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Abstract

With the advent of deep learning, a huge number of text-to-
speech (TTS) models which produce human-like speech have
emerged. Recently, by introducing syntactic and semantic in-
formation w.r.t the input text, various approaches have been
proposed to enrich the naturalness and expressiveness of TTS
models. Although these strategies showed impressive results,
they still have some limitations in utilizing language infor-
mation. First, most approaches only use graph networks to
utilize syntactic and semantic information without consider-
ing linguistic features. Second, most previous works do not
explicitly consider adjacent words when encoding syntactic
and semantic information, even though it is obvious that adja-
cent words are usually meaningful when encoding the current
word. To address these issues, we propose Relation-aware
Word Encoding Network (RWEN), which effectively allows
syntactic and semantic information based on two modules
(i.e., Semantic-level Relation Encoding and Adjacent Word
Relation Encoding). Experimental results show substantial
improvements compared to previous works.

Introduction

Text-to-Speech (TTS), which aims at synthesizing natural-
sounding speech from text, has extensive applications in
various industries such as entertainment, education, and so
on (Tan et al. 2021). Recently, deep learning-based TTS
models have drawn attention, showing unprecedented re-
sults. Most existing works have adopted a two-stage gen-
eration scheme, which produces an intermediate speech rep-
resentation (e.g., Mel-spectrogram) from the input text and
then generates a raw waveform. In this work, we focus on the
model used in the first stage, called an acoustic model. Gen-
erally, the acoustic model is categorized into the autoregres-
sive (AR) model and the non-autoregressive (NAR) model,
according to the generation method. Early studies usually
focused on the AR model (van den Oord et al. 2016; Skerry-
Ryan et al. 2018; Shen et al. 2018; Li et al. 2019). However,
they have a slow inference speed caused by sequential gen-
eration. Moreover, they are quite sensitive to the alignment
resulting in low robustness (e.g., long pause, word repeating,
and word skipping). To overcome these limitations, many
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Figure 1: An example of a dependency tree to illustrate for
“The blue shark with sharp teeth can eat fish quickly.” The
description of each element is described in the bottom right
corner. For example, “der” is the relation tag between “The”
and “shark”.

NAR models (Lancucki 2021; Ren et al. 2019, 2021) have
been proposed. Compared to AR models, they showed faster
inference speed by generating speech in parallel and alle-
viated robustness issues. Nevertheless, their quality of ex-
pressiveness is unsatisfactory because they predict prosodic
features that contain pitch, duration, and energy without in-
troducing dependency between time steps (Kharitonov et al.
2022). Thus, various approaches to improve the quality of
NAR-TTS have been proposed. Min et al. (2021) success-
fully achieved expressive speech synthesis by introducing a
reference encoder that models desired prosody because the
same sentence can be uttered in diverse styles. Hwang et al.
(2021); Song et al. (2022); Lajszczak et al. (2022) claimed
that the performance of NAR-TTS is poor when the train-
ing data is insufficient, devising effective data augmentation
methods. Kim, Kong, and Son (2021) combined powerful
generative models (i.e., variational autoencoder, normaliz-
ing flow, and generative adversarial network) to improve
expressiveness. They reported that proposed model close
to human-level speech. Meanwhile, Kenter, Sharma, and
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Figure 2: Overall architecture of RWEN for TTS. & denotes concatenation operator and () denotes element-wise add operator.
Length regulation refers to upsampling by repeating for each phonemic representation as much as the predicted duration.

Clark (2020); Liu, Sisman, and Li (2021); Jia et al. (2021);
Zhou et al. (2022); Zhang et al. (2022); Tatanov, Beliaeyv,
and Ginsburg (2022) boosted the expressiveness of speech
by applying various methods proposed in the field of nat-
ural language processing (NLP) to the speech domain. Es-
pecially, GraphSpeech (Liu, Sisman, and Li 2021) and Re-
lational Gated Graph Network (RGGN) (Zhou et al. 2022)
claimed the syntactic and semantic information of text af-
fects the naturalness and expressiveness of speech. They im-
proved the performance by utilizing graph networks focused
on the representation based on dependency relations.

