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Abstract

Logic-based machine learning has the crucial advantage of
transparency. However, despite significant recent progress,
further research is needed to close the accuracy gap between
logic-based architectures and deep neural network ones. This
paper introduces a novel variant of the Tsetlin machine (TM)
that randomly drops clauses, the logical learning element of
TMs. In effect, TM with Drop Clause ignores a random se-
lection of the clauses in each epoch, selected according to a
predefined probability. In this way, the TM learning phase be-
comes more diverse. To explore the effects that Drop Clause
has on accuracy, training time and robustness, we conduct
extensive experiments on nine benchmark datasets in natural
language processing (IMDb, R8, R52, MR, and TREC) and
image classification (MNIST, Fashion MNIST, CIFAR-10,
and CIFAR-100). Our proposed model outperforms baseline
machine learning algorithms by a wide margin and achieves
competitive performance compared with recent deep learn-
ing models, such as BERT-Large and AlexNet-DFA. In brief,
we observe up to 10% increase in accuracy and 2× to 4×
faster in learning than those of the standard TM. We visu-
alize the patterns learnt by Drop Clause TM in the form of
heatmaps and show evidence of the ability of drop clause
to learn more unique and discriminative patterns. We finally
evaluate how Drop Clause affects learning robustness by in-
troducing corruptions and alterations in the image/language
test data, which exposes increased learning robustness.

Introduction
Researchers across various fields are increasingly paying at-
tention to the interpretability of AI techniques. While inter-
pretability previously was inherent in most machine learn-
ing approaches, the state-of-the-art methods now increas-
ingly rely on black-box deep neural network-based models.
Natively, these can neither be interpreted during the learn-
ing stage nor while producing outputs. For this reason, a
surge of techniques attempts to open the black box by visual
explanations and gradient-based interpretability (Simonyan,
Vedaldi, and Zisserman 2014; Zhang, Wu, and Zhu 2018;
Radhakrishnan et al. 2018; Bau et al. 2017; Selvaraju et al.
2017; Ribeiro, Singh, and Guestrin 2016).
The Tsetlin Machine (TM) is an interpretable rule-
based machine learning algorithm that produces logical
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rules (Granmo 2018). In brief, it employs an ensemble of
Tsetlin Automata (TA) that learns propositional logic ex-
pressions from Boolean input features, and TM achieves in-
terpretability by leveraging sparse disjunctive normal form.
Indeed, humans are particularly good at understanding flat
and short logical AND-rules, reflecting human reason-
ing (Noveck et al. 1991). In addition, due to its Boolean
representations and finite-state learning mechanisms, it pos-
sesses a minimalistic memory footprint.
Similar to neural networks, the vanilla TM suffers overfit-
ting in the sense that its learning elements, i.e., clauses,
are prone to capture noisy and redundant patterns. Initially,
we believed that this could be simply because of the large
number of clauses. However, by decreasing the number of
clauses, there was a proportionate decrease in performance.
In order to mitigate overfitting, inspired by Dropout (Srivas-
tava et al. 2014), we propose a method named Drop Clause
(DC) in this paper1. More specifically, DC method randomly
drops or switches off a set of clauses during training, which
is similar to what dropout does in neural networks. Unlike
dropout, DC induces stochasticity in TM learning, boosting
performance in terms of accuracy and learning speed. It fur-
ther improves the patterns captured by the clauses, making
them more robust towards input perturbations. As a direct
consequence of DC during training, the training time is re-
duced proportionally and the heatmaps produced becomes
more distinct.

Paper Contributions:
• We propose to drop clauses randomly during each train-

ing iteration, which introduces additional stochasticity.
• We demonstrate that DC makes the TM capture more

unique patterns, improving its generalization perfor-
mance.

• DC TM leads to competitive results to large deep neural
network models on nine benchmark datasets for NLP and
image classification. Since TM is more akin to a stan-
dard machine learning algorithm, like a decision tree,
than a deep learning model, we compare DC TM with
well-known machine learning algorithms, documenting
superior performance across all the datasets.

