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Abstract

Benefiting from the sequence-level knowledge distillation,
the Non-Autoregressive Transformer (NAT) achieves great
success in neural machine translation tasks. However, exist-
ing knowledge distillation has side effects, such as propa-
gating errors from the teacher to NAT students, which may
limit further improvements of NAT models and are rarely dis-
cussed in existing research. In this paper, we introduce selec-
tive knowledge distillation by introducing an NAT evaluator
to select NAT-friendly targets that are of high quality and easy
to learn. In addition, we introduce a simple yet effective pro-
gressive distillation method to boost NAT performance. Ex-
periment results on multiple WMT language directions and
several representative models show that our approach can re-
alize a flexible trade-off between the quality and complex-
ity of training data for NAT models, achieving strong perfor-
mances. Further analysis shows that distilling only 5% of the
raw translations can help an NAT outperform its counterpart
trained on raw data by about 2.4 BLEU.

1 Introduction
Non-autoregressive Transformer (NAT, Gu et al. 2018) in-
troduces a promising paradigm of parallel decoding. Un-
like sequentially predicting the words in an autoregressive
model, NAT models can generate a sentence in parallel
based on a conditional independence assumption, improv-
ing the inference speed by over 10 times. Besides, such a
parallel decoding paradigm also has the potential to avoid
the exposure bias that has a long-term discussion in sequen-
tial decoding models (Vaswani et al. 2017). As a result, we
see NAT models achieve great success in machine transla-
tion tasks (Qian et al. 2021b), surpassing many autoregres-
sive models in WMT211.

Despite the great potential of NAT models, they rely on
sequence-level knowledge distillation (KD, Kim and Rush
2016) to achieve success. The introduced conditional inde-
pendence assumption prevents NAT models from leverag-
ing the inherent structures to overcome the multi-modality
problem, where each input may correspond to several valid
outputs in the training data. In such background, Gu et al.
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Figure 1: An illustration of our selective knowledge distilla-
tion. Standard knowledge distillation reduces the complexity
of raw data at the cost of translation quality. In contrast, we
propose combining the merits of raw and KD data, balanc-
ing the complexity and quality of training data.

(2018) introduce sequence-level knowledge distillation to
bypass the multi-modality problem of NAT models. They
first train an autoregressive Transformer (AT, Vaswani et al.
2017) as a teacher model, and then train the NAT models us-
ing the teacher’s output as targets. The deterministic outputs
generated by the teacher can directly avoid the one-to-many
situation in raw training data and improve the performance
of an NAT model by over 5.0 BLEU (Papineni et al. 2002)
in machine translation.

However, there are still several problems in standard
knowledge distillation, which may limit the performance
of NAT models. First, NAT models learning only from AT
teachers may miss some important knowledge in the original
data, such as prediction on low-frequency words (Ding et al.
2021b). Second, the outputs generated by the AT teacher are
not necessarily suitable for the training of NAT models, as
these architectures have quite different modeling paradigms.
It should be noted that existing NAT research (Gu et al.
2018; Ghazvininejad et al. 2019; Guo, Xu, and Chen 2020;
Bao et al. 2021) only regards knowledge distillation as a nec-
essary data processing technique but lacks a deeper discus-
sion. Therefore, designing knowledge distillation strategies
to help NAT models learn better is still an open question.
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# raw/distilled outputs

Translation #1
raw I entirely agree with the PPE Group that paragraph 9 is central .

distilled I fully agree with the PPE Group that paragraph 9 is of key importance .

Translation #2
raw That is up to the Heads of Governments to do this week .

distilled That is up to the Heads of Government to do this this week .

Translation #3
raw Once you have started reading , you can not put it down .

distilled Anyone who starts reading it keeps his breath until the last word .

Translation #4
raw Nice and clean hotel in great location , great value for money .

distilled Gravino Cinco is fresher and newer than Tryp Ciudad Hotel !