Despite the impressive results, we point out two crucial
problems in applying syntactic and semantic information.
First, most previous works utilizing dependency relations
tend to assign graph networks to encode the neighbor nodes
based on the dependency tree. For example, in Figure 1,
when encoding “shark”, RGGN utilizes weighted-sum to en-
code “the”, “blue”, and “teeth”, simultaneously. In RGGN,
these neighbor words are explicitly considered, and others
are implicitly considered. However, “blue” and “teeth” do
not have a direct semantic correlation, except they share
the same parent. We assume that encoding dimly correlated
words simultaneously and explicitly can confuse the model.
Second, previous works do not explicitly consider depen-
dency relations on adjacent words. On the other hand, it is
obvious the relations of adjacent words are usually meaning-
ful because the TTS task deals with sequential data.

To address the aforementioned issues, we propose
Relation-aware Word Encoding Network (RWEN) for TTS.
RWEN, which consists of Semantic-level Relation Encod-
ing (SRE) and Adjacent Word Relation Encoding (AWRE),
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focuses on effectively encoding dependency relations to im-
prove naturalness and expressiveness. SRE encodes depen-
dency relations based on the semantic level to substitute the
inefficient graph networks mentioned above. AWRE explic-
itly encodes dependency relations based on adjacent words.
We briefly summarize our main contributions as follows:

* We design two novel approaches, SRE and AWRE, to
consider linguistic features and TTS characteristics.

* We propose RWEN that contains SRE and AWRE, which
can be easily incorporated into most recent TTS models.

* Experimental results demonstrate that RWEN outper-
forms existing works, and we prove that SRE and AWRE
are significantly effective through our ablation experi-
ments.

Proposed Method
RWEN: Relation-aware Word Encoding Network

Figure 2 describes the overall architecture of RWEN. As
mentioned before, to solve two crucial problems when as-
signing dependency relations, we propose a novel approach
called RWEN that contains SRE and AWRE.

Task Description Given a text X, we aim to generate the
natural and expressive speech.

Dependency Parser We utilize a dependency parser to get
the dependency tree. The tree has dependency relations be-
tween words, as shown in Figure 1. The dependency parser
takes an input sequence represented as,

X" =[xt X3 XY, (1)



where X" represents the list of tokens divided on the basis
of words and n denotes the number of words. And the output
is a tree like the one described in Figure 1. The output tree
consists of heads and relation tags represented as, head =
[heady, heads, ..., head,,] and rel = [relj,rels, ..., rel,].
To utilize dependency relations, we define the Relation Tag
Embedding (RTE), which makes embeddings for each rela-
tion tag,

ElT = @RTE(reli)

2
ET = [ET ET, ..., @

EF ... ET),

where ¢ is an index in the range of n and ®rrr denotes
the embedding look-up table for RTE. ET € RYsT*™ is
embedded representations for one sentence, where d ;r rep-
resents a dimension of ® pr . Finally, ET is fed into SRE
and AWRE.

Language Model Encoder Following recent works, we
utilize pre-trained language models, such as BERT (Devlin
et al. 2019) and ELECTRA (Clark et al. 2020), as Language
Model Encoder (LME) described in Figure 2 to construct
text representation. The input sequence for LME is repre-
sented as,

XS = [[cLs] X7 X5 ... X2 [sEP]], 3)
where X represents the list of tokens divided on the ba-
sis of subwords and m denotes the length of tokens for
the input sentence tokenized by the pre-trained language
model tokenizer. X is fed into the pre-trained language
model to obtain the output text representation, H° =
[H,yg HY  HS oo Hiyy HiSy] € RUPUME2) where dyr
represents a dimension of the pre-trained language model.

