
AMOM: Adaptive Masking over Masking for
Conditional Masked Language Model

Yisheng Xiao1, Ruiyang Xu1, Lijun Wu2, Juntao Li1*, Tao Qin2, Tie-Yan Liu2, Min Zhang1

1Institute of Computer Science and Technology, Soochow University
2Microsoft Research Asia

{ysxiaoo, ryxu1}@stu.suda.edu.cn, {ljt, minzhang}@suda.edu.cn, {lijuwu, taoqin, tyliu}@microsoft.com

Abstract

Transformer-based autoregressive (AR) methods have
achieved appealing performance for varied sequence-to-
sequence generation tasks, e.g., neural machine translation,
summarization, and code generation, but suffer from low
inference efficiency. To speed up the inference stage, many
non-autoregressive (NAR) strategies have been proposed in
the past few years. Among them, the conditional masked
language model (CMLM) is one of the most versatile frame-
works, as it can support many different sequence generation
scenarios and achieve very competitive performance on these
tasks. In this paper, we further introduce a simple yet effec-
tive adaptive masking over masking strategy to enhance the
refinement capability of the decoder and make the encoder
optimization easier. Experiments on 3 different tasks (neural
machine translation, summarization, and code generation)
with 15 datasets in total confirm that our proposed simple
method achieves significant performance improvement
over the strong CMLM model. Surprisingly, our proposed
model yields state-of-the-art performance on neural machine
translation (34.62 BLEU on WMT16 EN→RO, 34.82 BLEU
on WMT16 RO→EN, and 34.84 BLEU on IWSLT De→En)
and even better performance than the AR Transformer on 7
benchmark datasets with at least 2.2× speedup. Our code is
available at GitHub1.

Introduction
Transformer-based models (Vaswani et al. 2017) have been
proven effective for various sequence to sequence gener-
ation tasks, such as machine translation (Wu et al. 2019;
Liang et al. 2021), text summarization (Savelieva, Au-
Yeung, and Ramani 2020; Elsaid et al. 2022), dialogue sys-
tems (Zhang et al. 2020; Ma et al. 2020), code genera-
tion (Wang et al. 2020), etc. Despite the excellent perfor-
mance of Transformer-based models, they usually adopt the
autoregressive (AR) decoding paradigm in which the decod-
ing of a target sequence is decomposed into multi-step pre-
dictions in left-to-right order, i.e., the next prediction is con-
ditioned on the previously generated part. Such an attribute
increases the inference time cost linearly with the target se-
quence length, which is time-consuming for long sequences.

*Corresponding Author
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1https://github.com/amom-nar/AMOM

To alleviate this problem, many recent works explore non-
autoregressive (NAR) methods (Gu et al. 2018; Qian et al.
2021; Xiao et al. 2022) to predict a target sequence in paral-
lel, which can dramatically increase inference speed. As the
cost of increasing decoding speed, NAR models remove the
internal dependency of the target sequence and perform each
decoding prediction depending entirely upon the source/in-
put sequence. Inevitably, the generation quality of NAR
methods falls behind their AR counterparts without target-
side information in decoding (Gu et al. 2018).

To achieve a better trade-off between inference speedup
and generation quality, the conditional masked language
model (CMLM) (Ghazvininejad et al. 2019) has been pro-
posed and has already become one of the most competitive
and widely-used NAR frameworks, which exploits an iter-
ative mask-predict decoding strategy. In the training stage,
CMLM leverages a masked language model objective to
generate the masked subset of the target sequence in par-
allel conditioned on the source input and unmasked part in
target sequence. During inference, CMLM first generates the
whole target sequence in parallel (the first iteration) and then
iteratively masks and predicts low-confidence tokens. Based
on CMLM, many recent works have achieved performance
improvements with advanced enhancement strategies from
different perspectives, e.g., improving the inference strat-
egy (Kasai et al. 2020a; Geng, Feng, and Qin 2021), benefit-
ing from the AT counterpart (Hao et al. 2021), training with
better criterion (Marjan et al. 2020; Du, Tu, and Jiang 2021),
introducing self-correction mechanism (Huang, Perez, and
Volkovs 2022) and pre-training (Li et al. 2022b).

In this paper, we further introduce a simple yet very effec-
tive strategy to enhance the refinement capability of CMLM
without changing the model structure and the inference al-
gorithm, named adaptive masking over masking (AMOM).
Concretely, we present two adaptive masking operations for
both the source and target sequence based on the conven-
tional one-time masking in CMLM. The masking operation
for the source sequence can make the encoder optimization
easier by adaptively masking a proportion of tokens based on
the masked target sequence. In contrast, the vanilla CMLM
constructs multiple masked target sequences for each source
sequence in model training, making the encoder difficult to
converge (Guo, Xu, and Chen 2020). Another potential merit
of the source-side masking is to improve the stability of the

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

13789

CMLM model against different decoder inputs by prevent-
ing the internal co-adaptation (akin to dropout (Hinton et al.
2012)). Moreover, cooperating it with the masking condi-
tion of the target sentence can better improve the ability
rather than fixed masking. Notice that JM-NAT (Guo, Xu,
and Chen 2020) also explores the source-side masking op-
eration but has a clear difference from our strategy. It in-
troduces a BERT-like masked language model task on the
encoder side to enhance the encoder training, whereas our
adaptive strategy does not introduce any extra task and can
dynamically capture target-side information. The target-side
adaptive masking operation is presented to enhance the re-
finement process of CMLM, motivated by the masking ra-
tio changes of the target sequence in different inference it-
erations, which cannot be captured by the one-time mask-
ing. Simultaneously, unlike the adaptive target-side masking
strategy in GLAT (Qian et al. 2021) to achieve curriculum
learning, we design the masking strategy specially to en-
courage the model to perform steadily and conduct refine-
ments effectively. We focus on the promotion of each itera-
tion rather than only enhancing the first iteration in GLAT.
More comparisons between our strategy and the counter-
parts used in GLAT can be found in the experiments part.

Though AMOM is simple, i.e., only two extra masking
operations in model training, we find it is surprisingly effec-
tive on different sequence generation tasks, including neu-
ral machine translation, summarization, and code genera-
tion (15 datasets in total). It achieves state-of-the-art per-
formance on multiple datasets based on the vanilla CMLM,
e.g., 34.62 BLEU score on WMT16 EN→RO, 34.82 BLEU
on WMT16 RO→EN, and 34.84 BLEU on IWSLT De→En.
AMOM even performs better than the strong autoregressive
Transformer on 7 datasets with at least 2.2× speedup.