Table 1: Examples of different situations. Our method mainly improves performance on sentences like Translation 2, where
minor mistakes are introduced by the AT teacher. In our experiments, the NAT evaluator generated a translation exactly the
same as the distilled one, while the NAT student trained on selected data corrected the mistake by removing the repeated token.

In this paper, we propose a selective knowledge distilla-
tion technique for training NAT models to tackle the two
issues in standard knowledge distillation. More specifically,
we introduce an NAT model trained on distilled data as an
evaluator to construct the training data, replacing the orig-
inal distilled data with raw data dynamically in the learn-
ing progress. There are two intuitions behind our selec-
tive knowledge distillation: First, our approach can access
raw data and avoid repeating the mistakes made by the AT
teacher. Second, due to its similar modeling paradigm, the
NAT evaluator can effectively assess whether the data is suit-
able for the training of NAT students. The NAT evaluator
judges each sentence in the original training set by scor-
ing the predicted tokens. We select sentences with higher
scores as the targets which generally contain minor modal-
ity change from the distilled data but show better translation
quality as raw data. In tuition, these sentences can be safely
exposed to NAT students during training. Besides, we intro-
duce a hard-to-easy curriculum learning strategy while train-
ing, which has been demonstrated effective for automatic
speech recognition systems (Braun, Neil, and Liu 2017).

We conduct experiments on two widely-used machine
translation benchmarks, WMT14 En-De and WMT16 En-
Ro and over an inference-efficient AT structure (Kasai et al.
2020) and two representative NAT architectures (Qian et al.
2021a; Ghazvininejad et al. 2019). Experiment results show
that our selective knowledge distillation consistently im-
proves models’ performance on each dataset. Further anal-
yses show that a small ratio (5%) of distilled data is suffi-
cient to improve NAT significantly, demonstrating that our
method can effectively select the NAT-friendly raw transla-
tions. As an early attempt to introduce raw data for training
NAT models, we hope this work will raise more attention to
selecting beneficial examples from authentic data to recover
the missing information while keeping the merits of knowl-
edge distillation.

2 Background
Neural Machine Translation can be defined as a sequence-
to-sequence generation problem: given source sentence
X = {x1, x2, · · · , xN}, to generate target sentence Y =

{y1, y2, · · · , yL} according to P (Y |X, θ), where θ denotes
the parameters of a network.

2.1 Non-Autoregressive Neural Machine
Translation

Non-Autoregressive Transformer (NAT, Gu et al. 2018) im-
poses the conditional independence assumption among tar-
get words while factorizing the probability P (Y |X; θ):

P (Y |X, θ) = P (L|X, θ)
L∏

i=1

P (yi|X, θ)

where L is the length of the target sequence.
The conditional independence assumption allows NAT

to significantly outperform autoregressive Transformer (AT)
in inference speed, but it also leads to an inferior transla-
tion quality compared to AT. A well-recognized explanation
is that NAT models suffer from the multi-modality prob-
lem (Gu et al. 2018), where the model fails to capture the
highly multimodal distribution of target translations ade-
quately. For example, a source sentence might have several
ground-truth translations that differ in wording and struc-
ture, and NAT models are likely to get confused since they
have to select from multiple choices only through the source
sentence. In contrast, an AT model can easily learn these dif-
ferent translations by predicting tokens based on the source
sentence and previous tokens.

2.2 Knowledge Distillation
To alleviate the multi-modality problem, sequence-level
knowledge distillation (KD, Kim and Rush 2016) is adopted
as a preliminary step for training an NAT model, where
the original translations are replaced with those generated
by a pretrained autoregressive teacher. The distilled data
eases the training by introducing more deterministic knowl-
edge and significantly improves the performance of an NAT
student. Some previous works propose generating several
distilled translations and select the most suitable candi-
date (Zhou, Gu, and Neubig 2019; Shao, Wu, and Feng
2022) to gain more benefits from knowledge distillation.
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However, knowledge distillation has some side effects
like leading to more errors on low-frequency words (Ding
et al. 2021b). Due to the differences in architectures between
AT and NAT, the translations generated by an AT teacher are
not always suitable for the learning of NAT. Another obvi-
ous limitation of KD is that it propagates mistakes made by
the AT teacher to NAT students. Table 1 shows that the trans-
lation generated by the AT teacher contains mistakes which
might harm the performance of the student. Therefore, how
to break such limitations of AT-based KD and utilize authen-
tic data to improve the translation quality remains a question.