1The code is available online on: https://github.com/
Anonymous-2491/Drop-Clause-Interpretable-TM.
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• Via heatmaps, we visualize that DC TM becomes more
clear-cut and robust on image classification and language
sentiment analysis.

Drop Clause for Tsetlin Machines
Modern society needs reliable, unbiased, and trustworthy
AI systems. Researchers have shown that neural networks
are not fully mature for integration into society. For exam-
ple, neural network interpretability is fragile towards adver-
sarial examples (Ghorbani, Abid, and Zou 2019). Gener-
ating adversarial perturbations that produce visually indis-
tinguishable images for humans leads to dramatically dif-
ferent neural network interpretations, without changing the
label. While methods such as GradCAM (Selvaraju et al.
2017) and LIME (Ribeiro, Singh, and Guestrin 2016) can
take a peek inside black-box models, the explanations of-
fered can be arbitrarily inaccurate, as argued by Rudin et al.
They pinpoint several reasons for choosing inherently inter-
pretable models over attempting to explain black-box ones
(Rudin 2019). They further raise three algorithmic chal-
lenges that the machine learning community faces to suc-
ceed with human-level interpretability. Although neural net-
works are inherently inadequate for these challenges, the
TM addresses them natively:
• Challenge 1: Rule-based logical models. The TM learns

a rule-based model using logical operations. Learning
is game-theoretic with Nash equilibria that correspond
to the optimal propositional logic expressions (Granmo
2018; Zhang et al. 2022; Jiao et al. 2022).

• Challenge 2: Linear models with sparse scoring systems.
The TM is a linear model that produces sparse clauses
and integer weighted scores (Abeyrathna, Granmo, and
Goodwin 2021).

• Challenge 3: Domain-specific interpretable AI. The TM
is inherently interpretable, used for producing inter-
pretable models across several domains (Abeyrathna
et al. 2020; Lei et al. 2021; Yadav et al. 2021, 2022).

In what follows, we first briefly present the basic TM and
its convolutional version. Thereafter, we introduce the DC
technique, which enhances the stochasticity of TM learning.

TM and Convolutional TM
A TM in its simplest form takes a feature vector x =
[x1, x2, . . . , xo] ∈ {0, 1}o of o Boolean values as in-
put, producing a Boolean output ŷ ∈ {0, 1}. Pat-
terns are expressed as conjunctive clauses Cj (AND-
rules), built from literals L = {l1, l2, . . . , l2o} =
{x1, x2, . . . , xo,¬x1,¬x2, . . . ,¬xo}:

Cj =
2o∧
k=1

[
g(ajk) ⇒ lk

]
. (1)

In Eq. (1), ajk is the TA state that controls inclusion of literal
lk in clause j and g(·) maps the TA state to action 0 or 1. The
imply operator, in turn, implements the action in the clause.
That is, if g(ajk) is 1, then the imply operator requires that
the literal is 1 for the whole expression to be 1. If g(ajk) is 0,

on the other hand, the expression becomes 1 regardless the
true value of lk.

ŷ =

{
1,

∑n−1
j=1,3,... Cj −

∑n
j=2,4,... Cj ≥ 0,

0, Otherwise.
(2)

Clauses are divided into even-indexed/odd-indexed clauses
that vote for output ŷ = {0, 1}. Odd-indexed clauses vote
in favour of the class whereas even-indexed clauses vote
against the class, as shown in Eq. (2). A positive vote count
means majority of the clauses predict the input to belong to
the class and a negative vote count implies majority of the
clauses believe the input does not belong to the class. A de-
tailed explanation can be found in (Granmo 2018).
The Convolutional TM (CTM) is as an interpretable alter-
native to CNNs. Whereas the TM categorizes an image by
employing each clause once to the whole image, the CTM
uses each clause as a convolution filter. That is, a clause is
evaluated multiple times, once per image patch taking part
in the convolution. The output of a convolution clause is ob-
tained simply by ORing the outcome of evaluating the clause
on each patch:

ŷ =

{
1,

∑n−1
j=1,3,...

∨B
b=1 Cj −

∑n
j=2,4,...

∨B
b=1 Cj ≥ 0,

0, Otherwise.