Word-level Average Pooling While the dependency rela-
tions are divided based on words, H® are split based on sub-
words. We need the proper way to align the dependency rela-
tions with ¥ because we use them simultaneously. There-
fore, we utilize Word-level Average Pooling to align be-
tween them, similar to Subword-to-Word Mapping by Zhou
et al. (2022). We use average pooling (AP) based on word
level represented as,

Hp\y, . HY))

=Y =Y HY HG,

K2

HY = AP([Hf,
HY = [H}

[cLs]y

“

where j and z are the start and end index on subword-
level based on X}V, respectively. For example, if the word
“quickly” is tokenized as “quick” and “ly”, H}V can be
represented as HY = AP([HJ,.., H})]), where HJ,, .
and H, [Z denote output text representations for indexes of
“quick” and “ly” in HS. HY € R4 *("+2) represents the

word-level representation described in Figure 2. H, [CWLS} and
H[SVZP] in HY are equal to H[*ZLS] and HgEP],

Finally, H" is fed into SRE and AWRE.

respectively.

Semantic-level Relation Encoding Previous work (Zhou
et al. 2022) proposes RGGN utilizing the graph networks
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Figure 3: The architecture of SRE. Each GRU encodes vec-
tors concatenated with the word-level representation and
RTE.

based on the dependency tree. Since the feature of the depen-
dency tree is related to the prosody of speech (Kohn, Bau-
mann, and Doérfler 2018; Liu, Sisman, and Li 2021; Zhou
et al. 2022) and graph networks are suitable for encoding
tree structures, they report improved results compared to
baseline. However, they only use graph networks to encode
neighbor words in the tree and don’t seem to consider lin-
guistic features. This method can encode the tree structure,
but it is inefficient because linguistic features are not con-
sidered. Therefore, we propose SRE to effectively encode
phrases with contextual meaning. We assume that the phrase
from each word to the root can be defined as phrases with
their contextual meaning because they are sequentially con-
nected in a dependency tree. SRE is described in Figure 3
and as follows.

SRE aims to encode phrases from each word to the root.
Each word has a phrase with contextual meaning, and the
indexes from the word to the root node are represented as,

I'=[1,...1j], (5)

where [ is the length from the current node i to the root node.
I* denotes word indexes in the phrase starting with the index
1 of each word. For example in Figure 1, if the value of 7 is
2, I? is represented as, I? = {2,3,8}. To expand to the
sentence, the indexes can be represented as,

I=1[1°%1" 17, 1", 1", (6)
where 10 is the index of H [CWLS] and I"*! is the index of
H ‘g‘gp . Then, we utilize the word-level representation and
RTE as follows:

i _ gWw T

C,=H @ EI,zc

ct=[C1,Cs,...,CL, ..., CY,
where £ is an index of 1 i and @ denotes the concatenation
operator. C" represents a vector with the contextual meaning
and dependency relations. C" is fed into Gated Recurrent

Units (GRU) (Chung et al. 2014), and the output is repre-
sented as,

(7

Vi=GRU(CY

8
V=[O v . vt ®
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Figure 4: The architecture of AWRE. Each GRU encodes
vectors concatenated with the word-level representation,
RTE, and DE.

where V7 is the last hidden state of GRU. And, V is fed into
single-layer feed-forward neural network (FFNN) as,

O°FE = )V + by, ©))
where wy, € R *(du+dpT) and b, are trainable parameters.

Adjacent Word Relation Encoding To improve the re-
sults of TTS, we assign TTS characteristics as well as lin-
guistic features. In particular, we focus that both input and
output of TTS are sequential data, which are affected by sur-
rounding words. To consider this, we propose AWRE, which
encodes dependency relations between surrounding words
and the current word based on the dependency tree. AWRE
consists of two modules: Previous Word Relation Encod-
ing (PWRE) and Next Word Relation Encoding (NWRE).
PWRE encodes the dependency relations from the current
word to the previous word, and NWRE encodes the depen-
dency relations from the current word to the next word. First,
PWRE is described in Figure 4 and as follows.

