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Abstract
Current math word problem (MWP) solvers are usually
Seq2Seq models trained by the (one-problem; one-solution)
pairs, each of which is made of a problem description and
a solution showing reasoning flow to get the correct answer.
However, one MWP problem naturally has multiple solution
equations. The training of an MWP solver with (one-problem;
one-solution) pairs excludes other correct solutions, and thus
limits the generalizability of the MWP solver. One feasible
solution to this limitation is to augment multiple solutions
to a given problem. However, it is difficult to collect diverse
and accurate augment solutions through human efforts. In this
paper, we design a new training framework for an MWP solver
by introducing a solution buffer and a solution discriminator.
The buffer includes solutions generated by an MWP solver to
encourage the training data diversity. The discriminator con-
trols the quality of buffered solutions to participate in training.
Our framework is flexibly applicable to a wide setting of fully,
semi-weakly and weakly supervised training for all Seq2Seq
MWP solvers. We conduct extensive experiments on a bench-
mark dataset Math23k and a new dataset named Weak12k, and
show that our framework improves the performance of various
MWP solvers under different settings by generating correct
and diverse solutions.

Introduction
Automatic math word problem (MWP) solving has attracted
the interest of researchers for a long time. Most state-of-
the-art MWP solvers (Wang, Liu, and Shi 2017; Wang et al.
2019; Liu et al. 2019; Xie and Sun 2019; Zhang et al. 2020b;
Shen and Jin 2020; Hong et al. 2021a; Liang et al. 2022; Hu
and Jiang 2022) are Seq2Seq models, which use an encoder
to get latent representations for the problem and a decoder
to generate symbolic solutions. The Seq2Seq models are
typically trained by the (one-problem; one-solution) pairs,
each of which is made of a problem of an MWP description
and a solution of a corresponding ground truth equation.
However, MWPs typically have multiple reasonable solutions
to reach the final answer. As shown in Table 1, there exists an
alternative solution that gives the same answer as the given
ground truth.
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Problem
Description:

There are 40 students taking
Chinese and math exams, 25
students passed the Chinese
exam, 20 students passed the
math exam, 10 students failed

both exams. How many
students pass both exams?

Ground Truth
Solution: 25+20-(40-10) = 15

Alternative
Solution 1: 25+20-40+10 = 15

Alternative
Solution 2: 10+25+20-40 = 15

Spurious
Solution: 25-10=15

Table 1: An MWP example with a ground truth solution and
an alternative solution that reaches the same correct answer.
It also has a spurious solution, which reaches the same cor-
rect answer but makes no sense. Our target is to improve the
generalizability of an MWP solver by considering the multi-
ple solutions to one problem and distinguishing the correct
solutions from the spurious solutions.

Training an MWP solver with (one-problem; one-solution)
pairs excludes other correct solutions, and thus limits the gen-
eralizability of the MWP solver. An intuitively better idea is
to incorporate multiple solutions instead of a single solution
to specific MWP in training, i.e., by data augmentation. How-
ever, it is difficult to acquire diverse and accurate augment
solutions. If randomly generating solutions and then fixing
the wrong ones as done in (Hong et al. 2021a), spurious solu-
tions like “25-10=15” shown in Table 1 cannot be identified.
They reach the right value answer with the quantities that
appeared in the MWP description but make no sense. The
inclusion of them in training is harmful to the MWP solver
and eventually lowers the performance.

We are thus motivated to inject solution diversity into the
MWP solver training by meanwhile making quality control
on the training instances. One possible way is to label prob-
lems manually with diverse solutions. However, this is too
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time-consuming and costly. Another baseline is based on
mathematical transformation to generate all possible variants
of ground truth. The critical disadvantage of this transforma-
tion is that it generates too many solutions and makes the
training target much more ambiguous, leading to poor perfor-
mance. For example, we can generate 24 potential solutions
for A + B + C + D by only using the commutative law.
Not to mention the scenario when we consider associative
and distributive law if multiplications and parentheses are
included. Therefore, we only encourage the potential solu-
tions from the MWP solver itself. In fact, to improve the
generalizability of MWP solvers, we should make a trade-
off between the predictability and diversity of augmented
solutions. Therefore, we propose a new training framework
for an MWP solver by introducing a solution buffer and a
solution discriminator. The buffer is maintained to encourage
the training data diversity by including multiple solutions
generated by an MWP solver for one given problem. The
discriminator controls the quality of buffered solutions to
participate in training by calculating their qualification scores.
The solutions with higher qualification scores are allowed to
contribute more in future training.