Here, b refers to one out of B available image patches. A
detailed explanation can be found in (Granmo et al. 2019).
Please see the supplementary material for further details on
TM and CTM.

Drop Clause
Here we propose a novel regularization method for the TM,
i.e., DC. This technique is inspired by the dropout method
for neural networks. In DC, clauses are removed with a prob-
ability p in each training epoch:

ŷ =

{
1,

∑n−1
j=1,3,... πjCj −

∑n
j=2,4,... πjCj ≥ 0,

0, Otherwise.
(3)

Above, πj ∈ {0, 1} for clause j is zero with probability p
for each complete epoch. Clearly, the vanilla TM and its DC
variant are equivalent if p = 0.
DC TM is similar to dropout in neural networks, and the pur-
pose is to reduce the chance of learning redundant patterns.
A vanilla TM seeks to minimize prediction error on the train-
ing data. Achieving this, there may still be unused patterns
available in the training data. These patterns can potentially
be useful when facing new data, such as test data. By ran-
domly dropping clauses for complete epochs, we mobilize
other clauses to take over the role of the dropped clauses.
DC can be thought of as having a pool of clauses and se-
lecting a set of clauses with 1 − p probability for training
every epoch. However, due to this stochastic learning, the
mobilized clauses may solve the task in a different way each
time. Hence, robustness increases overall when the complete
set of clauses are turned on again. The resulting effects are
evaluated experimentally in the next section.
The stochasticity induced by DC in the TM learning process
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is similar to the stochasticity induced by stochastic gradi-
ent descent (SGD) (Robbins 2007). In SGD, a mini-batch of
training samples is selected randomly from the training data.
While, in DC, various sets of clauses are selected for train-
ing with probability 1−p. The major difference is that, SGD
is stochastic in terms of data sampling during the learning
stage, whereas DC is stochastic in terms of sampling the el-
ements of the model structure (clauses are the elements that
form the TM model). Another difference is that the stochas-
ticity of DC can be adjusted with the DC probability hyper-
parameter p. Note that the Drop Clause TM still retains its
convergence properties. Please see supplementary material
for details.

Enhanced Performance
We here investigate the effects that DC has on the perfor-
mance of TMs. To assess the generality of our approach,
we test DC both on NLP and image classification. For NLP,
we use TM with weighted clauses, and for image classifi-
cation, we use the CTM. For evaluation, we compare our
approach with the comparable state-of-the-art deep learning
models. Since TM is a rule-based machine learning method,
we also cover more standard machine learning algorithms.
The DC implementation is written in PyCUDA for paral-
lel GPU computation. We train our models on 16 NVIDIA
Tesla V100 TensorCore GPUs for the image classification
task and on one NVIDIA RTX 3070 8GB GPU for the NLP
tasks2.

Natural Language Processing
We explore the performance of DC on NLP tasks first.
The first experiments assess how varying the DC proba-
bility affects classification accuracy and then compare the
best found configuration with similar machine learning al-
gorithms and state-of-the-art techniques. We adopt 5 popular
standard datasets, summarized below:

• IMDb consists of 50, 000 movie reviews for sentiment
analysis, split in half for training and testing. Here, we
use 10, 000 clauses and set TM threshold T to 8, 000 and
specificity s to 2.0.

• Reuters-21578 contains the text categorization datasets
R8 and R52. R8 is divided into 8 categories, with 5, 485
training and 2, 189 testing samples, whereas R52 consists
of 52 categories, divided into 6, 532 training and 2, 568
testing samples. We here employ 3, 000 clauses with T =
2, 000 and s = 7.0.

• MR is another movie review dataset for binary sentiment
classification, consisting of 10, 662 samples. We use the
train-test split as in (Tang, Qu, and Mei 2015) and use
5, 000 clauses with T = 4, 000 and s = 6.0.

• TREC is a question classification dataset that encom-
passes 6 categories. There are a total of 6, 000 samples,
5, 500 for training and 500 for testing. Here, we employ
5, 000 clauses with T = 4, 000 and s = 2.0.

