2021), We assume
that each entity only has a set of names (i.e., synonyms) in
KB. For each entity ei, we use Nei to denote the set of all
nei synonyms of ei: Nei = {sjei |j ∈ {1, 2, ..., nei}}.

Following Wu et al. (2020), we use a “retrieve and re-
rank” approach to perform biomedical EL. We use a bi-
encoder to retrieve K candidates, with unified entity repre-
sentations and hard negative mining (Section 3.1), and then
use a prompt-based model with cross-entity interaction to
re-rank the K candidates (Section 3.2). We further propose
a self-supervised KB-enhanced pretraining strategy, suitable
for our cloze prompt in the re-ranking stage (Section 3.3).

3.1 Candidate Retrieval
Similar to Liu et al. (2021a), we use a bi-encoder initialized
from SapBERT to jointly learn representations of mentions

and entities. The mention and its surrounding context get
encoded in the same dense space where all entity represen-
tations lie. Instead of creating ne entity representations for
entity e’s ne synonyms (Sung et al. 2020), we create a uni-
fied view for every entity.

Given a mention m with surrounding context and an entity
e, the bi-encoder computes:

ym = red(T1(τm)) (1)

ye = red(T2(τe)) (2)

where τm and τe are input representations of mention con-
text and entity, T1 and T2 are mention encoder and entity
encoder respectively, sharing the same parameters. red(.) is
a function which reduces sequence of vectors into one vec-
tor. We choose red(.) to be the last layer of the output of
[CLS] token following Humeau et al. (2020).

The input representation of mention τm is the word-pieces
of context surrounding the mention and the mention itself:

[CLS] ctxtl [START]m [END] ctxtr [SEP]

where ctxtl and ctxtr are context before and after the men-
tion m respectively. [START] and [END] are special to-
kens to tag the mention.

The input representation of entity τe is the word-pieces of
the concatenation of ne synonyms with special token [OR]:

[CLS] s1e [OR]s
2
e [OR] ... [OR] sne

e [SEP]

The score of (m, e) pair is given by the dot-product:

s(m, e) = ym · ye (3)

Optimization. For each training pair (m, e) (i.e., entity e
is the corresponding entity of mention m), the loss is com-
puted as:

L(m, e) = −s(m, e)

+ log(exp(s(m, e)) +
∑

e′∈N(e)

exp(s(m, e
′
)))

(4)

where N(e) ⊂ E\{e} is a set of negatives that excludes gold
entity e. As hard negative mining has shown great potential
in noise contrast estimation (Zhang and Stratos 2021), we
obtain 90% of N(e) by random sampling from E \ {e} and
10% by hard negative mining (i.e. highest-scoring incorrect
entities) before every epoch.

Inference. We pre-compute and store entity embedding
ye for every e ∈ E , and use Faiss (Johnson, Douze, and
Jégou 2019) to perform nearest neighbor search for fast top-
K retrieval.

3.2 Cross-Entity Re-ranking
Previous cross-encoders concatenate the mention context
and one candidate at a time, enabling cross attention only be-
tween mention and an entity. We propose a re-ranking model
based on prompt learning, which attends to mention context
and all candidates together, and thus enables both mention-
entity interaction and entity-entity interaction.
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Figure 2: Illustration of our re-ranker with an example. Our re-ranker combines mention context, multiple entity candidates and
a cloze prompt as input. Entity ei is finally chosen because of the highest probability of filling in [MASK] with the [Ei] token.

Synonym ranking. Suppose we have retrieved K candi-
dates (i.e., e1, e2, ..., eK) for the mention m. As PLMs sup-
port inputs only up to a fixed maximum length, the length
of input tokens for every candidate is limited, so some entity
input (i.e., τe) might be truncated, leaving out some syn-
onyms. As shown in Yuan, Yuan, and Yu (2022), the surface
form similarity (e.g., TF-IDF) displays promising ability in
synonym selection. We use the length of the longest com-
mon subsequence (LCS) to do a preliminary synonym rank-
ing, putting synonyms with higher lexical similarity at the
beginning of the entity input. We rank the synonyms Ne in a
descending order based on the length of LCS between men-
tion m and the synonym sje. Suppose the synonyms of ei
after ranking are listed as sk1

e , sk2
e , ..., skn

e , the entity e is
represented by τ

′

e, i.e., word-pieces of the concatenation of
the above synonym list with special token [OR]:

sk1
e [OR]sk2

e [OR] ... [OR] skn
e

Prompt tuning with entity-entity interaction. We apply
a cloze prompt to transform the candidate re-ranking task
into masked language modeling (MLM). The input repre-
sentation τm,e of our re-ranking model concatenates men-
tion context, all K candidates with a hand-crafted template,
i.e. τm,e is defined as “[CLS] ctxtl [START] m [END]
ctxtr Which of the following options is the same as m?
[MASK] [SEP] [E1] τ

′

e1 [SEP] [E2] τ
′

e2 [SEP] ... [EK ]

τ
′

eK [SEP]”. Figure 2 shows an example of the re-ranking
process, solving the choice of the corresponding entity as a
MLM task: if the [Ei] token has the highest probability of
filling in [MASK], we choose entity ei as the linking result.