3 Method
The intuition behind our method is that introducing raw
translations which do not significantly increase the com-
plexity will not make training much more challenging but
free NAT from some mistakes made by the AT teacher. Sec-
tion §3.1 introduces how to select NAT-friendly raw sen-
tences, combining the high translation quality of raw data
and reduced complexity of distilled data. Besides, we also
introduce a hard-to-easy learning strategy for dynamically
configuring the raw data ratio in the training process, as pre-
sented in Section §3.2.

3.1 Selecting NAT-friendly Raw Translations
While raw data are of high quality in most cases, the multi-
modality problem prevents an NAT model from capturing
the distribution of target translations properly. Contrarily,
distilled data eases the training of NAT by reducing the com-
plexity of targets, but mistakes made by the AT teacher will
be easily propagated to the student if only distilled data is
exposed. It is natural to think that NAT models should learn
some missing information in the distilled translations from
the original ones to improve translation quality, and a simple
solution is to expose part of the raw data to NAT. The ques-
tion remaining is how to evaluate whether a raw translation
should be exposed.

We propose to evaluate each translation in the raw data
through an NAT evaluator trained on distilled data, replac-
ing a raw translation with its distilled version when the NAT
evaluator fails to generate outputs similar to the reference.
Specifically, given source sentence X , we first get a de-
coded output Ŷ = fteacher(X) using the NAT evaluator.
Then we evaluate the raw translation Y through a metric
score(X,Y ) = 1 − d(Y, Ŷ )/|Y |, which measures the dif-
ference between the ground truth translation and the pre-
dicted output. The translations with high scores are consid-
ered NAT-friendly.

In the following part we explain why an NAT evalua-
tor can decide whether a raw sentence can be safely ex-
posed. Since we want to keep both the high translation qual-
ity of raw sentences and the simplified modes of distilled
sentences, a naive answer is that raw sentences with fewer
modes can be set as targets for NAT. If the NAT evaluator
trained on distilled data can get a prediction close to the raw
target, then the raw and distilled translations are probably
quite similar in their modes. To illustrate the details, here

Algorithm 1: Data Selection for the k-th Update

Require: Dk{(X,Y, Y KD)}, NAT evaluator fteacher
1: Tk ← T0 + k/K · (T1 − T0)
2: D′

k ← {}
3: for all (X,Y, Y KD) ∈ Dk do
4: score(X,Y )← 1− d(Y, fteacher(X))/|Y |
5: if score(X,Y ) ≥ Tk then
6: D′

k ← D′
k ∪ {(X,Y )}

7: else
8: D′

k ← D′
k ∪ {(X,Y KD)}

9: end if
10: end for
11: return D′

k

we list four typical situations where the distilled translations
are different from the original ones:
• Minor Modality Change: A few words are substituted

by their synonyms without introducing great changes to
the structure and semantics of the raw sentence. There-
fore, both the raw and distilled translation can be used as
the target.

• Minor Mistakes: While the structure and semantics of
the original sentence is preserved, a few mistakes like
falsely predicted low-frequency words or word repetition
are introduced. Learning from the raw translation can be
helpful to correct these mistakes.

• Dramatic Modality Change: Despite sharing the same
semantics, the raw and distilled translation are expressed
in quite different ways. The raw translation contains
modes too challenging for an NAT model.

• Dramatic Mistakes: The distilled sentence is not well-
translated, but we are not sure whether the raw translation
is a better target to learn from since even the AT.