PWRE aims to encode dependency relations from the cur-
rent word to the previous word. We construct the shortest
path from the current word to the previous word in the de-
pendency tree. Indexes in the shortest path are represented
as,

P'=I[P},.., P}, .. Pl (10)
where a is the length of the shortest path from the current
node to the previous node. P denotes indexes starting from
the current node ¢ and ending with the previous node ¢ — 1.
For example in Figure 1, if the value of i is 2, P? is rep-
resented as, P? = {2,3,1}. To expand to the sentence, the
indexes can be represented as,

P=I[P° . P . PP (11)
where P is the index of H;} g and P"*! is the index
of H [s”gp}. Additionally, we utilize directions between con-
nected nodes based on the dependency tree represented as,

Q{Piilﬁpé} € [self, parent, child], (12)

where Q)¢ Pi_,,Pi} denotes the direction between ngq

and P;. If the direction from P;_l to ng is the parent,
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Qqp: 1P} denotes parent. Likewise, if the direction is the
y—17"1¢
child, Qp: P} denotes child. When it needs to encode it-
1

self (i.e., first element), we use sel f to utilize the direction.
Then, we define Direction Embedding (DE) represented as,

D' ={®pg(self), ..., Ppp(Qp:_,,pit)

(13)
PIREED) (I)DE(Q{P;_I,P;}))}’

where ®pp € R™@ps*3 denotes the embedding look-up

table for DE. R%pe represents a dimension of ® 5. DE is

only used in AWRE. In SRE, we do not consider to use DE

because it is encoded only in one direction based on the tree.
We utilize the word-level representation, RTE and DE as

follows:

7 7
Uy (Pi_,,Pi}

Ut =U;,U03,...,U,,... UL,

Hp, & Ep, & D i

where U’ represents a vector with the contextual meaning,
dependency relations, and the embedding of directions. U*
is fed into GRU, and the output is represented as,

G' = GRU(UY)

0 Al ! (15)
G=[G"G,..,G",

where G is the last hidden state of GRU. And, G is fed into

FFNN as,

OPWIE — wyG + by, (16)

where wy € R4 > (dutdgrtdeng) and by are trainable pa-
rameters.

NWRE is encoded similarly to PWRE, which has Equa-
tions 10, 11, 12, 14, 15, and 16. NWRE can be described
by replacing the previous node only with the next node
in the PWRE description. Thus, note that the final out-
put of NWRE is represented ONWRE Then, OFWRE and

ONWRE gre concatenated as,
OFP&N — OPWRE gy ONWRE, (17)
and fed into FFNN as,
OAWEE — 30PN 4 by, (18)

where w3 € R¥#*(du+tdn) and bs are trainable parameters.

OSRE OAWRE

Upsampling and are concatenated and
fed into FFNN. Then, the output is represented by the
word-level. We should concatenate with the output and
phoneme-level representation, as shown in Figure 2. How-
ever, phoneme-level representation is represented by the
phoneme-level so that we can’t directly concatenate. Thus,
an upsampling method is required to concatenate with them.
We duplicate the word-level segmented output representa-
tion by the number of phoneme sequences corresponding to
each word and concatenate it with the phoneme-level repre-
sentation.



TTS Model

To prove the effectiveness of our method, we adapt Fast-
Pitch (Lancucki 2021) equipped with Unsupervised Align-
ment Learning framework (UAL) (Badlani et al. 2022) as
the TTS model, which is one of the representative NAR-TTS
models. More specifically, as shown in Figure 2, it consists
of five modules: Phoneme Encoder, Mel-spectrogram De-
coder, Pitch Predictor, Energy Predictor, and Duration Pre-
dictor. Phoneme Encoder produces the phoneme-level rep-
resentation from the phonemic text. Then, Pitch Predictor
and Energy Predictor take the phoneme-level representation
concatenated with the output representation of RWEN, con-
structing the pitch and energy information. With the help of
UAL, Duration Predictor can be learned to predict the dura-
tion of each phoneme, which is used to perform upsampling
from phoneme-level representation to frame-level one. Note
that the prosody of synthesized speech can be controlled
by adjusting the predicted pitch and duration during the in-
ference stage. Finally, Mel-spectrogram Decoder generates
the output Mel-spectrogram from the frame-level represen-
tation.