Our re-ranking model takes the above input and computes
mention-entity embedding ym,e, denoted as:

ym,e = red
′
(Tcross(τm,e)) (5)

where the re-ranking model Tcross is a SapBERT, and the

function red
′
(.) is the last layer of the output of [MASK] to-

ken. In this way, our re-ranking model can see all the possi-
ble output choices, letting candidates in comparison attend-
ing to each other.

For a given mention m, the score of each candidate ei is
computed by the MLM head’s probability of [Ei] ∈ {[E1],
[E2], ..., [EK ]}, denoted as below:

scross(m, ei) = σ(ym,eWhei) (6)

where σ represents the sigmoid function, W is the MLM
head which transforms ym,e from the hidden size to the
word vocabulary size |V|, and hei ∈ R|V|×1 is the one-hot
encoding of the token [Ei].

Optimization. For every mention m, we use the gold en-
tity e as the positive example, and use K − 1 retrieved en-
tities (e is not included) as negative examples. We optimize
the re-ranker with a binary cross entropy loss, as below:

L(m, ei) = −y(m, ei)log(scross(m, ei)))

+ (1− y(m, ei))log(1− scross(m, ei)))
(7)

where y(m, ei) = 1 for positive examples, y(m, ei) = 0 for
negative examples. Note that the concatenation order of τ

′

ei
is random during training.

Inference. we use the output score, namely scross(m, ei),
to choose the best candidate. The concatenation order of τ

′

ei
is the ascending order of the distance between mention rep-
resentation ym and entity representation yei computed by
Faiss in the retrieval stage.

3.3 KB-Enhanced Pretraining
We propose to enhance the re-ranker with entity synonyms
in KB, because some synonyms are ignored in entity repre-
sentations. When representing candidate entities with τ

′

e in
Section 3.2, we rank the synonyms based on the length of
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LCS between them and the mention. However, this strategy
may result in truncation of synonyms which have low lexical
similarity but high semantic similarity. For example, given
the sentence “Patients with generalized atrophic benign epi-
dermolysis bullosa, a usually nonlethal form of junctional
epidermolysis bullosa . . . ” and the entity D016109 in the
MEDIC KB (Davis et al. 2012), the entity’s synonym “epi-
dermolysis bullosa junctional herlitz type” is clearly ranked
first because of high lexical similarity, and its another syn-
onym “epidermolysis bullosa generalized atrophic benign”
has low lexical similarity and will be left out, but “atrophic
benign” in the synonym has appeared in the context and
could be useful for re-ranking. To mitigate the negative im-
pact of leaving out synonyms, we need to incorporate such
synonym information into the PLM.

We use masked language modeling (MLM) to pretrain,
suitable for the cloze prompt used in re-ranking. Our pre-
training task is aimed at using other synonyms to predict
the masked token. For every entity e with more than one
name (i.e., ne > 1), we randomly mask one token for
every synonym, and then concatenate all synonyms with
[OR]. Take the above entity D016109 for example. It has
3 synonyms, namely “epidermolysis bullosa junctional her-
litz type”, “epidermolysis bullosa generalized atrophic be-
nign” and “epidermolysis bullosa letali”, then the input is
“epidermolysis bullosa junctional [MASK] type [OR] epi-
dermolysis [MASK] generalized atrophic benign [OR] epi-
dermolysis bullosa [MASK]”. The MLM head needs to pre-
dict 3 [MASK] tokens with original tokens , i.e. “herlitz”,
“bullosa” and “letali” respectively. The backbone of the re-
ranker is a SapBERT, and during pretraining, it is optimized
with a cross entropy loss over the token vocabulary.