Table 1 provides the examples corresponding to each situa-
tion. Minor modality changes (Translation #1) can be toler-
ated since they do not greatly increase the modes of training
data, and correcting minor mistakes (Translation #2) is the
main goal of our method. The NAT evaluator is not likely to
get a close prediction when there exists dramatic differences
between raw and distilled data (Translation #3), so when it
gives a raw sentence a high score, it is highly likely that
the sentence satisfies our requirement of simple and clean
translation. Besides, an NAT evaluator can avoid the cases
where a distilled sentence is close to the original one but still
too challenging for an NAT (Translation #4). Therefore, we
can choose to distill only the raw sentences with low scores
under the NAT evaluator and keep the rest unchanged. In
this way, the dataset displays higher translation quality while
keeping the general complexity suitable for NAT.

3.2 Hard-to-Easy Data Selection
Motivated by the success of curriculum learning (Qian et al.
2021a; Guo et al. 2020; Liu et al. 2020), we further intro-
duce a hard-to-easy learning strategy to improve the perfor-
mance. Ding et al. (2021b) show that pretraining with raw
data can improve the performance of NAT by rejuvenating
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low-frequency words. To keep the merits of low-mode, they
further trained the pretrained model on distilled data. We
combine this idea with our data selection method by decreas-
ing the ratio of raw data in the training process. Specifically,
the training data for each update can be formulated as:

{(X,Y )|score(X,Y ) ≥ Tk ∧ (X,Y, Y KD) ∈ Dk}∩
{(X,Y KD)|score(X,Y ) < Tk ∧ (X,Y, Y KD) ∈ Dk}

where Tk and Dk denote the threshold and the set of tu-
ples (X,Y, Ŷ ) for the kth update respectively. Tk can be de-
termined by a preset function or feedbacks from the NAT
student. In our experiments, we adopt a linear function for
Tk which is computed as Tk = T0 + k

K (T1 − T0), where
K is the total number of updates, the constants T0 and T1

can be determined according to the distribution of score
P (score(X,Y )) given a specific NAT evaluator and the raw
training data. The whole data selection process can be found
in Algorithm 1. This process is an additional stage following
standard training procedures for NAT, thus being generic to
various data and architectures.

4 Experiments
4.1 Experimental Settings
Datasets We conduct experiments on two widely-used
machine translation datasets: WMT14 English-German (En-
De) and WMT16 English-Romanian (En-Ro), which consist
of 3.96M and 0.6M sentence pairs, respectively. Following
the common practices, we process the datasets with Moses
script (Koehn et al. 2007) and segment the words into sub-
word units using byte-pair encoding (BPE, Sennrich, Had-
dow, and Birch 2016). The subword embeddings are shared
between the source and target language. For the sequence-
level knowledge distillation, we employ the Transformer
with base settings in Vaswani et al. (2017) as the teacher.

Model We evaluate our selective knowledge distillation on
DeepShallow (Kasai et al. 2020), CMLM (Ghazvininejad
et al. 2019), and GLAT+CTC (Qian et al. 2021a). DeepShal-
low is an inference-efficient AT structure with a deep en-
coder and a single-layer autoregressive decoder, which also
benefits from knowledge distillation. We adopt a 6-layer en-
coder in the experiments. CMLM iteratively generates the
target sequence from the masked input. For the previous
two models, we compute d(Y, Ŷ ) using the Hamming dis-
tance

∑L
i=1[Yi ̸= Ŷi]. GLAT builds the word interdepen-

dencies to improve the performance of single-pass paral-
lel generation. During training, the decoder is fed with ran-
domly masked target sequence, and the number of masked
tokens depends on the prediction accuracy. The performance
of GLAT can be further improved by connectionist tempo-
ral classification (CTC, Graves et al. 2006), which utilizes
an alignment-based objective. Another advantage of CTC
is that it can align the targets according to decoder outputs
so that ground-truth tokens are not required to be predicted
on a fixed position, thus making the NAT evaluator more
tolerant to minor mistakes when evaluating a raw transla-
tion. To compute score(X,Y ) for applying our approach
on GLAT+CTC, we use dynamic programming to get the

aligned path Y align with the largest align score (Graves et al.
2006) and adopt the Hamming distance as the metric, which
is computed as d(Y align, Ŷ ) =

∑L′

i=1[Y
align
i ̸= Ŷi].