Methodology
Our proposed adaptive masking over masking (AMOM)
strategy is a simple yet effective add-on for the conditional
masked language model (CMLM) (Ghazvininejad et al.
2019) training, which comprises two adaptive masking op-
erations for the encoder and decoder, respectively, to en-
hance the encoder training and the refinement capability of
CMLM. Specifically, we adopt the same encoder-decoder
architecture as the CMLM.

Conditional Masked Language Model
A conditional masked language model feeds a source se-
quence X to the encoder and a target sequence in which
part of the tokens are masked by replacing them with the
[mask] token to the decoder. The training objective of
CMLM is to learn to predict the masked tokens Ymask in
parallel given X and the unmasked tokens Yobs in the rest
part of the target sequence, based on the assumption that all
target tokens in Ymask are independent of each other, i.e.,
the prediction of each Ymask token is merely conditioned on
X and Yobs. To eliminate the particularity of Ymask, CMLM
samples a different number of tokens each time as Ymask

from the uniformly distributed number between one to the
target length during training, rather than a fixed proportion

of the target sequence. The training objective of CMLM is
to maximize:

LCMLM =
∑

yt∈Ymask

logP (yt|Yobs, X; θ), (1)

where θ denotes the trainable parameters of CMLM. Unlike
AR methods that can automatically decide the decoding end
by generating a special [EOS] (end of a sentence) token,
typical NAR methods require learning to predict the target
length in advance. CMLM adds a special token [LENGTH]
(akin to the [cls] token in BERT) into its encoder to pre-
dict the target length. During inference, given the input X
and the predicted target length, CMLM executes k iterations
of mask-predict operation (Ghazvininejad et al. 2019) to cre-
ate the final target sequence. At the first iteration, the CMLM
predicts the entire Y in parallel fully depending onX . In the
next k − 1 iterations, CMLM repeatedly masks a specific
number of low-confidence tokens generated from the last it-
eration and regenerates them in parallel.

Adaptive X Masking
Basically, CMLM leverages an encoder-decoder structure to
achieve sequence to sequence generation, which requires the
mutual cooperation between encoder and decoder. However,
during model training, each X will be paired with multiple
Ymask due to the uniform masking strategy of CMLM, mak-
ing the encoder optimization much harder than the decoder.
Guo, Xu, and Chen also empirically prove that the conver-
gence speed of the encoder is significant lower than the de-
coder. Another drawback of conditioning different Ymask on
the sameX is the internal co-adaptation ofX , i.e., each pre-
diction of Ymask relies on the whole input sequence, making
the decoder less focused on the changes of decoder inputs.

To enhance the encoder training and address the above-
mentioned flaws, we propose a simple yet effective adap-
tive masking for inputX . Unlike previous research, our pro-
posed adaptive X masking is included in the sequence to
sequence generation task, and the number of masked tokens
is coordinated with the number of masked Y tokens. More
concretely, given a training pair (X,Y) in CMLM, where Y
will be divided into Yobs and Ymask, the masking ratio α of
Y can be calculated as Nmask

Nobs+Nmask
.Nobs andNmask denote

the number of tokens in Yobs and Ymask, respectively. Then,
we introduce a mapping function φ(·) to decide the mask-
ing ratio of X based on the masking ratio in Y , i.e., we will
randomly mask φ(α) ∗ LX tokens in the source sequence,
where LX denotes the length of the source sequence. Then
the training loss of CMLM with adaptive X masking can be
computed as:

Lcmlm = −
∑

yt∈Ymask

logP (yt|Yobs, X̂; θ), (2)

where X̂ refers to the input sequence with φ(α) ∗ LX to-
kens being masked. We introduce different variations of φ
in Table 5 and compare their performance.

Adaptive Y Masking
As mentioned above, the superior performance of CMLM-
based methods comes from the iterative refinement process,

13790

i.e., the previously generated target sequence draft is re-
peatedly polished by regenerating a specific number of low-
confidence tokens in the subsequent iterations. In seeing the
self-correction nature of the refinement process, many recent
works introduce a correction objective in CMLM training to
enhance its refinement capability e.g., SMART (Ghazvinine-
jad et al. 2020), CMLMC (Huang, Perez, and Volkovs 2022).
Unlike these works that introduce extra training objectives
and optimize the inference process of CMLM, we present
an ultra-simple yet effective adaptive masking operation for
Y in model training without any change to the CMLM infer-
ence2. Our strategy is motivated by the quality improvement
of predicted tokens along with the refinement iterations, i.e.,
the proportion of low-confidence tokens (for regeneration
in each iteration) from Ymask will gradually decrease along
with the refinement iterations, resulting in a varied masking
ratio between Ymask and Yobs in the refinement process.

To capture the masking ratio changes in CMLM infer-
ence, we add another masking operation (adaptive Y mask-
ing) upon the one-time masking in the vanilla CMLM
model. Specifically, for each training pair (X,Y), Y is di-
vided into Yobs and Ymask. CMLM generates the masked
tokens based on Yobs and X , where the generated result
is denoted as Ŷmask to distinguish with Ymask. Then, we
compute the correctness ratio of predicted tokens in Ŷmask

by comparing with target tokens in Ymask, formulated as
β = |Ŷmask=Ymask|

Nmask
. Similar to adaptive X masking, we in-

troduce another mapping function ψ(·) to decide the mask-
ing proportion of Ŷmask and Yobs tokens. Different types of
mapping function ψ(·) are experimented in Analysis, and
more details are given in Appendix. We assign a masking
probability of 1− ψ(β) to each token in Ŷmask and a mask-
ing probability of ψ(β) to each token in Yobs. As a result, the
newly masked tokens in the second time denote Y ′

mask, and
the rest tokens will serve as a new Y ′

obs, for the next iteration.
The training loss of the new subset Y ′

mask is computed the
same as the first-time masking in CMLM, formulated as:

Laday = −
∑

yt∈Y ′
mask

logP (yt|Y ′
obs, X̂

′; θ), (3)

where X̂ ′ refers to the input sequence with an adaptive
masking ratio of Y ′

mask being masked.