The whole life-cycle of our designed training framework
goes as follows: i) update the encoder and decoder param-
eters of the MWP solver by samples in the solution buffer
in a probabilistic way, i.e., higher-quality solutions are more
engaged; ii) generate new solutions to the buffer by the up-
dated solver; and iii) training a diversity-aware discriminator
to evaluate the quality of MWP solutions and go to step i).
In the iterative training process, a better-trained solver gener-
ates higher-quality novel solutions. More diverse solutions
train a stronger encoder and decoder, which give a more ac-
curate probabilistic estimation of the solution quality. Since
the buffered solutions participate in the training of encoder
and decoder with different levels of probabilistic weights, our
proposed framework well controls the augmentation quality
while injecting diversity in training, regardless of the type of
Seq2Seq model implemented in the solver.

We conduct extensive experiments to evaluate the effec-
tiveness of our proposed training framework on two datasets.
Math23k, the most commonly used dataset for MWP solving,
is used to evaluate our training method in the fully and weakly
supervised setting. We also curate a novel and large dataset
named Weak12k, which has only problems annotated with an-
swer values instead of solutions. By combining Math23k and
Weak12k, we train the model in semi-weakly supervised set-
ting, and then evaluate the performance on their testing sets
separately. The experimental results show that our proposed
training method can generally boost the solving accuracy
for different backbone solvers in various experimental set-
tings. The solution diversity evaluation and case studies are
strong proofs to show that our method can generate multiple
solutions and refine the quality of the training target.

Related Work
Math Word Problem Solving
After the wide usage of traditional statistical algorithms (Hos-
seini et al. 2014; Mitra and Baral 2016) and semantic parsing

methods (Shi et al. 2015; Huang et al. 2017; Liang et al.
2018; Zou and Lu 2019) in MWP solving, deep learning
methods become dominant. (Wang, Liu, and Shi 2017) first
proposed to apply sequence-to-sequence (Seq2Seq) frame-
work to solve MWP and achieved better performance com-
pared with previous methods. Most following works focused
on the generation module. (Wang et al. 2019) proposed a
two-stage decoding method to decompose goals into two
parts. (Liu et al. 2019; Xie and Sun 2019) proposed to use
tree structure decoder. (Chiang and Chen 2018) introduced a
stack-related decoder. Multiple decoder architectures (Zhang
et al. 2020a; Shen and Jin 2020) were also introduced to
improve generation results. On the other hand, a couple of
works (Li et al. 2019; Wang et al. 2018; Lin et al. 2021)
focused on improving the encoding framework. (Zhang et al.
2020b; Shen and Jin 2020; Cao et al. 2021) chose to model
quantity information with a sequential combination of RNN
and GNN encoder. Besides the model architectures, there
are also other interesting explorations, such as knowledge
distillation (Zhang et al. 2020a), situation model (Hong et al.
2021b), syntax-semantics model(Lyu and Yu 2021), ,auxil-
iary training tasks (Qin et al. 2021; Piekos, Michalewski, and
Malinowski 2021; Liang and Zhang 2021), explicit value
encoding (Wu et al. 2021) and transfer learning(Alghamdi,
Liang, and Zhang 2022). Recently, pre-trained language mod-
els (Yu et al. 2021; Huang et al. 2021; Shen et al. 2021; Li
et al. 2021; Liang et al. 2022; Lan et al. 2022; Liang, Zhang,
and Zhang 2022) are widely applied to encode MWPs and
become the strongest baselines in terms of MWP solving
accuracy. in There are some other works (Ran et al. 2019;
Andor et al. 2019; Chen et al. 2020) considering the weak su-
pervision environment in numerical understanding, however,
the solution diversity in MWP is unique and under-explored.

The prior work LBF (Hong et al. 2021a) presents a weakly-
supervised MWP solver by considering the diversity of solu-
tions. Our work differs completely from it on both the train-
ing framework and the MWP setting. Our proposed training
framework manages the augmented multiple solutions of
one MWP with their probabilistic qualification scores. The
harmful influence of spurious solutions existing in LBF is
alleviated, while the diversity is injected. Our training frame-
work is also flexibly usable in different settings, i.e. full,
semi-weak and weak supervision. This is also the first work
that considers both the quality and diversity of solutions.

Methodology

Problem Formulation
We denote an MWP description as W = {w1, w2, ..., wm}
with length m and its equation-shaped solution as S =
{s1, s2, ..., sn} with length n. We let A be the final answer
value that can be calculated from the equation S. Next, we de-
fine a vocabulary for solution S as V = {Vop, Vnum, Vcon},
where Vop = {+,−,×,÷,∧} contains the operators and
Vcon = {1, π} contains the constant values that could be used
in the solution. The sets Vnum are created by number map-
ping (Wang, Liu, and Shi 2017) and have different lengths for
different problems, which contain all the numerical quantities
appeared in the problem description.
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Algorithm 1: Weak Data Augmentation
Input: Answer A and quantity set Vnum of problem W
Parameter: Constant values Vcon and operators Vop of W ,
maximum iteration number MAX
Output: Equation S = {s1, s2, ..., sn} for W