2Note that these are not hardware requirements. We use these
GPUs just to train faster.

TM p = 0 p = .1 p = .25 p = .5 p = .75

IMDB 87.2 88.3 89.6 90.4 91.27
R8 96.16 97.6 98.1 98.5 98.94
R52 89.14 89.5 90.8 91.5 92.75
MR 75.14 77.25 77.9 78.2 78.67
TREC 88.05 89.8 90.1 90.5 89.9

Table 1: Effect of DC on NLP Datasets.

CTM p = 0 p = .1 p = .25 p = .5 p = .75

MNIST 99.3 99.3 99.45 99.35 98.2
F-MNIST 91.5 91.75 92.5 92.25 91.25
CIFAR-10 69.3 70.5 73.2 75.1 72.6
CIFAR-100 35.5 39.5 42.6 45.2 40.8

Table 2: Effect of DC on Image Classification.

Our first step is to compare the difference in perfor-
mance with respect to changing DC probability p, as
shown in Table 1. The selected DC probabilities are p ∈
{0.1, 0.25, 0.5, 0.75}. For IMDb, R8, R52 and MR, the best
performance is achieved with p = 0.75, which is equivalent
of dropping 75% of the total clauses per class, per epoch.
As for TREC, p = 0.5 works best. As seen, DC has sig-
nificant effect on accuracy, with average accuracy going up
by 4.07% for IMDb, 2.78% for R8, 3.61% for R52, 3.53%
for MR and 2.45% for TREC. Additionally, we observe a
substantial reduction in training time proportional to the DC
ratio. Inference times on these datasets are less than 2.3s per
1000 samples on average on an NVIDIA GTX 1080 GPU.
The TM is a rule-based machine learning algorithm, so we
also compare our proposed TM model with a few traditional
machine learning techniques. Specifically, we compare our
proposed TM with DC against Support Vector Machine
(SVM), Random Forests (RF), K-Nearest Neighbours (K-
NN) and XGBoost (XGB). Table 2 displays the comparison
results3. From Table 2, it is clear that DC TM outperforms
other machine learning algorithms by a wide margin.
We also compare our model with deep learning methods,
some of which representing the state of the art. Tables 4
and 5 show the results of the comparisons. Enhanced with
DC, the accuracy of TM is comparable not only to CNNs
and LSTMs but also to computationally complex and para-
metrically large state-of-the-art models like BERT-Large.
On all datasets in Table 4, inclusion of DC propels the
performance of the TM to outperform CNN (Kim 2014)
and bidirectional LSTM with pretrained word embeddings.
In fact, on R8 and R52, DC TM is able to achieve better
accuracy than BERT (Devlin et al. 2019) and comes close
to its performance on MR. Also, comparing our model with
the state-of-the-art graph convolutional neural network,
S2GC (Zhu and Koniusz 2020), DC TM achieves better
performance on R8 and MR, and comparable performance

3Note that the machine learning methods used here for compar-
ison have default parameters from sklearn.
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TM TM SVM RF K-NN XGB
(DC)

IMDB 87.2 91.27 83.2 78.5 72.5 84.4
R8 96.16 98.94 84.7 82.4 77.3 85.1
R52 89.14 92.75 71.0 72.5 58.2 75.4
MR 75.14 78.67 52.2 51.7 39.1 56.3
TREC 88.05 90.5 67.5 65.4 56.1 77.6

Table 3: Comparison with ML methods.

TM CNN BILSTM BERT S2GC
(DC) LARGE

IMDB 91.27 87.9 88.9 95.4 -
R8 98.94 95.71 96.31 96.02 97.4
R52 92.75 87.59 90.54 89.66 94.5
MR 78.67 77.75 77.68 79.24 76.7

Table 4: Comparison on IMDb, R8, R52 and MR.

on R52. Similar results are obtained on the TREC dataset
shown in Table 5. DC TM outperforms a baseline LSTM
model as well as a vanilla Transformer (TF) and Trans-
former with feature projection (FP) (Qin, Hu, and Liu
2020).
Even though BERT-Large achieves better performance on
TREC dataset, TM has major advantages over these models
in terms of computational complexity and transparency,
which are further enhanced by DC (See Section “Enhanced
Robustness”). While it is disputed whether attention is
explainable (Jain and Wallace 2019), attention is much
more complex (quadratic complexity with floating-point op-
erations) than our proposed model (linear complexity with
Boolean operations) that achieves comparable performance.
Note that our model only relies on simple bag-of-words
tokens in the target datasets, without considering any
additional pretrained world knowledge (Yadav et al. 2021),
like word2vec, Glove or BERT features. Yet, it achieves
competitive performance compared to deep learning and
some state-of-the-art models.