AMOM Training and Inference
We simply adopt two adaptive masking strategies based on
the original CMLM training process. The training objective
of our proposed adaptive masking over masking (AMOM)
is the simple combination of Lcmlm and Laday mentioned in
Equation 2 and 3, formulated as:

LAMOM = Lcmlm + Laday, (4)

As for inference, we utilize the same decoding strategy with
CMLM. As mentioned above, we utilize a special token
[LENGTH] in the encoder to predict the target length in
advance. Inevitably, there is a deviation between the pre-
dicted length and the ground-truth length. Thus, we also

2More comparisons are given in Appendix.

consider selecting the translation with the highest proba-
bility with different target lengths to obtain better results.
Given the target length LY and the total number of refine-
ment iterations T , the model performs generation based on
the fully masked decoder input (i.e., empty Yobs) at the first
iteration. In the next T − 1 iterations, a specific number of
low-confidence tokens will be masked and re-generated. The
number of masked tokens in each iteration can be computed
as n = T−t

T ∗ LY , where t denotes the current iteration
number. Given the number of masked tokens, the model will
select them based on the output probability of each token,
where tokens with the lowest probability will be masked,
and their scores will be updated in the next iteration.

Experiments
To evaluate our AMOM method and show its universal im-
pact on various sequence generation tasks, we conduct ex-
periments on natural machine translation, summarization,
and code generation tasks.

Datasets
For machine translation, we conduct experiments both on
IWSLT and WMT datasets, which are widely used for
NMT tasks. The datasets from IWSLT competitions con-
tain 4 language pairs (170k pairs), see details in Table 2.
For WMT datasets, we choose two language pairs which
are widely used in non-autoregressive machine translation
task, WMT16 English→Roman (0.6M pairs) and WMT14
English→German (4.5M pairs) tasks. Following previous
works on non-autoregressive machine translation, we ap-
ply sequence-level knowledge distillation (Kim and Rush
2016; Zhou, Gu, and Neubig 2019) for all datasets. For
WMT datasets, we use the same distilled data as the same as
CMLM (Ghazvininejad et al. 2019). Then, we amalgamate
the raw and distilled data as our final training data, follow-
ing (Ding et al. 2020). For all IWSLT datasets, we train the
teacher model with Transformersmall, and use the generated
results as the distilled data. Then, we train our AMOM on
distilled data. For summarization task, we use the XSUM
dataset (Narayan, Cohen, and Lapata 2018) which contains
204,045/11,332/11,334 online articles and single sentence
summary pairs from the British Broadcasting Corporation
for training/validation/test. We preprocess the dataset, fol-
lowing (Lewis et al. 2020). For code generation task, we use
Py150 dataset (Raychev, Bielik, and Vechev 2016) and use
GitHub-Java dataset (Allamanis and Sutton 2013). We use
the Python official library tokenizer3 and Javalang4 to split
the datasets into lines of codes. Then we use a sliding con-
text window to adopt 10-lines of code tokens as the source
sentences and the next 4-lines as the target sentences. We
follow (Wang et al. 2020) to process the dataset to transform
some special tokens as [str] token (without bpe).

Settings
All experiments are done using the Fairseq library (Ott
et al. 2019). Following previous settings (Ghazvininejad

3https://docs.python.org/3/library/tokenize.html
4https://github.com/c2nes/javalang

13791

Model Iterations WMT16 WMT14 SpeedupEN→RO RO→EN EN→DE DE→EN

AR Transformer (Vaswani et al. 2017)* N 34.23 34.28 28.41 32.28 1.0x
Fu

ll
N

AT

NAT-FT (Gu et al. 2018) 1 27.29 29.06 17.69 21.47 15.6×
AXE (Marjan et al. 2020) 1 31.54 30.75 23.53 - 15.3x
OAXE (Du, Tu, and Jiang 2021) 1 33.3 32.4 26.1 - 15.3x
GLAT (Qian et al. 2021) 1 32.87 33.51 26.55 31.02 15.3x
FullyNAT (Gu and Kong 2021) 1 33.71 34.16 27.20 31.39 16.8x
DSLP (Huang et al. 2022a) 1 34.17 34.60 27.02 31.61 14.8x
DAT (Huang et al. 2022b) 1 - - 27.49 31.37 13.9x

It
er

at
iv

e Refine-NAT (Lee, Mansimov, and Cho 2018) 10 27.11 30.19 21.61 25.48 1.5x
LevenshteinNAR (Gu, Wang, and Zhao 2019) >7 33.02 - 27.73 - 4.0x
DisCo (Kasai et al. 2020a) 3.1 33.25 33.22 27.34 - 3.5x

C
M

L
M

-B
as

ed

CMLM (Ghazvininejad et al. 2019)* 10 33.46 33.83 27.21 31.03 2.3x
SMART (Ghazvininejad et al. 2020) 10 33.85 33.53 27.65 31.27 1.7x
JM-NAT (Guo, Xu, and Chen 2020) 10 33.52 33.72 27.69 32.24 -
RDP (Ding et al. 2020) 10 33.7 - 27.8 - 1.5x
LFR (Ding et al. 2021) 10 - 33.9 27.8 - 1.5x
MvSR-NAT (Xie, Li, and Hu 2021) 10 33.38 33.56 27.39 31.18 3.8x
CORR (Huang, Perez, and Volkovs 2022) 10 34.31 34.08 28.19 31.31 -
CMLMC (Huang, Perez, and Volkovs 2022) 10 34.57 34.13 28.37 31.41 -

Ours AMOM 10 34.62 34.82 27.57 31.67 2.3x

Table 1: Results on 4 WMT machine translation tasks. “*” denotes the results of our implementations.