Experiments
Experimental Setup

Datasets We train and evaluate RWEN on LJSpeech (Ito
and Johnson 2017), a single speaker corpus recorded by a fe-
male English speaker. It consists of 13,100 short audio clips
with a total length of 24 hours, being randomly split into
12,500, 100, and 500 samples to comprise the training, val-
idation, and test datasets as in Kim, Kong, and Son (2021).
Additionally, recent works (Kim, Kong, and Son 2021; Tan
et al. 2022) have already achieved human-level performance
on the benchmark datasets (e.g., LJISpeech, VCTK (Yam-
agishi et al. 2019), etc.). Therefore, we evaluate RWEN on
other type of datasets used in the field of NLP in order to
derive meaningful comparison results. To cover multiple do-
mains, we evaluate RWEN on the following datasets:

e CNN/Daily Mail (Nallapati et al. 2016) contains articles
from CNN and DailyMail newspapers.

¢ Children’s Book Test (CBT) (Hill et al. 2016) contains
sentences built from books for children that are freely
available.

* OpenBookQA (Mihaylov et al. 2018) contains a small
book of core elementary-level science facts.

* SQuAD 2.0 (Rajpurkar, Jia, and Liang 2018) contains
sentences on a set of Wikipedia articles.

Subjective Evaluation We conducted the crowd-sourced
listening test for Mean Opinion Score (MOS) and Compar-
ative Mean Opinion Score (CMOS) on Amazon Mechani-
cal Turk . We used at least 50 sentences randomly sampled
from each dataset for all evaluations, and at least 15 listeners
participated. To maintain evaluation quality, master workers
certificated in Amazon Mechanical Turk only participated,
and all submissions of workers who did not pass occasional

"https://www.mturk.com/
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MOS (CI)
VITS (Kim, Kong, and Son 2021)  3.95 (0.06)
FastPitch (Lancucki 2021) 3.74 (£0.06)
FastPitch w/ UAL 4.04 (£0.06)

Table 1: Evaluation results for existing TTS models on the
CNN/Daily Mail dataset. We measured with Mean Opinion
Score (MOS) and 95% confidence intervals (CI).

hearing tests were rejected. For MOS, we evaluated natural-
ness and expressiveness on a 5-point scale from 1 to 5. For
CMOS, we evaluated which one is more natural and more
expressive on a 7-point scale from -3 to 3. Also, CMOS was
measured between the baseline and a comparative model.
Therefore, it is only possible to compare models between
the baseline and a comparative model.

Baselines
followings:

* VITS (Kim, Kong, and Son 2021) is a fully end-to-end
TTS model that produces human-like sounding audio on
the waveform domain by leveraging variational autoen-
coder (VAE) (Kingma and Welling 2014) with normal-
izing flows and adversarial training. To solve the one-
to-many problem that one text can be spoken in various
styles, they also introduced a flow-based stochastic dura-
tion predictor, demonstrating significant effectiveness. In
this work, we used the official pre-trained model for fair
comparisons 2.

FastPitch (Lancucki 2021) is an acoustic model which
generates a Mel-spectrogram from given text. It can con-
trol the pitch and duration of the synthesized speech by
adjusting the outputs of pitch and duration predictors. In
this work, we used the official checkpoint 3 for fair com-
parisons. And, since it generates a Mel-spectrogram from
text, we need a model called vocoder that converts a Mel-
spectrogram into a raw waveform. To this end, we use
the official HifiGAN (Kong, Kim, and Bae 2020) codes *
and a checkpoint pre-trained on the LISpeech dataset and
finetuned as the output of Tacotron 2 (Shen et al. 2018).

FastPitch w/ UAL is a TTS model that contains Fast-
Pitch and Unsupervised Alignment Learning framework.
We constructed by referring to codes of the official Fast-
Pitch repository °. In addition, we modified the source
code so that it can be processed in phoneme-level se-
quences for fair comparisons with our proposed model
and RGGN.