4 Experiment
4.1 Datasets and Evaluation Metrics
We experiment across three datasets: NCBI disease (Doğan,
Leaman, and Lu 2014), BC5CDR (Li et al. 2016) and
COMETA (Basaldella et al. 2020). We pre-process the
datasets by the following two steps: (1) expand the abbre-
viations in texts using AB3P (Sohn et al. 2008); (2) lower-
case the texts, and mark the beginning and ending of a men-
tion with two special tokens [START] and [END]. Table
1 shows the basic statistics of datasets and the number of
entities and synonyms in their corresponding KBs.
NCBI Disease Corpus (Doğan, Leaman, and Lu 2014) con-
tains manually annotated disease mentions in 793 PubMed
abstracts, with CUIs (Concept Unique IDs) mapped into the
MEDIC ontology (Davis et al. 2012). In our work, we use
the processed data and the target KB provided by Liu et al.
(2021a), and follow their evaluation protocol1.
BC5CDR (Li et al. 2016) is originally designed as a chal-
lenge for chemical-induced disease (CID) relation extrac-
tion. The dataset consists of 1,500 PubMed article abstracts
annotated with disease and chemical entities. All annota-
tions are mapped to MeSH ontology, which comprises a
subset of UMLS. Following most recent work (Angell et al.

1The processed NCBI disease, COMETA and their KBs are at
https://github.com/cambridgeltl/sapbert.

NCBI disease BC5CDR COMETA
Ontology MEDIC MeSH SNOMED-CT
Entities 14,967 268,162 350,830
Synonyms 108,071 809,929 904,798
Train samples 5,784 9,285 13,489
Dev samples 787 9,515 2,176
Test samples 960 9,654 4,350

Table 1: Statistics of NCBI disease, BC5CDR and COMETA
datasets and the number of entities and synonyms in their
corresponding KBs.

2021; Varma et al. 2021), we use MeSH contained in UMLS
2017 AA release as the target KB. In our work, we use the
data splits and the target KB provided by Yuan, Yuan, and
Yu (2022), and follow their evaluation protocol2.
COMETA (Basaldella et al. 2020) is a large-scale biomed-
ical EL dataset that specifically focuses on the social media
domain, containing 20K medical mentions extracted from
the Reddit forum. All mentions are expert-annotated and
mapped to SNOMED-CT. We use the “stratified (general)”
split and follow the evaluation protocol of the original paper.

Following previous work (Sung et al. 2020; Liu et al.
2021a), we use the top k accuracy as the evaluation met-
ric. We define Acc@k as 1 if a correct entity ID is included
in the top k predictions, otherwise 0. For the convenience of
comparison, we report Acc@1 and Acc@5.

4.2 Implementation Details
Our retriever and re-ranker are implemented with PyTorch
1.10.0 (Paszke et al. 2019). Both are initialized with Sap-
BERT parameters. Note that the mention encoder and the en-
tity encoder in the retriever share the same parameters. The
number of parameters for retriever and re-ranker are roughly
109M and 133M respectively.

The models are trained on a single NVIDIA A100 GPU.
We use Adam optimizer (Kingma and Ba 2015) with weight
decay set to 0.01 for all experiments. For retriever finetun-
ing, we set the learning rate to 2e-6 and batch size to 2 for
all datasets. The number of negatives in N(e) in Equation
4 is set to 15. For mention encoder, the maximum length
of the input is 256 tokens. For entity encoder, the maxi-
mum length of the input is 128 tokens for BC5CDR, and 64
for NCBI disease and COMETA. For all datasets, we fine-
tune for a total of 30 epochs and choose the best checkpoint
based on the development set. Finetuning retriever takes 8,
45 and 66 minutes per epoch on NCBI disease, BC5CDR
and COMETA respectively. For all datasets, the number of
retrieved entities for further re-ranking K is set to 6. For
re-ranker pretraining, as MEDIC dictionary is a subset of
MeSH (Yuan, Yuan, and Yu 2022), for NCBI disease and
BC5CDR, we use synonyms of MeSH KB to pretrain. For
COMETA, we use synonyms of SNOMED-CT KB to pre-
train. We set learning rate to 5e-6, batch size to 64, max-

2The processed BC5CDR and its KB are at https://github.com/
Yuanhy1997/GenBioEL.
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Model NCBI disease BC5CDR COMETA
@1 @5 @1 @5 @1 @5

Finetune only

BioSyn (Sung et al. 2020) 91.1 93.9 - - 71.3 77.8
SapBERT (Liu et al. 2021a) 92.3 95.5 - - 75.1 85.5

ResCNN (Lai, Ji, and Zhai 2021) 92.4 - - - 80.1 -
Clustering-based (Angell et al. 2021) - - 91.3 - - -