Model En↔De En↔Fr En↔Zh En↔Es Avg Speedup

Transformer 28.71/34.68 36.2/37.0 25.7/18.2 37.8/39.5 32.22 1.0x

CMLM 27.77/33.87 35.2/35.0 26.0/17.9 37.1/39.0 31.48 2.2x

AMOM 28.41/34.84 35.6/36.3 26.1/18.4 38.0/39.8 32.18 2.2x

Table 2: Results on 8 IWSLT datasets. Numbers before and after “/” denote BLEU scores from and to English directions.

et al. 2019), we use the standard Transformerbase config-
uration on WMT datasets and standard Transformersmall

configuration on IWSLT datasets for both auto-regressive
and non-autoregressive experiments. During AMOM train-
ing, we follow the hyper-parameters in CMLMC (Huang,
Perez, and Volkovs 2022) for WMT14 En↔De and follow
the hyper-parameters of CMLM realization in Fairseq5 for
the other datasets. During inference, we average the 5 best
checkpoints chosen by validation BLEU scores as our fi-
nal model and set the length beam as 3/5 for IWSLT/WMT
datasets. For XSUM, we choose Transformerbase with em-
bedding dimension 768 and follow the training schedule ap-
plied in NMT. During our training, we make a specific mod-
ification of the hyper-parameters referring to (Lewis et al.
2020). During inference we follow the process in (Qi et al.
2021), where the same consecutive tokens will be merged
to avoid repeated n-gram tokens. For code generation tasks,
we choose Transformerbase with embedding size 512 and
follow the original training schedule. We make a specific
modification of the hyper-parameters referring to (Liu et al.
2022). For all datasets, we set the limits ratio of adaptive X

5https://github.com/facebookresearch/fairseq/tree/main/
examples/nonautoregressive translation

from 10%-30% and adaptive Y from 20%-80%, and select a
linear mapping function to decide the masking ratios. More
details about training are presented in Appendix.

Main Results
Natural Machine Translation. Following previous works,
we evaluate the performance with BLEU (Papineni et al.
2002) for WMT datasets and IWSLT En↔De dataset, and
for the other IWSLT datasets, we use SacreBLEU 6 (Post
2018; Liang et al. 2021). Speedup is measured by LGPU

1 fol-
lowing the previous work (Kasai et al. 2020b; Gu and Kong
2021; Helcl, Haddow, and Birch 2022). Table 2 presents
the results on 8 IWSLT datasets, we compare our AMOM
with original CMLM and strong Transformer (AR) base-
line. First, a significant improvement can be found over the
original CMLM on all datasets, with about 0.7 BLEU on
average. More excitingly, compared with the strong Trans-
former (AR) baseline, our AMOM has achieved better per-
formance on five datasets, and only a tiny gap (0.04 BLEU)
still exists on average. We show our results in Table 1 for
WMT datasets, we compare our approach with various itera-
tive NAR models, including two popular fully NAR models.

6https://github.com/mjpost/sacrebleu

13792

Model ROUGE-1 ROUGE-2 ROUGE-L

Transformer 30.66 10.80 24.48

Without pretrain
vanilla NAT 24.04 3.88 20.32
InsertNAR 17.65 5.18 16.05
Levenshitein 25.33 7.40 21.48
Disco 26.85 6.86 21.72
POSPD 27.39 7.26 22.15
CMLM* 25.80 6.31 20.45
AMOM* 31.59 9.30 24.98

With pretrain
BANG 34.71 11.71 29.16
MIST 34.63 11.29 28.70
ELMER 37.30 13.17 29.92

Table 3: Results on XSUM for the text summarization task.
“*” denotes the results of our implementations.

Model Python JAVA
Iter. BLEU ES Iter. BLEU ES

CMLM 4 49.61 69.58 4 60.54 76.68
10 53.44 70.42 10 62.82 77.24

AMOM 4 50.57 70.22 4 62.86 76.61
10 56.50 71.38 10 65.43 77.17

Table 4: Results on Py150 and Github-Java dataset.

We re-run the experiments of CMLM with the same settings
in AMOM to avoid inconsistency. After applying our sim-
ple yet effective methods to the traditional CMLM frame-
work, we achieved state-of-the-art (SOTA) BLEU score on
WMT16 En→Ro (34.62) and Ro→En (34.82) with 10 iter-
ations. For the WMT14 En↔De dataset, AMOM also out-
performs most of the baselines on De→En (31.67). On the
En→De dataset, AMOM only gains 0.36 BLEU improve-
ment compared with CMLM and a comparable score com-
pared with strong CMLM-Based baselines. This might be
because our adaptive X strategy hurts the performance in
the first iteration to some extent. Note that AMOM is com-
plementary to other effective tricks applied in CMLM, and
stronger results can be expected by combining our adaptive
masking strategies with their methods.
Summarization. See Table 3, the performance is evaluated
by ROUGE F1 score (Lin and Hovy 2002). Specifically,
we report the unigram ROUGE-1 and bigram ROUGE-2
overlap to assess the informativeness, and the longest com-
mon subsequence ROUGE-L score to assess the fluency.
We compare our AMOM with the original CMLM and sev-
eral NAR baseline models, including vanilla NAT (Gu et al.
2018), InsertNAR (Stern et al. 2019), Levenshitein (Gu,
Wang, and Zhao 2019), Disco (Kasai et al. 2020a),
POSPD (Yang et al. 2021), CMLM (Ghazvininejad et al.
2019), BANG (Qi et al. 2021), MIST (Jiang et al. 2021),
ELMER (Li et al. 2022a). Results show that AMOM outper-
forms all other NAR models without pre-training. Since pre-
training always benefits summarization task a lot, models
with pre-training achieve significant performance improve-

ments. Notice that AMOM can also be applied to the pre-
training and finetune stage, we believe it also works to im-
prove the performance.
Code Generation. The performance is evaluated by BLEU
and ES (Wang et al. 2020), which measure character-level
edit similarity and n-gram level precision between the target
codes and generated codes, respectively. We also report the
results of different iterations in Table 4. Our AMOM outper-
forms the original CMLM with different iterations and gains
better improvements during refinements.

Analysis
The Mapping Function of Adaptive X Masking. In this
subsection, we exhibit exhaustive experiments to explore en-
coder masking strategies and how to affect the model perfor-
mance. In particular, we analyse the effects of different map-
ping functions, these strategies can utilize decoder masking
ratio αdec to obtain encoder masking ratio αenc:

• φlinear: αenc = (b− a)αdec + a;
• φconvex: αenc = (b− a)α2

dec + b;
• φconcvae: αenc = (a− b)α2

dec + 2(b− a)αdec + b;
• φladder: αenc = a− ⌈ αdec

a−b+0.1⌉,

where a and b are two hyper-parameters controlling the
masking limits, and the specific curves corresponding to the
above mapping function are presented in Appendix. The
results are shown in Table 5, and it is worth noting that
the above experiments are based on the CMLM model and
IWSLT14 De→En dataset for clear contrast. Early experi-
ments show that encoder masking can boost the model per-
formance, and at αenc = 0.2, the encoder masked model
performs best when using the fixed masking strategy, results
are shown in Appendix. That is why we design the mapping
function to limit the masking raio around 0.2. Firstly, we
take linear mapping functions as our priority. Fortunately,
linear mapping has been proved by comprehensive exper-
iments that it is indeed one of the most effective imple-
mentations to boost the performance. Besides, the results
are consistent with our intuition that the more tokens in
Y are masked, the few tokens in X should be masked to
keep the masking ratio balanced. We also have briefly tried
a few alternative implementations beyond linear mappings,
but without achieving further performance improvement.
The Effect of Adaptive X Masking. We also compare our
adaptive X masking strategy with several related works to
further show its effectiveness. Since JM-NAT (Guo, Xu, and
Chen 2020) also introduces masking operation inX , we also
conduct experiments to compare AMOM and their bert-like
masking. Also, they introduce an auxiliary MLM training
objective to improve the encoder, we further verify if this
can combine with AMOM, see Table 6. Notice that we keep
the decoder-side the same as vanilla CMLM (without adap-
tive Y masking in AMOM and n-gram loss in JM-NAT)
to make a fair comparison of encoder-side. Results show
that this MLM training objective can also improve AMOM
slightly, but seems less related to our assumption and pur-
pose. Besides, we can find adaptive X outperforms the bert-
like masking for CMLM. Also, we find that the adaptive X

13793

Strategy αenc BLEU

Linear

φlinear(αdec, 0.25, 0.15) 34.20
φlinear(αdec, 0.3, 0.1) 34.48
φlinear(αdec, 0.35, 0.15) 34.30
φlinear(αdec, 0.4, 0.1) 34.40
φlinear(αdec, 0.1, 0.3) 33.64
φlinear(αdec, 0.1, 0.4) 33.76

Convex ψconvex(αdec, 0.3, 0.1) 33.55

Concave ψconcave(αdec, 0.3, 0.1) 33.96

Ladder ψladder(αdec, 0.3, 0.1) 34.17

Table 5: The BLEU scores of adaptive X masking strategy.

Method BLEU Method BLEU

CMLM 33.87 CMLM 33.87
+ adax 34.48 + mix cutoff 33.96
+ adax+mlmloss 34.57 + span cutoff 33.93
+ jm-nat 34.13 + random replace 34.13
+ jm-nat+mlmloss 34.21 + random delete 33.95

Table 6: Comparison between adaptive X masking and re-
lated methods.

masking operation is similar to a data augmentation strategy
(such as cutoff (Shen et al. 2020)), and specially designed
to improve the refinements ability of CMLM. To better an-
alyze them, we also compare adaptive X masking with sev-
eral common data augmentation strategies (including cut-
off). Since fixed masking is similar to token cutoff, we con-
duct experiments with span cutoff and mix cutoff. We also
compare with some other strategies (such as random delete,
random replace). Results show that adaptiveX masking out-
performs all other operations onX , while various traditional
strategies can boost vanilla CMLM to some extent.
The Mapping Function of Adaptive Y Masking. We
also experiment with different masking strategies when ap-
plied to the decoder side in a two-step training scheme.
We try same adaptive mapping function and denoted as
ψlinear, ψconvex, ψconcvae, and ψladder to obtain masking
ratio αdec. Specifically, we can calculate αdec based on ran-
domly sampled variable β which is correctness ratio pre-
dicted by first step training as mentioned above : αdec =
ψlinear(β, a, b) = (b − a)β + a. Unlike the encoder mask-
ing mapping function, we choose a large masking ratio range
because there exist various conditions of masking ratios and
tokens confidence during inference. The schedule curves are
also shown in Appendix. Table 7 lists the results of several
adaptive decoder masking strategies. Notice that we achieve
all results here with a linear mapping φlinear(αdec, 0.3, 0.1)
for source-side masking. The simple linear mapping func-
tion achieves the best performance, and the large masking
ratio range seems better. Besides, a high correctness ratio al-
ways indicates high token confidence, and then fewer tokens
in Ŷmask will be masked in the next iteration. Our adaptive
Y masking strategy matches the inference strategy of the
original CMLM.

Strategy αdec BLEU

Linear

ψlinear(β, 0.1, 0.9) 34.65
ψlinear(β, 0.2, 0.8) 34.84
ψlinear(β, 0.3, 0.7) 34.79
ψlinear(β, 0.2, 0.5) 34.62
ψlinear(β, 0.5, 0.8) 34.77
ψlinear(β, 0.8, 0.2) 34.61

Convex ψconvex(β, 0.2, 0.8) 34.80

Concave ψconcave(β, 0.2, 0.8) 34.59

Ladder ψladder(β, 0.2, 0.8) 34.75

Table 7: The BLEU scores of adaptive Y masking strategy.

Masking Strategy BLEU Masking Strategy BLEU

Adaptive (Ours) 34.84 Uniform 34.53
+ same ratio 34.65 Glancing 34.68
+ 3 step 34.50 Glat 33.72
+ exposure bias 34.79 Glat + fix-x (0.1) 33.64
+ confidence-based 33.85 Glat + ada-x 33.35

Table 8: Comparison of adaptive Y masking with different
constraints and related methods.

The Effect of Adaptive Y Masking. To better understand
the two-step training scheme and how to guide model train-
ing, we analyze the effect of different masking and training
settings, and notice that we all keep the uniform masking
strategy in the first step as the original CMLM. First, we
use uniform sampling to replace adaptive ψ sampling in the
second masking step. Then we also keep the masking ra-
tio αdec = β to verify whether the masking ratio is critical
for model training. Besides, we use an adaptive strategy to
train three steps which simulate the multi-step inference sce-
narios. We also test the impact of whether recover ground
truth tokens or keep the predicted token in the second train-
ing step. Since the masking tokens are chosen by predic-
tion confidence during inference, we also apply confidence-
based masking during training to further verify our adap-
tive Y masking. Moreover, we also compare our adaptive
Y masking with the glancing masking strategy proposed in
GLAT to improve the one-pass decoding. The results are
shown in Table 8. We can observe that adaptive masking
outperforms uniform masking in the second-step training,
and the uniform masking seems to bring little improvements
compared with adaptive X masking (34.48). This also indi-
cates that although AMOM may expand training expenses,
adaptive Y masking is truly valuable, and the performance
improvements do not come from more updates. Moreover,
results also reflect that two-step refinements are enough for
model training without the necessity for more steps. Besides,
using model prediction instead of ground truth can effec-
tively reduce the problem of exposure bias, and introduc-
ing a confidence-based masking strategy does not bring im-
provements. Compared with GLAT, adopting the glancing
masking as the second step masking strategy also performs
better than uniform masking but is inferior to our adaptive

13794

[0,10) [10,20) [20,30) [30,40) >= 40
LENGTH

20

25

30

35

BL
EU

[0,10) [10,20) [20,30) [30,40) >= 40
LENGTH

20

25

30

35

BL
EU

CMLM : Iter.1
AMOM : Iter.1

Iter.10
Iter.10

Iter.N
Iter.N

Figure 1: Comparison between different source language
sentence length and decoding iterations.