RGGN-BERT (Zhou et al. 2022) proposed RGGN to
improve the naturalness and expressiveness of synthe-

For experiments, we compare our model with

Zhttps://github.com/jaywalnut310/vits
3https://github.com/NVIDIA/DeepLearningExamples/
blob/8d8c524df634e4dfalctbf77a904ce2ede85e2ec/PyTorch/
SpeechSynthesis/FastPitch/scripts/download fastpitch.sh
*https://github.com/jik876/hifi- gan
Shttps://github.com/NVIDIA/DeepLearningExamples/tree/
master/PyTorch/SpeechSynthesis/FastPitch



MOS (CI)
LJSpeech News Book Wiki

CNN/Daily Mail CBT OpenBookQA | SQuAD 2.0
Ground Truth 4.25 (£ 0.06) - - - -
VITS 4.04 (£ 0.06) 4.01 (£ 0.06) 3.94 (£ 0.05) | 3.98 (£0.06) | 4.03 (+ 0.06)
FastPitch w/ UAL | 4.16 (£ 0.06) 4.05 (£ 0.06) 4.06 (£ 0.05) | 3.91 (£0.07) | 4.10 (£ 0.06)
RGGN-BERT 4.15 (£ 0.06) 4.00 (% 0.06) 4.07 (£ 0.05) | 3.95(£0.07) | 4.12 (£ 0.06)
RWEN-BERT 4.19 (£ 0.06) 4.15 (% 0.06) 4.15 (£ 0.05) | 4.00 (£ 0.06) | 4.18 (£ 0.06)

Table 2: Evaluation results of MOS with 95% CI. The best scores except Ground Truth are in bold. ‘-’ denotes the dataset
doesn’t have voices of Ground Truth or can’t be evaluated because speakers are different between the training dataset and
evaluation dataset. MOS was measured simultaneously within each column so that it is possible to compare models within the

same column.

sized speeches. They utilized dependency structure and
pre-trained BERT (Devlin et al. 2019) embedding. For
their experiments, they used Tacotron 2 (Shen et al. 2018)
as the TTS model. However, in this work, we imple-
mented RGGN with FastPitch w/ UAL for fair compar-
isons.

TTS system for RWEN To prove the effectiveness of our
proposed method, we adopt FastPitch w/ UAL. Compared
to the recent end-to-end TTS model (e.g., VITS), FastPitch
w/ UAL has controllability in terms of pitch and duration,
which can utilize various applications. Also, it is light and
easy to conduct diverse experiments. Moreover, as shown in
Table 1, FastPitch w/ UAL achieved the best performance by
introducing UAL and phoneme-level encoding.

Implementation Details

We implemented our proposed model, called RWEN, us-
ing the PyTorch (Paszke et al. 2019) and Transform-
ers® (Wolf et al. 2020) library. We adopt BERT},.
and ELECTRA,. (Clark et al. 2020) as the LME for
our experiments. In our experiments, RWEN-BERT and
RWEN-ELECTRA denotes RWEN using BERT;,s. and
ELECTRA, s as the LME, respectively. Following RGGN,
we use Stanza (Qi et al. 2020) to get the dependency tree.
We use FastPitch w/ UAL as our TTS model to simplify
the experiments. Specifically, Phoneme Encoder and Mel-
spectrogram Decoder are composed of four Feed-Forward
Transformer (FFT) blocks (Ren et al. 2019) whose param-
eters are the same as described in Ren et al. (2021) ex-
cept that the hidden size of the Mel-spectrogram decoder is
1024. Duration Predictor, Pitch Predictor, and Energy Pre-
dictor are the same architecture: two 1-D convolutions with
kernel size 3 and 256/256 input/output channels, each fol-
lowed by ReLU, LayerNorm, and Dropout with the proba-
bility of 0.1. To extract the target pitch from the speech, we
use the pYIN (Mauch and Dixon 2014) algorithm and per-
form normalization with the mean and standard deviation
of the pitch for the whole training dataset. Also, the energy
of speech is extracted by performing the L2 norm on the
Mel-spectrogram. The last fully connected layer projects a

Shttps://github.com/huggingface/transformers
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CMOS Wilcoxon p-value

RWEN-BERT 0 -
w/o AWRE —0.09 7.5e-5
w/o SRE —0.11 2.6e-6
w/o SRE & AWRE —0.13 4.1e-7

Table 3: Ablation study on the CNN/Daily Mail dataset. We
choose RWEN-BERT as the baseline. We measured with
CMOS and Wilcoxon p-value obtained by Wilcoxon signed
rank test (Wilcoxon 1992).