Image Classification
We now turn to image classification, again focusing on how
DC affects performance of TM. To this end, we evaluate DC
on four benchmark image classification datasets: MNIST,
Fashion-MNIST, CIFAR-10 and CIFAR-100. We binarize
the datasets using an adaptive Gaussian thresholding pro-
cedure as proposed in (Granmo et al. 2019). This binariza-
tion results in images with only 1 bit per pixel per channel,
considerably reducing the memory overhead. For the task of
image classification, we employ the CTM.

• MNIST encompasses 70, 000 28 × 28 gray-scale im-
ages of hand written single digits, 60, 000 for training
and 10, 000 for testing. Here, we use 8, 000 clauses with
T = 6, 400 and s = 5.0.

TM (DC) LSTM TF FP+TF BERT-LARGE

TREC-6 90.5 87.19 87.33 89.5 95.6

Table 5: Comparison on TREC-6.

• Fashion-MNIST contains 28 × 28 gray-scale images
from the Zalando catalogue. For this dataset, we use the
same parameters as the MNIST dataset.

• CIFAR-10 and CIFAR-100 consist of 50, 000 32 × 32
color images of objects divided into 10 categories for
CIFAR-10 and 100 for CIFAR-100. Another 10, 000 im-
ages are provided for testing. Here, we make use of
60, 000 clauses with T = 48, 000 and s = 10.0.

Again, we explore the effects of four DC probability set-
tings, p ∈ {0.1, 0.25, 0.5, 0.75}, shown in Table 2. The best
performance is achieved with p = 0.25 for the MNIST
and Fashion-MNIST, while p = 0.5 gives the best result
for the CIFAR datasets, which is equivalent to dropping a
quarter (or half) of the clauses per training iteration. No-
tice the considerable performance increase, especially on the
CIFAR datasets, with DC of p = 0.5. Peak accuracy on
MNIST is 99.45% (±0.25%), and on Fashion-MNIST it is
92.5% (±0.25%). CIFAR-10 and CIFAR-100 peak at 75.1%
(±0.4%) and 45.2% (±0.2%) respectively, averaged over
100 runs. Apart from the accuracy gain, DC with p = 0.5
reduces training time by approximately 50%, for the CI-
FAR datasets. For instance, training time per epoch drops
from 61.83s to 32.58s for CIFAR-10. The inference time
for the DC CTM on CIFAR-10 is 1.5s per 1000 images on
one NVIDIA Tesla V100 GPU, leveraging the computation
benefits of binary operations for TM inference.
Table 6 shows the comparison of the DC CTM with other
popular machine learning techniques on the image classifi-
cation. As seen, CTM outperforms the traditional machine
learning techniques by a wide margin, further widened by
the introduction of DC4.
Table 7 contains a comparison between the DC CTM with
certain related and state-of-the-art techniques. Binary neural
networks can be represented exactly as a propositional logic
expression (Narodytska et al. 2018). As such, they are partic-
ularly comparable to CTM and we therefore also include re-
sults for EEV-BNN (Jia and Rinard 2020). EEV-BNN is a bi-
nary neural network that has been verified with Boolean sat-
isfiability. Employing EEV-BNN, we use the MNIST-MLP
and Conv-Large BNN architectures from (Jia and Rinard
2020) for comparisons. The DC CTM significantly outper-
forms EEV-BNN on MNIST and CIFAR-10, as shown in
Table 7. We also compare our method with a transformer
based model of reduced complexity to make it more compa-
rable to our model. The Vision Nystromformer (ViN) (Jee-
van and Sethi 2021) is a vision transformer (ViT) based
model that reduces the quadratic computational complex-
ity of ViT by using the Nystrom methods for approximat-