Y masking. Besides, if we directly adopt glancing mask-
ing and one-step training the same as GLAT (Glat), the per-
formance declines, and further combining it with encoder
masking even harms the performance. This indicates that our
methods play a different role compared with GLAT.
More Iterations for Long Sequence. For long source input
sentences, it is almost impossible to obtain a fluent and rela-
tively correct result for non-autoregressive machine transla-
tion models. It often requires multiple iterations to refine the
translation results. Therefore, the ability to refine is a cru-
cial evaluation criterion for a model. First, we compare the
BLEU scores of AMOM and CMLM in different iterations
steps, as shown in Appendix. We can see that the AMOM
outperforms the CMLM model when the iterations step in-
creases, which proves that an adaptive masking strategy can
enhance refinement ability. In addition, we make a compar-
ison of results with different source sentence length N and
different decoding iterations T on two two datasets (IWSLT
DE→EN and WMT EN→RO). We split each dataset into
five segments according to sentence length and run infer-
ence three times according to different stepsN ∈ [1, 10, N].
In Figure 1, we present the improvements of more decod-
ing steps with different colours. Results show that AMOM
exhibit significant gain than vanilla CMLM with more steps,
e.g., although the performance of AMOM in Iter.1 is inferior
than CMLM, it all outperforms CMLM in Iter.10, especially
for long sentences. We can also find that long sentences of-
ten require more decoding steps, and AMOM perform better.

Related Work
Iterative-based Non-autoregressive Sequence Genera-
tion. Non-autoregressive models have attracted an increas-
ing attention in recent years due to their efficient decod-
ing, but the improvements in decoding speed come at the
expense of generation quality. Thus, iterative-based non-
autoregressive (NAR) models (Lee, Mansimov, and Cho
2018; Gu, Wang, and Zhao 2019; Saharia et al. 2020; Geng,
Feng, and Qin 2021; Lu, Meng, and Peng 2022) are pro-
posed to achieve a better trade-off between the inference
speedup and generation quality. Lee, Mansimov, and Cho
first propose the iterative model which aims refine the noised

target sequence. Later, insertion and deletion operations are
introduced in each decoding iteration to create the final
translation. Among these iterative NAR methods, the con-
ditional masked language model (CMLM) (Ghazvininejad
et al. 2019) is widely-used owing to its promising perfor-
mance when using the mask-predict strategy. In particular,
CMLM leverages the masked language model objective to
guide model training and iteratively masks and predicts to-
kens during inference. Many recently works have achieved
performance improvements based on CMLM (Guo, Xu, and
Chen 2020; Huang, Perez, and Volkovs 2022). Recently,
Savinov et al. proposed step-unrolled denoising autoencoder
which adopts denoising operation in each iteration.
Masked Language Model. The masked language model
(MLM) first introduced by BERT (Devlin et al. 2018) has
become the essential component of various popular pre-
training methods (Song et al. 2019; Liu et al. 2019; Dong
et al. 2019; Joshi et al. 2020; Li et al. 2022b; Xu, Van Durme,
and Murray 2021). Its standard paradigm is to select some
tokens in the source sequence by different strategies and then
replace them with a [mask] token, and then the model
is trained to predict the masked tokens. Since the masking
strategy is significantly essential for these model, different
masking strategies are served as different learning methods.
As BERT is served as a single Transformer encoder and a
monolingual framework, there are limitations in various ap-
plications, such as machine translation. Then much progress
has been made to extend the applications of masked lan-
guage modeling strategy (Guo et al. 2020; Zhu et al. 2020;
Li et al. 2022b). The CMLM-based non-autoregressive mod-
els can also benefit from it by introducing a uniform mask-
ing strategy in training and a mask-predict decoding strat-
egy during inference (Ghazvininejad et al. 2019). However,
only few improvements on masking strategies are explored
for CMLM. In this work, we further design a simple yet ef-
fective adaptive masking over masking method on both the
encoder and decoder sides to enhance the CMLM training
for better refinement capability during inference.

Conclusion
In this paper, we present an adaptive masking over masking
(AMOM) strategy to enhance the conditional masked lan-
guage model (CMLM) for non-autoregressive sequence gen-
eration. Our AMOM only contains two masking operations
in model training without modifying the model structure
or changing the inference schedule. Extensive experiments
on different sequence generation tasks indicate our pro-
posed AMOM can yield significant performance improve-
ment over the original CMLM model and even outperform
the strong autoregressive (Transformer) counterpart on 7
NMT benchmark datasets and achieves SOTA performance
on WMT16 EN→RO, 34.82 BLEU on WMT16 RO→EN,
and 34.84 BLEU on IWSLT De→En. Due to the limitation
of computational resources, we only test our AMOM for the
CMLM model. In the near future, we will design more el-
egant AMOM strategies and explore their effectiveness on
different NAR frameworks. We also will extend our AMOM
to other types of masked language models, both in the pre-
training and fine-tuning stages.

13795

Acknowledgments
Ruiyang Xu contributes equally with Yisheng Xiao. Jun-
tao Li is the corresponding author. This work is sup-
ported by the National Science Foundation of China (NSFC
No. 62206194), the Natural Science Foundation of Jiangsu
Province, China (No. BK20220488), and the Project Funded
by the Priority Academic Program Development of Jiangsu
Higher Education Institutions. This work is also supported
by Beijing Academy of Artificial Intelligence (BAAI).