Training Settings We follow the hyperparameters of
models in their original papers. We set the dropout rate to
0.1 for WMT14 En-De/De-En and 0.3 for WMT16 En-Ro.
For the optimizer, we use Adam with β = (0.9, 0.999) to
train our model. The learning rate warms up to 5e−4 within
4k steps and then decays with the inverse square-root sched-
ule. For the sampling ratio λ in GLAT+CTC, we adopt linear
annealing from 0.5 to 0.3. As to the hard-to-easy learning
strategy, we set T0 = 0.4, T1 = 1.0 under En-De/De-En and
T0 = 0.6, T1 = 1.0 under En-Ro for GLAT+CTC. We set
T0 = 0, T1 = 1.0 for other models. All the NAT evaluators
and students are trained with batches of 64k tokens, lasting
300k updates and 100k updates for En-De/De-En and En-Ro
respectively. To better utilize the NAT evaluators, the stu-
dents are initialized with parameters of the teachers trained
after 25k updates for En-De/De-En and 10k updates for En-
Ro, when the general knowledge has been acquired. We av-
erage the top 5 checkpoints chosen by the validation BLEU
scores to create the final model.

Baselines We compare our method with standard KD
which distills the whole training set. Another baseline is
Low Frequency Rejuvenation (LFR, Ding et al. 2021a),
which also exposes raw data to the NAT. They trained NAT
models with raw, bidirectional KD and standard KD data
in three different stages. We also apply their method to
GLAT+CTC with the training updates split to approximately
2 : 2 : 3 in ratio for each stage. Their method is trained
for 325k updates on En-De/De-En and 110k updates on En-
Ro for fair comparison. Note that their method augments
the training data by introducing (distilled source, raw tar-
get) sentence pairs, while ours only utilizes raw and stan-
dard KD data. We evaluate all the models using the tok-
enized and cased BLEU scores (Papineni et al. 2002), and
a learned metric COMET (Rei et al. 2020) with the recom-
mended model wmt20-comet-da.

4.2 Main Results
Table 2 and Table 3 present the main results on the
benchmarks. Our method outperforms baselines consistently
across different language pairs. We enable the model to learn
directly from authentic data without greatly increasing the
modes by selecting NAT-friendly raw translations using an
NAT evaluator. Compared with the previous work (Ding
et al. 2021a) which also exposes raw data directly to NAT,
we can determine the period of exposure for each sentence
by setting the threshold dynamically in the training process.
We highlight the empirical advantages of our method:

• Simple, effective and generic. Our method adds a simple
data selection procedure to the standard training pipeline,
while it can effectively improve the performance of
NAT across different datasets. Since the method is
architecture-irrelevant, it can be applied to a wide range
of architectures while maintaining their advantages, even
including inference-efficient AT structures.
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Methods Iter WMT14 WMT16 Speed UpEn-De De-En En-Ro
AT Models

Transformer (Vaswani et al. 2017) T 27.30 / / 1.0×
Transformer * T 27.34 (0.309) 31.73 (0.388) 34.68 (0.515) 1.0×
DeepShallow (Kasai et al. 2020) * T 26.00 (0.152) 30.62 (0.308) 32.25 (0.401) 2.4×

Iterative NAT Models
CMLM (Ghazvininejad et al. 2019) 10 27.03 30.53 33.08 1.7×
JM-NAT (Guo, Xu, and Chen 2020) 10 27.31 31.02 / 5.7×