4Note that the accuracy on CIFAR-100 is not displayed in Ta-
ble 6 for other machine learning algorithms as the accuracy is mi-
nuscule.
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CTM CTM SVM RF K-NN XGB
(DC)

MNIST 99.3 99.45 93.4 93.8 95.3 96.2
F-MNIST 91.5 92.5 84.6 87.5 85.4 88.4
CIFAR-10 69.3 75.1 37.5 48.7 33.9 47.8
CIFAR-100 35.5 45.2 - - - -

Table 6: Image Classification with ML methods.

CTM EEV HYBRID ALEXNET MAXOUT
(DC) -BNN -VIN -DFA

MNIST 99.45 98.25 96.4 98.2 99.06
F-MNIST 92.5 - - 91.66 -
CIFAR-10 75.1 63.45 75.26 64.7 86.8
CIFAR-100 45.2 - - 52.62 59.52

Table 7: Image Classification with SOTA models.

ing self-attention. It achieves 65.06% accuracy on CIFAR-
10 whereas the Hybrid-ViN, which incorporates rotary posi-
tional embedding, obtains slightly better accuracy as shown
in Table 7, comparable to our model.
We also contrast our model against AlexNet with Direct
Feedback Alignment (DFA) (Webster, Choi, and changwook
Ahn 2021) for parallel backpropagation training, which
makes it comparable to the fast training of TM. The results
in Table 7 show that AlexNet-DFA achieves similar perfor-
mance on MNIST and Fashion-MNIST, whereas it is out-
performed by DC CTM on CIFAR-10. However, there is a
considerable difference on the CIFAR-100 dataset due to the
larger label space. Finally, as DC is inspired from dropout,
we compare our model with the Maxout network (Goodfel-
low et al. 2013), which was a natural companion to dropout.
Maxout achieves significantly better performance on the CI-
FAR datasets as shown in Table 7. Note that on color images,
binarization can lead to loss of important information espe-
cially when we use 1-bit per channel, compared with 8-bits
per channel for lossless color information. Also, as previ-
ously stated, TM possesses computational advantages over
these methods along with transparency.
Another point to note is that, originally, dropout can increase
the performance of basic CNNs by about 3% and 6% on
CIFAR-10 and CIFAR-100, respectively (Srivastava et al.
2014). The DC method shows promising results by improv-
ing the performance of vanilla CTM by about 6% on CIFAR-
10 and 10% on CIFAR-100.

Enhanced Pattern Recognition
In this section, we observe more distinct heatmaps produced
by TM and CTM for NLP and image classification tasks as a
result of DC, thereby visually exemplifying its superior pat-
tern recognition capabilities. We show enhancements in the
quality of heatmaps on the MR dataset at the word-level and
on the CIFAR-10 dataset at the pixel-level. The enhance-
ments encompass richer and more distinct word representa-
tions for NLP tasks and more clear-cut pixel representations
for objects in images. More specifically, these enhancements

indicate that DC is able to capture more unique, relevant and
discriminative patterns. These enhancements further mani-
fest the stronger pattern recognition capabilities of DC5.

Natural Language Sentiment Analysis
We investigate local word-level patterns captured by TM and
DC TM in NLP using a randomly selected test example from
MR: “A waste of fearless purity in the acting craft”. The ex-
ample was selected among the ones that correctly classified
with DC but incorrectly classified without it. The purpose is
to contrast and exemplify how DC captures better patterns
and enhances the heatmaps. Note that for NLP, the major-
ity of the features appear in negated form. In order to have
word-level understanding of the model, we use a frequency-
based interpretation, i.e., we highlight the features based on
how frequently they appear in clauses (Yadav et al. 2021).
An arguably unique property of TMs is that the patterns they
produce are both descriptive (frequent) and discriminative.
In other words, each clause captures a full description of the
target concept, not merely the discrimination boundary.
Figure 1a highlights the top 100 most frequent features in
negated form (darker color means high frequency), present-
ing in the clauses triggered by the given sample using vanilla
TM without DC. Three example clauses C0, C2, and C4