References
Allamanis, M.; and Sutton, C. 2013. Mining source code
repositories at massive scale using language modeling. In
2013 10th Working Conference on Mining Software Reposi-
tories (MSR), 207–216. IEEE.
Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2018.
Bert: Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805.
Ding, L.; Wang, L.; Liu, X.; Wong, D. F.; Tao, D.; and Tu,
Z. 2020. Understanding and Improving Lexical Choice in
Non-Autoregressive Translation. In ICLR.
Ding, L.; Wang, L.; Liu, X.; Wong, D. F.; Tao, D.; and Tu,
z. 2021. Rejuvenating Low-Frequency Words: Making the
Most of Parallel Data in Non-Autoregressive Translation. In
ACL-IJCNLP, 3431–3441.
Dong, L.; Yang, N.; Wang, W.; Wei, F.; Liu, X.; Wang, Y.;
Gao, J.; Zhou, M.; and Hon, H.-W. 2019. Unified language
model pre-training for natural language understanding and
generation. NeurIPS, 32.
Du, C.; Tu, Z.; and Jiang, J. 2021. Order-agnostic cross en-
tropy for non-autoregressive machine translation. In ICML,
2849–2859. PMLR.
Elsaid, A.; Mohammed, A.; Fattouh, L.; and Sakre, M. 2022.
A Comprehensive Review of Arabic Text summarization.
IEEE Access.
Geng, X.; Feng, X.; and Qin, B. 2021. Learning to Rewrite
for Non-Autoregressive Neural Machine Translation. In
EMNLP, 3297–3308.
Ghazvininejad, M.; Levy, O.; Liu, Y.; and Zettlemoyer,
L. 2019. Mask-Predict: Parallel Decoding of Conditional
Masked Language Models. In EMNLP-IJCNLP, 6112–
6121.
Ghazvininejad, M.; Levy, O.; Zettlemoyer; and Luke. 2020.
Semi-autoregressive training improves mask-predict decod-
ing. arXiv preprint arXiv:2001.08785.
Gu, J.; Bradbury, J.; Xiong, C.; Li, V. O.; and Socher, R.
2018. Non-Autoregressive Neural Machine Translation. In
ICLR.
Gu, J.; and Kong, X. 2021. Fully Non-autoregressive Neural
Machine Translation: Tricks of the Trade. In Findings of
ACL-IJCNLP, 120–133.
Gu, J.; Wang, C.; and Zhao, J. 2019. Levenshtein Trans-
former. NeurIPS, 32: 11181–11191.

Guo, J.; Xu, L.; and Chen, E. 2020. Jointly masked
sequence-to-sequence model for non-autoregressive neural
machine translation. In ACL, 376–385.
Guo, J.; Zhang, Z.; Xu, L.; Wei, H.-R.; Chen, B.; and Chen,
E. 2020. Incorporating BERT into Parallel Sequence Decod-
ing with Adapters. In NeurIPS.
Hao, Y.; He, S.; Jiao, W.; Tu, Z.; Lyu, M.; and Wang,
X. 2021. Multi-Task Learning with Shared Encoder for
Non-Autoregressive Machine Translation. In NAACL-HLT,
3989–3996.
Helcl, J.; Haddow, B.; and Birch, A. 2022. Non-
Autoregressive Machine Translation: It’s Not as Fast as it
Seems. arXiv preprint arXiv:2205.01966.
Hinton, G. E.; Srivastava, N.; Krizhevsky, A.; Sutskever, I.;
and Salakhutdinov, R. R. 2012. Improving neural networks
by preventing co-adaptation of feature detectors. arXiv
preprint arXiv:1207.0580.
Huang, C.; Zhou, H.; Zaı̈ane, O. R.; Mou, L.; and Li, L.
2022a. Non-autoregressive translation with layer-wise pre-
diction and deep supervision. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36, 10776–
10784.
Huang, F.; Zhou, H.; Liu, Y.; Li, H.; and Huang, M. 2022b.
Directed Acyclic Transformer for Non-Autoregressive Ma-
chine Translation. arXiv preprint arXiv:2205.07459.
Huang, X. S.; Perez, F.; and Volkovs, M. 2022. Improv-
ing Non-Autoregressive Translation Models Without Distil-
lation. In ICLR.
Jiang, T.; Huang, S.; Zhang, Z.; Wang, D.; Zhuang, F.; Wei,
F.; Huang, H.; Zhang, L.; and Zhang, Q. 2021. Improving
Non-autoregressive Generation with Mixup Training. arXiv
preprint arXiv:2110.11115.
Joshi, M.; Chen, D.; Liu, Y.; Weld, D. S.; Zettlemoyer, L.;
and Levy, O. 2020. Spanbert: Improving pre-training by rep-
resenting and predicting spans. Transactions of the Associ-
ation for Computational Linguistics, 8: 64–77.
Kasai, J.; Cross, J.; Ghazvininejad, M.; and Gu, J. 2020a.
Parallel machine translation with disentangled context trans-
former. arXiv preprint arXiv:2001.05136.
Kasai, J.; Pappas, N.; Peng, H.; Cross, J.; and Smith, N.
2020b. Deep Encoder, Shallow Decoder: Reevaluating Non-
autoregressive Machine Translation. In ICLR.
Kim, Y.; and Rush, A. M. 2016. Sequence-Level Knowledge
Distillation. In EMNLP, 1317–1327.
Lee, J.; Mansimov, E.; and Cho, K. 2018. Deterministic
Non-Autoregressive Neural Sequence Modeling by Iterative
Refinement. In EMNLP, 1173–1182.
Lewis, M.; Liu, Y.; Goyal, N.; Ghazvininejad, M.; Mo-
hamed, A.; Levy, O.; Stoyanov, V.; and Zettlemoyer, L.
2020. BART: Denoising Sequence-to-Sequence Pre-training
for Natural Language Generation, Translation, and Compre-
hension. In ACL, 7871–7880.
Li, J.; Tang, T.; Zhao, W. X.; Nie, J.-Y.; and Wen, J.-R.
2022a. ELMER: A Non-Autoregressive Pre-trained Lan-
guage Model for Efficient and Effective Text Generation.
arXiv preprint arXiv:2210.13304.