Cross-domain (FT) (Varma et al. 2021) - - 89.3 - - -
Generative (FT) (Yuan, Yuan, and Yu 2022) 91.6 95.6 92.6 95.3 80.7 88.7

Ours (FT) 91.5 95.7 93.0 96.7 83.3 92.4

Pretrain+Finetune

Cross-domain (PT+FT) (Varma et al. 2021) - - 91.5 - - -
Cross-domain (Varma et al. 2021) - - 91.9 - - -

Generative (PT+FT) (Yuan, Yuan, and Yu 2022) 91.9 96.3 93.3 95.8 81.4 88.2
Ours (PT+FT) 92.6 95.8 93.7 96.6 83.7 92.3

Table 2: Results (Acc@1 and Acc@5) of our model compared with previous state-of-the-art methods in NCBI disease,
BC5CDR and COMETA when finetuning on train splits only (top) and when pretraining and finetuning (bottom). FT means
finetuning and PT means pretraining. Bold denotes the best results. “-” means not reported in the cited paper.

imum input length to 256 tokens, and the number of pre-
training epochs to 15 for MeSH and 10 for SNOMED-CT.
Pretraining one epoch takes 51 and 69 minutes on MeSH
and SNOMED-CT respectively. For re-ranker finetuning,
we set batch size to 16, maximum mention context length to
256 tokens, maximum candidate entity length to 32 tokens.
We search learning rate among [5e-6,1e-5,5e-5] based on the
development set. Best-performing learning rate is 5e-5 for
all datasets. We finetune for a total of 40 epochs, and choose
the best checkpoint based on the development set. Finetun-
ing re-ranker takes 3, 4, 5 minutes per epoch on NCBI dis-
ease, BC5CDR and COMETA respectively.

4.3 Baselines
To evaluate the performance of our proposed model, we
compare with the following 6 state-of-the-art biomedical EL
systems that represent a diverse array of approaches.

• BioSyn (Sung et al. 2020) utilizes the synonym marginal-
ization technique and the iterative candidate retrieval for
learning biomedical entity representations.

• SapBERT (Liu et al. 2021a) designs a metric learning
framework that learns to self-align representations for
synonymous biomedical entities.

• ResCNN (Lai, Ji, and Zhai 2021) proposes an convolu-
tional neural network model with residual connections to
compute biomedical entity representations.

Note that the models above are solely based on the syn-
onyms of entities. The approaches listed below use addi-
tional entity information (e.g., types and descriptions) or ex-
ternal resources from general domain.

• Clustering-based (Angell et al. 2021) introduces cross-
encoders to group multiple mentions together via cluster-
ing and jointly making linking predictions.

• Cross-domain (Varma et al. 2021) combines the bi-
encoder from Sung et al. (2020) with the cross-encoder
from Angell et al. (2021). Main contribution lies in

enriching UMLS with Wikidata and constructing EL
datasets with 4.3M mentions for large-scale pretraining.

• Generative (Yuan, Yuan, and Yu 2022) injects synonyms
and descriptions into the generative language model by
creating more training data with manual templates.

4.4 Results
Main results. We compare our approach with 6 previous
state-of-the-art models in Section 4.3, and list the perfor-
mance in Table 2. When only finetuning on train split of
each dataset, our approach outperforms all other models on
BC5CDR and COMETA, improving 0.4 and 2.6 Acc@1
points over previous finetune-only results. Combined with
pretraining strategy, our approach sets new state-of-the-art
results on all datasets, outperforming previous best reported
results by 0.2, 0.4, 2.3 Acc@1 points. The improvement
shows the effectiveness of our overall approach.
Ablation Study. For the ablation of pretraining, our pre-
training strategy boosts the Acc@1 on NCBI disease by 1.1
points (91.5 → 92.6). The performance increase is larger
than the Generative method (0.3 points, 91.6 → 91.9). On
BC5CDR, pretraining on our model increases 0.7 points of
Acc@1 (93.0 → 93.7), on a par with the Generative method
(92.6 → 93.3). On COMETA, pretraining only boosts the
Acc@1 by 0.4 points (83.3 → 83.7). The performance in-
crease is smaller on COMETA, and we hypothesize the rea-
son is that the other two datasets are taken from biomedi-
cal literature but COMETA is taken from the online forum,
which is not in the same domain with the biomedical KB
used for our pretraining. Note that the Generative method
constructs large-scale EL data partly with entity descrip-
tions, which we do not have in our setting. Compared with
pretraining 1 day on 6 A100 GPUs (reported in the paper
of Generative method), our pretraining strategy is more effi-
cient, approximately one hour for an epoch on 1 A100 GPU.