Non-iterative NAT Models
NAT-FT (Gu et al. 2018) 1 17.69 21.47 27.29 15.6×
GLAT (Qian et al. 2021a) 1 25.21 29.84 31.19 15.3×
GLAT + CTC (Qian et al. 2021a) 1 26.39 29.54 32.79 14.6×
DA-Transformer (Huang et al. 2022) 1 27.91 31.95 / 7.0×

Our Models
DeepShallow w/ Standard KD * T 27.05 (0.246) 31.36 (0.326) 32.99 (0.416) 2.4×
DeepShallow w/ Selective KD (ours) T 27.23 (0.252) 31.70 (0.352) 33.28 (0.438) 2.4×
CMLM w/ Standard KD * 10 26.64 (0.137) 30.24 (0.215) 32.85 (0.357) 2.1×
CMLM w/ Selective KD (ours) 10 27.06 (0.170) 30.65 (0.226) 33.38 (0.374) 2.1×
GLAT + CTC w/ Standard KD * 1 26.19 (0.119) 30.74 (0.274) 32.73 (0.362) 14.2×
GLAT + CTC w/ Selective KD (ours) 1 26.82 (0.144) 31.30 (0.302) 33.34 (0.381) 14.2×

Table 2: BLEU and COMET scores of NAT models on WMT14 En-De/De-En and WMT16 En-Ro benchmarks. COMET
scores are listed in parentheses if available. * indicates the results are obtained based on our implementation. To highlight the
advantage in efficiency, we did not apply strategies like reranking which improve the performance at the cost of inference speed.

Methods WMT14 WMT16
En-De De-En En-Ro

LFR 26.56 31.13 33.27
Selective KD (ours) 26.82 31.30 33.34

Table 3: BLEU scores of GLAT+CTC using our method and
LFR (Ding et al. 2021a) based on our implementation.

• Well balance the translation quality and complexity of
data. Our method can configure the translation qual-
ity and complexity of training data by setting different
thresholds for data selection. As the ratio of raw data in-
creases, the translation quality improves, and the com-
plexity of training data increases only slightly since we
deliberately select the simple raw translations.

4.3 Analysis

Properties of Selected Raw Data. Our method aims at
selecting more NAT-friendly raw translations, which con-
tain few modes and show high quality. To validate that our
data selection process indeed find a set of training data that
has the desired properties, we measure the complexity of our
training data using two metrics:

• Translation Uncertainty: Zhou, Gu, and Neubig (2019)
proposed to measure the translation uncertainty of par-
allel data based on conditional entropy. They simplified
conditional entropy to the sum of entropy of target words

conditioned on the aligned source words:

C(d) =
1

|Vx|
∑
x∈Vx

H(y|x)

where d is a given dataset and Vx is the set of source
vocabularies.

• Alignment Shift: We measure the change of sentence
structure according to the relative distance between
aligned words. Specifically, given source sentence X and
its translation Y , we get

τ(X,Y ) =
1

|Y |
∑
i,j

[Xi = align(Yj)] · | i

|X|
− j

|Y |
|.

S(d) is computed as the average of τ(X,Y ) over all
pairs: S(d) = 1

|d|
∑

(X,Y )∈d τ(X,Y ).
We adopt an alignment model (Dyer, Chahuneau, and

Smith 2013) for the metrics above. The metrics are com-
puted over 1M randomly sampled sentence pairs from our
processed WMT14 En-De. To display the effects of our
method, we compute the metrics for distilled data, selected
raw data (using GLAT+CTC), raw data replaced by KD data
and the overall training data under different threshold T .