13796

Li, P.; Li, L.; Zhang, M.; Wu, M.; and Liu, Q. 2022b. Uni-
versal Conditional Masked Language Pre-training for Neu-
ral Machine Translation. ACL.
Liang, X.; Wu, L.; Li, J.; Wang, Y.; Meng, Q.; Qin, T.; Chen,
W.; Zhang, M.; Liu, T.-Y.; et al. 2021. R-drop: regularized
dropout for neural networks. NeurIPS, 34.
Lin, C.-Y.; and Hovy, E. 2002. Manual and automatic evalu-
ation of summaries. In Proceedings of the ACL-02 Workshop
on Automatic Summarization, 45–51.
Liu, F.; Fu, Z.; Li, G.; Jin, Z.; Liu, H.; and Hao, Y. 2022.
Non-autoregressive Model for Full-line Code Completion.
arXiv preprint arXiv:2204.09877.
Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.;
Levy, O.; Lewis, M.; Zettlemoyer, L.; and Stoyanov, V.
2019. Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.
Lu, S.; Meng, T.; and Peng, N. 2022. InsNet: An Efficient,
Flexible, and Performant Insertion-based Text Generation
Model. In Advances in Neural Information Processing Sys-
tems.
Ma, Y.; Nguyen, K. L.; Xing, F. Z.; and Cambria, E. 2020. A
survey on empathetic dialogue systems. Information Fusion,
64: 50–70.
Marjan, G.; Karpukhin, V.; Zettlemoyer, L.; and Levy, O.
2020. Aligned cross entropy for non-autoregressive machine
translation. In ICML, 3515–3523. PMLR.
Narayan, S.; Cohen, S.; and Lapata, M. 2018. Don’t Give
Me the Details, Just the Summary! Topic-Aware Convo-
lutional Neural Networks for Extreme Summarization. In
EMNLP, 1797–1807.
Ott, M.; Edunov, S.; Baevski, A.; Fan, A.; Gross, S.; Ng, N.;
Grangier, D.; and Auli, M. 2019. fairseq: A Fast, Extensible
Toolkit for Sequence Modeling. In NAACL-HLT.
Papineni, K.; Roukos, S.; Ward, T.; and Zhu, W.-J. 2002.
Bleu: a method for automatic evaluation of machine transla-
tion. In ACL, 311–318.
Post, M. 2018. A call for clarity in reporting BLEU scores.
arXiv preprint arXiv:1804.08771.
Qi, W.; Gong, Y.; Jiao, J.; Yan, Y.; Chen, W.; Liu, D.; Tang,
K.; Li, H.; Chen, J.; Zhang, R.; et al. 2021. Bang: Bridging
autoregressive and non-autoregressive generation with large
scale pretraining. In ICML, 8630–8639. PMLR.
Qian, L.; Zhou, H.; Bao, Y.; Wang, M.; Qiu, L.; Zhang,
W.; Yu, Y.; and Li, L. 2021. Glancing Transformer for
Non-Autoregressive Neural Machine Translation. In ACL-
IJCNLP, 1993–2003.
Raychev, V.; Bielik, P.; and Vechev, M. 2016. Probabilistic
model for code with decision trees. ACM SIGPLAN Notices,
51(10): 731–747.
Saharia, C.; Chan, W.; Saxena, S.; and Norouzi, M.
2020. Non-Autoregressive Machine Translation with Latent
Alignments. In EMNLP, 1098–1108.
Savelieva, A.; Au-Yeung, B.; and Ramani, V. 2020. Abstrac-
tive summarization of spoken and written instructions with
BERT. arXiv preprint arXiv:2008.09676.

Savinov, N.; Chung, J.; Binkowski, M.; Elsen, E.; and
van den Oord, A. 2021. Step-unrolled Denoising Autoen-
coders for Text Generation. In International Conference on
Learning Representations.
Shen, D.; Zheng, M.; Shen, Y.; Qu, Y.; and Chen, W. 2020.
A simple but tough-to-beat data augmentation approach
for natural language understanding and generation. arXiv
preprint arXiv:2009.13818.
Song, K.; Tan, X.; Qin, T.; Lu, J.; and Liu, T.-Y. 2019. Mass:
Masked sequence to sequence pre-training for language gen-
eration. arXiv preprint arXiv:1905.02450.
Stern, M.; Chan, W.; Kiros, J.; and Uszkoreit, J. 2019. Inser-
tion transformer: Flexible sequence generation via insertion
operations. In ICML, 5976–5985. PMLR.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. At-
tention is all you need. In NIPS, 5998–6008.
Wang, W.; Shen, S.; Li, G.; and Jin, Z. 2020. Towards Full-
line Code Completion with Neural Language Models. arXiv
preprint arXiv:2009.08603.
Wu, L.; Wang, Y.; Xia, Y.; Tian, F.; Gao, F.; Qin, T.; Lai,
J.; and Liu, T.-Y. 2019. Depth Growing for Neural Machine
Translation. In ACL, 5558–5563.
Xiao, Y.; Wu, L.; Guo, J.; Li, J.; Zhang, M.; Qin, T.; and
Liu, T.-y. 2022. A Survey on Non-Autoregressive Gener-
ation for Neural Machine Translation and Beyond. arXiv
preprint arXiv:2204.09269.
Xie, P.; Li, Z.; and Hu, X. 2021. MvSR-NAT: Multi-
view Subset Regularization for Non-Autoregressive Ma-
chine Translation. arXiv preprint arXiv:2108.08447.
Xu, H.; Van Durme, B.; and Murray, K. 2021. BERT,
mBERT, or BiBERT? A Study on Contextualized Embed-
dings for Neural Machine Translation. arXiv preprint
arXiv:2109.04588.
Yang, K.; Lei, W.; Liu, D.; Qi, W.; and Lv, J. 2021. POS-
Constrained Parallel Decoding for Non-autoregressive Gen-
eration. In ACL, 5990–6000.
Zhang, Y.; Sun, S.; Galley, M.; Chen, Y.-C.; Brockett, C.;
Gao, X.; Gao, J.; Liu, J.; and Dolan, W. B. 2020. DI-
ALOGPT: Large-Scale Generative Pre-training for Conver-
sational Response Generation. In ACL,System Demonstra-
tions, 270–278.
Zhou, C.; Gu, J.; and Neubig, G. 2019. Understand-
ing Knowledge Distillation in Non-autoregressive Machine
Translation. In ICLR.
Zhu, J.; Xia, Y.; Wu, L.; He, D.; Qin, T.; Zhou, W.; Li, H.;
and Liu, T.-Y. 2020. Incorporating bert into neural machine
translation. arXiv preprint arXiv:2002.06823.

13797