are shown below for the color-coded features. In this case,
the prediction is wrong. More importantly, the literals in the
conjunctions do not make sense.
The corresponding result for DC TM is depicted in Fig-
ure 1b. Here, the 100 most frequent features in the negated
form seem intuitive for predicting negative sentiment. Fea-
tures such as “NOT witti (witty)”, “NOT grace (graceful)”,
“NOT terrif (terrific)”, “NOT honest”, “NOT cool”, or “NOT
intellig (intelligent)” generally mean absence of positive
sentiment, which in this case makes the model draw the cor-
rect conclusion (negative sentiment). Some of the specific
patterns that are responsible for predicting the correct out-
put are C0, C2, and C4, as shown in the figure. Although
randomly chosen, this example is representative for how TM
with DC is able to capture a larger variety of correct patterns
than what the vanilla TM is capable of.

Image Classification
In image classification, TM clauses form self-contained pat-
terns by joining pixels into multi-pixel structures. That is,
the image pixels are sent directly to the clauses, following
propositional AND-rules. Therefore, Boolean propositional
expressions (clauses) capture patterns in an image that con-
tains pixels as literals in the clauses, which are compara-
tively easy for humans to comprehend (Valiant 1984).
The CTM forms clauses from the pixels of the square image
patches obtained in the convolution. Accordingly, we extract
the top k weighted clauses per class in patch form. For vi-
sualization, we represent the non-negated pixels of a clause
as 1, negated pixels as −1, and excluded pixels as 0. In ad-
ditional to the image content, each clause also encodes po-
sitions in the image where it is valid. If a certain position is

5More examples of enhanced pattern recognition and inter-
pretability can be found in the supplementary material.
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A waste of fearless purity in
the acting craft

positive sentiment

(a) Without drop clause.
A waste of fearless purity in

the acting craft

negative sentiment

(b) With drop clause (p = 0.75).

Figure 1: Word-level patterns of a sample captured: (a) without and (b) with DC.

invalid, the clause literals corresponding to the pixel values
are treated as 0 to indicate no activation at that location. The
resulting clause masks are applied to the image and their ac-
tivation maps are added up to produce a heatmap.
In Figure 2, we show the advantage of DC TM via an exam-
ple. As can be seen from the figure, DC is able to capture
the object with more precision by capturing more discrimi-
native patterns and including pixels relevant to classification.
We believe this is because the remaining clauses are forced
to substitute the dropped clauses, learning to perform their
tasks more independently. Due to the stochastic nature of
learning, they will, however, learn to perform the tasks dif-
ferently than the dropped clauses. As a result, DC reduces
redundancy and induces diversity in the learning of the pat-
terns. An example of how these heatmaps can be interpreted
is shown in the supplementary material.

(a) Image (b) TM (p = 0) (c) TM (p = 0.5)

Figure 2: CIFAR-10 patterns captured: (b) without and (c)
with DC.

Enhanced Robustness
In this section, we show empirically that introduction of DC
makes TM more robust towards input perturbations during
testing. We evaluate robustness on both sentiment analysis
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TM TM (DC) BiLSTM

MR 75.14 78.67 77.68
MR (perturb) 73.12 77.12 75.85

Table 8: Robustness Test on MR.

CTM CTM (DC) BNN

MNIST 99.3 99.45 98.25
MNIST-C 88.12 91.75 85.5

Table 9: Robustness Test on MNIST-C.

and image classification6.