As shown in Figure 2, the translation uncertainty and
alignment shifts of replaced raw data (red) exceed those of
selected raw data (green) by a large margin, indicating that
our method can effectively separate raw data into classes of
different complexity. When the threshold T is high enough,
the selected raw data even displays lower complexity than
the average level of distilled data. This further proves that
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Figure 2: C(d) and S(d) on 1M pairs randomly sampled from WMT14 En-De. We set T = [0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.01] for
the experiments, and the ratio of raw data=[0.98, 0.91, 0.75, 0.51, 0.28, 0.10, 0.00] respectively with a GLAT+CTC evaluator.
Selected Raw is the set of raw sentences selected under T , while Replaced Raw is the set of raw sentences to be distilled.
We concatenate Replaced Raw after distillation and Selected Raw to get Training Data, which is the data exposed to the NAT
student during training. We neglect C(d) and S(d) when there is not enough data for analysis.

Figure 3: BLEU scores of GLAT+CTC for examples of dif-
ferent lengths on WMT14 En-De.

Model En-De De-En En-Ro
Standard KD 1.06‰ 0.56‰ 0.80‰
Selective KD 0.82‰ 0.38‰ 0.64‰

Table 4: Word repetition ratio of GLAT+CTC on WMT14
En-De/De-En and WMT16 En-Ro.

the selected raw data contains fewer modes. Observing the
results on training data (blue), we find that the metrics grow
smoothly as the ratio of raw data increases, which means that
a flexible trade-off between translation quality and complex-
ity of data can be realized.

Our Method Reduces Repetition. We also measure the
percentage of repeated tokens to analyze whether our
method can reduce the occurrence of repetition which is a
typical mistake caused by the multi-modality problem. We
see in Table 4 that exposing raw data during training can
further reduce token repetition ratio. Although our data con-

Length Score Exposure Period
< 10 0.826 71.0%

[10, 20) 0.740 56.6%
[20, 30) 0.696 49.3%
[30, 40) 0.680 46.6%
[40, 50) 0.670 45.1%
[50, 60) 0.658 43.0%
≥ 60 0.644 40.6%

Table 5: Average score and exposure period for raw trans-
lations of different lengths on WMT14 En-De with a GLAT
+CTC evaluator. Exposure period is given by the percentage
of updates where the raw translation can be directly learned.

tains more modes than fully distilled data, it still achieves a
better result. We think the improvement comes from learn-
ing directly from authentic distribution, which exhibits bet-
ter word interdependencies and fewer mistakes.

Long Sentences Benefits More. Figure 3 presents the
BLEU score on sentences of different lengths. As seen,
longer sentences benefit more from our selective knowledge
distillation. Intuitively, the long sentences may contain more
mistakes during distillation; thus, learning from authentic
data can help the NAT student avoid or correct these mis-
takes and strengthen its ability to model long sentences. We
also find that the performance drops slightly on sentences
with fewer than ten tokens. As shown in Table 5, shorter
sentences have higher average scores, thus exposed to the
student NAT for a longer period. In such a case, long-term
exposure to raw data may confuse the model’s training, as it
suffers from the multi-modality of the raw data.

4.4 Ablation Study
Effects of Threshold T . We further analyze the effects
of threshold T in Figure 4. We fix the threshold T so

13251



Figure 4: Performance of GLAT+CTC on WMT14 En-De
with fixed threshold and dynamical threshold (0.4→1.0).

that the training data remains unchanged during the train-
ing process. The model can achieve significant improve-
ment (+2.4 BLEU) by distilling only 5% of the training
data. We attribute this phenomenon to the effectiveness of
our data selection process, which can filter translations that
greatly complicate the training data. The growth in perfor-
mance becomes much slower as the ratio of distilled trans-
lations increases. Another finding is that the model trained
on 80%-distilled data slightly outperforms the one trained
on fully distilled data. According to Zhou, Gu, and Neu-
big (2019), a potential explanation is that the complexity
of the 80%-distilled data is more suitable for the capacity
of GLAT+CTC architecture. The dynamic threshold outper-
forms all the fixed threshold settings, embodying the advan-
tage of our hard-to-easy strategy.