For the ablation of our re-ranker, we use the same candi-
date set from our retriever, and implement the cross-encoder
proposed in Varma et al. (2021). Compared with our imple-
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Mention Context Cross-encoder Our re-ranker

The doctors cut most of her medication and she vomits
the ones that are left sometimes because of the water.

Vomit;
Vomitus;

Vomitus (substance)

Vomiting;
Vomiting (disorder);

Emesis

Invasive dental treatment only becomes an issue after the
valves have been damaged from some other cause.

Valve;
Valve (physical object)

Valve of vein;
Structure of valve of vein

Please go to a doctor to get those sores swabbed. Sore;
Sore sensation quality

Soreness;
Sore pain

Radiotherapy is not commonly used but has a role in
some cases.

Radiotherapy;
Radiation oncology

Radiation therapy care;
Radiation therapy management

I rarely ever feel hungry or even peckish.
Hungry;

Hungry (finding);
Hunger

Appetite;
Food appetite;
Desire for food

Table 3: Examples of top 1 candidate predicted by the cross-encoder in Varma et al. (2021) and our re-ranker. Bold in mention
contexts denotes mentions. The synonyms of gold entities are in bold.

NCBI disease BC5CDR COMETA

Our retriever
+ cross-encoder 90.9 91.8 83.1

Ours (FT) 91.5 93.0 83.3

Ours (PT+FT) 92.6 93.7 83.7
- words in prompt 92.0 93.1 83.7
- question in prompt 92.0 93.4 83.4

Table 4: Results (Acc@1) of ablations of our model when
finetuning on train splits only (top) and when pretraining and
finetuning (bottom).

mentation of the cross-encoder, our re-ranker outperforms it
by 0.6, 1.2 and 0.2 points of Acc@1, showing the effective-
ness of cross attention among candidates introduced in our
re-ranker. Case study of predictions by our re-ranker and the
cross-encoder are shown in Section 4.5.

For the prompt in our re-ranker, we consider 2 variants of
τm,e in Section 3.2: (1) remove the natural language words
in the template, i.e., “[CLS] ctxtl [START] m [END]
ctxtr m [MASK] [SEP] [E1] τ

′

e1 [SEP] [E2] τ
′

e2 [SEP]

... [EK ] τ
′

eK [SEP]” (2) remove the question altogether,
i.e., remove m based on (1). Removing the entire question
sentence causes a performance drop for all datasets, show-
ing that the template helps the choice of candidates. For
NCBI disease and BC5CDR, the removal of natural lan-
guage words causes 0.6 points of Acc@1 drop, indicating
that the words in the template are useful for stimulating
the knowledge in the PLM. For COMETA, while remov-
ing words does not affect the performance, further removing
the mention m causes 0.3 points drop, suggesting that for
COMETA, the mention m is more important than natural
language words in our hand-crafted template.

4.5 Case Study

To show the effectiveness of our re-ranker, we list the top 1
candidate predicted by our re-ranker and the cross-encoder
proposed in Varma et al. (2021) in Table 3. From the first
four examples, We can infer that, when facing candidates
which both have high lexical similarity with the mention,
the cross-encoder is easily influenced by the entity which
has a synonym with the same surface form as the mention.
However, by letting candidates in comparison attending to
each other, our re-ranker can make comprehensive judge-
ments with contextual information and all candidates, and
thus disambiguate better on such ambiguous cases.

The last example presents a failure case of our re-ranker.
The gold entity’s names include “hungry”, which has high
lexical similarity with the mention, but our re-ranker incor-
rectly infers “appetite”, which is semantically similar to the
gold entity. This shows that our re-ranker may benefit from
striking a balance between learning lexical similarity and
learning semantic similarity.

5 Conclusion

In this work, we focus on the ambiguity in biomedical en-
tity linking. To disambiguate better among entities with high
lexical similarity, we propose a prompt-based re-ranking
model, which attends to mention context and all candidate
entities together, enabling entity-entity interaction through
cross attention among candidates. We also propose a KB-
enhanced self-supervised pretraining strategy, using masked
language modeling with synonyms in KB, no need for large-
scale supervised pretraining with extra EL data. Experi-
ments show that we achieve state-of-the-art performance on
NCBI disease, BC5CDR and COMETA, showing the effec-
tiveness of cross-entity interaction and the efficiency of our
pretraining strategy. Future work may make the prediction
not only based on the mention and its candidates, but also
based on the candidates of its surrounding mentions.
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