Natural Language Sentiment Analysis
We select the MR dataset to test the robustness of TM on
sentiment analysis. We train our models on the standard
training data and perturb the testing data to evaluate ro-
bustness towards out of distribution changes. We monitor
the decrease in testing accuracy with and without perturba-
tions. During testing, an input instance (sentence) is selected
for perturbation with probability 0.5. Then, a word is cho-
sen from this sentence randomly with uniform probability.
The selected word is swapped with the most similar word
according to the cosine similarity between their respective
Glove embedding vectors. Swapping with the most similar
word results in changing the binary feature representation
by a hamming distance of 2, while keeping the meaning
and sentiment of the sentence unchanged. The following is
an MR example demonstrating this strategy: “Magnificent
drama well worth watching” → “Splendid drama well worth
watching”. The word Magnificent is changed to its synonym
Splendid. Table 8 shows the comparison between TM and
DC TM on MR with and without test data perturbations. The
difference between the test accuracy on the dataset with and
without perturbations is 2.02% and 1.45% for the standard
TM and DC TM respectively. In addition, DC makes TM
more robust compared with BiLSTM, where the accuracy
drops by 1.83%. The increase in TM robustness could be
due to the fact that since clauses are stochastically dropped,
they seem to be less prone to pick up irrelevant or noisy pat-
terns.

Image Classification
We compare the robustness of CTM and DC CTM using the
MNIST-C dataset (Mu and Gilmer 2019), which is a cor-
rupted version of MNIST. It consists of 15 corruptions such
as Gaussian blur, scale, rotate, shear, impulse noise, canny
edges, fog etc. We train our models on the standard MNIST
training data without any augmentations. During testing, we
select whether to use non-corrupted or corrupted test image
with probability 0.5. We then select one of the 15 corrup-
tions to apply on the test image with uniform probability.
DC enhances the robustness of CTM, as can be seen from

6Note that we do not test for adversarial robustness. We only
test the robustness of our models with corrupted input.

Table 9. There is a drop of 11.18% for the standard CTM
whereas the drop in accuracy is reduced to 7.7% with DC.
Also, from Table 9, we observe that both the TM versions are
more robust than binarized neural networks (BNN)7, whose
accuracy drops by 12.75%.

Discussion
To summarize our results, DC improves the performance
of the TM, enhancing the advantages that TMs have over
neural networks and traditional machine learning techniques
when it comes to computational complexity, memory and
energy consumption, training and inference time and robust-
ness (Abeyrathna et al. 2021; Lei et al. 2020). The compu-
tational advantages make TMs suitable for federated learn-
ing and deployment on edge devices. On the other hand,
the TM still achieves lower accuracy on the datasets we
use here when compared with certain deep neural network
models. However, TM is a machine learning method that
achieves overall good performance while being inherently
interpretable unlike deep neural networks that are black-
box models. For certain NLP tasks, pretrained models, such
as word2vec, GloVe, BERT, and GPT, have been dominat-
ing, leveraging unlabelled data. TMs require Boolean in-
put, making it difficult to leverage existing high dimensional
embeddings, impeding performance, with the exception of
enhancing the input with GloVe-derived synonyms (Yadav
et al. 2021). However, there is huge difference in model
sizes, where SOTA deep neural networks have parameters
upwards of 10 million floating-point parameters, easily go-
ing beyond 100 million (BERT-Large has 340 million pa-
rameters). On the other hand, TM employs a few thousand
Boolean clauses. Also, the pixel-level interpretability on im-
age classification can be difficult for humans to interpret
as the Boolean expressions for clauses capturing patterns
can be quite long, containing numerous pixels, especially
for large images. Nevertheless, there are several O(n) tech-
niques that can easily simplify and reduce Boolean expres-
sions (Meurer et al. 2017).

Conclusions
In this paper, we propose drop clause as a technique to im-
prove the generalization ability of the TM. Drop clause en-
hances stochasticity during training, to capture more diverse
patterns. As a result, the performance of TM is significantly
boosted, which is empirically shown on a varied collection
of datasets, both in terms of accuracy and training time. We
further show how drop clause improves the pattern recogni-
tion capabilities of TM, simultaneously improving the clar-
ity of the produced patterns. When comparing our model
with the state-of-the-art deep learning models, we observe
competitive accuracy levels. Since TM is more akin to tradi-
tional machine learning techniques, we also compare it with
a selection of those, reporting superior performance of the
TM. We finally establish that drop clause improves the ro-
bustness of the TM towards data corruptions and perturba-
tions during testing.

7The MNIST-MLP architecture from (Jia and Rinard 2020) is
used here.
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