Model Initialization. To study how model initialization
influences our method, we initialize the GLAT+CTC student
with parameters of the teacher trained after t updates, where
t ranges from 25k to 300k with step 25k. We find that initial-
ization with teacher trained after only 25k updates when the
improvement on validation set begins to slow down achieves
the best performance (26.82 BLEU), but the performance
gap between these differently initialized models is negli-
gible. This suggests that the improvement of our method
does not come from a longer training process (initialization
+ training). However, removing teacher initialization brings
about a degeneration of 0.47 BLEU. We believe that trans-
ferring some basic knowledge from the teacher can free the
student from learning everything from scratch on the more
challenging raw data, enabling the student to focus on the
missing knowledge in distilled data.

5 Related Work
Non-autoregressive Machine Translation Gu et al.
(2018) first proposed Non-Autoregressive Transformer
(NAT) for machine translation, which significantly boost
the inference speed by generating the outputs in parallel.
Despite the efficiency, NAT still lags behind AT in perfor-
mance. Various methods have been proposed to bridge the
performance gap. A line of work proposes to enhance the
decoder inputs of NAT (Lee, Mansimov, and Cho 2018;

Wei et al. 2019; Wang et al. 2019). Another branch of
work proposes to model the interdependencies between tar-
get outputs, which is explicitly missing in vanilla NAT
(Ghazvininejad et al. 2019; Qian et al. 2021a). In addition,
a series of work takes the latent variable as inputs to model-
ing the target-side information (Kaiser et al. 2018; Ma et al.
2019; Akoury, Krishna, and Iyyer 2019; Bao et al. 2021,
2022). These work lines focus on model architecture and
training method, so they can be easily combined with our
model-agnostic method.

Training Data Manipulation More close to our work
is the thread of studies on manipulating training data for
NAT. Zhou, Gu, and Neubig (2019) show that sequence-
level knowledge distillation (Kim and Rush 2016) reduces
the complexity of training data and propose several meth-
ods to adjust the complexity of distilled data in order to
match the model’s capacity. Sun and Yang (2020) jointly op-
timizes AT and NAT models to remove the multi-modality in
target sentences. Shao, Wu, and Feng (2022) generate sev-
eral high-quality reference translations and select the most
suitable candidates by comparing them with the NAT out-
puts. Some recent studies show that distilled data has some
side effects like leading to more errors on predicting low-
frequency words (Ding et al. 2021b). In order to solve this
problem, Ding et al. (2021a) proposed to pretrain NAT mod-
els on raw data, which is closely related to our work. Our
method follows the idea of exposing raw data to NAT, but
is different from theirs by introducing an NAT evaluator to
evaluate each raw translation. By changing the ratio of raw
sentences in the training data, we can configure the complex-
ity of data in the training process and benefit more from raw
data by exposing some raw translations for a longer period.

Curriculum Learning Our work adopts a hard-to-easy
strategy in training NAT models by decreasing the ratio of
raw data in the training process, which is contrary to cur-
riculum learning (Bengio et al. 2009) in spirits. Curriculum
learning methods train machine learning models from easy
to hard data, but (Braun, Neil, and Liu 2017) showed that
learning from hard to easy can be effective. They conducted
experiments on automatic speech recognition systems and
use signal-to-noise ratio (SNR) to create hard-to-easy cur-
riculum. Compared with the opposite ranking of the exam-
ples from easy to hard, the hard-to-easy strategy provides
better results.

6 Conclusion
In this paper, we propose selective knowledge distillation
to tackle error propagation from an autoregressive teacher
in standard knowledge distillation for NAT models. Specifi-
cally, we employ an NAT evaluator to progressively replace
the targets from distilled data with raw data for training NAT
students, enabling them to benefit from both the high-quality
raw data and easy-to-learn distilled data. Experiment results
validate that our approach can effectively improve perfor-
mance on machine translation tasks. Extensive analyses also
reveal that an effective data selection strategy has a great po-
tential to improve the performance.
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