256-dimensional vector into a scalar. To produce raw wave-
form from the synthesized Mel-spectrogram, pre-trained Hi-
fiGAN (Kong, Kim, and Bae 2020) is used as the vocoder.
Besides, we utilized the phonemizer (Bernard and Titeux
2021) since we used the phoneme sequence as the input. We
use mixed precision training on 16 Tesla A100 GPUs for all
the experiments. The batch size is set to 2 per GPU, and the
model is trained up to 200k steps. More details and samples
are in our repository’ and demonstration site®.

Overall Results

Table 2 reports MOS results to evaluate on LISpeech, CNN/-
Daily Mail, CBT, OpenBookQA, and SQuAD 2.0 datasets.
We observe that RWEN-BERT shows slightly lower MOS
than Ground Truth in the LJSpeech evaluation dataset, and
RWEN-BERT outperforms the comparative models for all
datasets. This suggests that the proposed approaches are ef-
fective for TTS. For all datasets except OpenBookQA, Fast-
Pitch w/ UAL shows higher MOS than VITS. This can be
additional evidence for Table 1, indicating that the natu-
ralness and expressiveness of FastPitch w/ UAL are simi-
lar to or better than VITS. FastPitch w/ UAL and RGGN-
BERT show similar performance. As we mentioned in the
introduction section, it can be seen that RGGN reflects syn-
tactic and semantic information inefficiently. As a result,
RWEN-BERT achieves gains over FastPitch w/ UAL we
utilized as our TTS system by 0.03 (4.16 — 4.19), 0.10

"https://github.com/shinhyeokoh/rwen
8https://shinhyeokoh.github.io/demo/rwen_tts/index.html



CMOS  Wilcoxon p-value
RWEN-BERT 0
RWEN-ELECTRA  +0.22

1.4e-13

Table 4: CMOS results on the CNN/Daily Mail dataset. To
study effectiveness according to change of PLM, we choose
RWEN-BERT as the baseline. We measured with CMOS
and Wilcoxon p-value.

(4.05 — 4.15), 0.09 (4.06 — 4.15), 0.09 (3.91 — 4.00),
and 0.08 (4.10 — 4.18) on the LISpeech, CNN/Daily Mail,
CBT, OpenBookQA, and SQuAD 2.0 datasets, respectively.

Ablation Study

To study the effects of AWRE and SRE, we conduct abla-
tion experiments on CNN/Daily Mail dataset. As shown in
Table 3, we set the baseline that RWEN-BERT. Removing
AWRE (i.e., only utilizing SRE) and SRE (i.e., only utilizing
AWRE) brings 0.09 and 0.11 CMOS degradation, respec-
tively. If we remove SRE and AWRE (i.e., utilizing FastPitch
w/ UAL), it brings 0.13 CMOS degradation. We can observe
CMOS drop significantly in all ablation experiments. This
suggests all of our proposed approaches are effective for the
TTS model. Meanwhile, we can also observe that the SRE
is more effective than the AWRE. As SRE encodes phrases
with contextual meaning, it allows the model to more exploit
the dependency relations at a sentence-level.

Effects of Pre-trained Language Model

To study effectiveness according to the change of the pre-
trained language model, we conduct CMOS experiments
between RWEN-BERT and RWEN-ELECTRA. RWEN-
ELECTRA uses ELECTRA,s. as LME in our architecture.
Clark et al. (2020) reports that ELECTRA-base outperforms
BERT-base on the GLUE (Wang et al. 2018) widely used
benchmark for natural language understanding. As shown
in Table 4, RWEN-ELECTRA significantly improves com-
pared to RWEN-BERT. This suggests that the quality of the
pre-trained language model affects RWEN, and using the
improved language model has a positive effect on our pro-
posed method.

Conclusion

In this study, we pointed out crucial problems of exist-
ing works for TTS that utilize dependency relations based
on graph networks. To address these issues, we proposed
Relation-aware Word Encoding Network for text-to-speech
synthesis. RWEN effectively allows linguistic features to
utilize dependency relations and can be easily incorporated
into most existing TTS models. Moreover, experimental re-
sults show that RWEN outperforms existing works, and
we prove that SRE and AWRE are significantly effective
through our ablation experiments.
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