1: Let R1 = Vnum ∪ Vcon, R2 = {}, R3 = Vnum ∪ Vcon

2: Let iter = 0 denote the current iteration number
3: while TRUE do
4: for i ∈ R1 do
5: for j ∈ R3 do
6: for op ∈ Vop do
7: if iter = MAX then
8: Return failure
9: end if

10: S ← connect i and j with operator op
11: if S leads to A then
12: Return S
13: else
14: Insert S into R2

15: end if
16: iter = iter + 1
17: end for
18: end for
19: end for
20: R3 = R2 ∪R3, R1 = R2, R2 = {}
21: end while

The objective of an MWP solver is to translate W into S,
reaching the answer A. An MWP solver can be trained in
different settings, by having problem-equation (W -S) pairs
in a fully supervised setting, and by having problem-value
(W -A) pairs in a weakly supervised setting. When having a
mixture of problem-equation and problem-value pairs, we
investigate a semi-weakly supervised setting. In all these set-
tings, to leverage diverse augmented solutions, we design a
buffer to store and evaluate the qualification scores of these
augmented solutions. The buffer is initialized by the provided
equation S in the fully supervised or semi-weakly supervised
setting. However, in weak supervision with only problem-
value (W -A) pairs, we initialize the buffer starting from A
by a proposed weak data augmentation method.

Weak Data Augmentation
The weak data augmentation (WDA) method is to search
potential equations based on the given value A for problem
W . With the quantities Vnum∪Vcon and operators Vop in W ,
the augmentation process can be formulated as an algorithm
that receives Vnum and A as inputs and generates an equation
S, with Vcon and Vop as parameters that can be adjusted
to the dataset. Although some generated solutions might
be spurious, our discriminator could assign small weights
to them and alleviate the side effect. In general, our Weak
Data Augmentation (WDA) is an equation-orientated neuro-
symbolic search algorithm. Details of the proposed WDA
can be found in the Algorithm 1.

The augmentation process is based on three sets R1, R2

and R3, where R1 contains all the newly reached solutions

in the last round, R2 is a temporary set to store the new
solutions in the current loop, and R3 has all the potential so-
lutions founded from the beginning. Firstly, R2 is initialized
as empty, while R1 and R3 are initialized as the combina-
tion of quantity set Vnum and constant values Vcon. Then we
perform two for-loops to select two equations from R1 and
R3 and connect them with an operator in Vop to construct a
new equation S. We iterate i and j on R1 and R3 to avoid
duplicated generations. If the new equation S leads to the cor-
rect answer, we return the result and terminate the algorithm.
Otherwise, S will be inserted into R2 for future usage (line
20 and 21). To avoid the endless trial without a successful
S, we define a maximum iteration number MAX to limit
the time consumption on finding S, which is set as 50000
empirically. A failure is returned when no valid equation for
a given problem can be found within MAX iterations.

To reduce the chance of generating spurious solutions and
also reduce the searching time, we also formulate several
hand-crafted rules. Firstly, we avoid the equations of a÷ a
and a − a (a represents a random number). Because 1 is
given as a constant number and 0 is meaningless for MWPs.
Secondly, we discard all solutions with only numbers in
Vcon, without any quantity in Vnum. This is because MWPs
are supposed to be solved by the quantities Vnum in the
problem description, assisted by Vcon like 1 and π, not just
by Vcon. Thirdly, there have to be multiplication operators in
the solution when constant π appears.

Model Architecture
Our proposed framework is shown in Figure 1. It is a general
framework that can host any kind of encoder-decoder solvers.

Encoder. Since GTS (Xie and Sun 2019) and MWP-BERT
(Liang et al. 2022) have been recognized as the most repre-
sentative MWP solvers with RNN backbone and pre-trained
model backbone, respectively. They are also open-sourced
and easy to reproduce the results. Therefore, they are com-
monly used as backbone encoders by researchers (Zhang et al.
2020b; Hong et al. 2021a), and we choose those two models
as our encoders.

Decoder. Tree-based solvers have been proven as an effec-
tive decoder in (Xie and Sun 2019; Zhang et al. 2020b; Liang
et al. 2022). The tree structure can decompose the goal and
make the answer expression simpler. Empirically, we follow
the decoder implementation of (Xie and Sun 2019).

Network Training
Besides the backbone MWP solver (including encoder and
decoder), our training framework has a solution buffer and a
solution discriminator. The buffer stores the training data,
including those initialized from the given training data, and
those generated by an optimized MWP solver. The generated
solutions for one given problem are different from the known
solution to enlarge the training data diversity. To control the
quality of buffered solutions to participate in training, the dis-
criminator evaluates their qualification scores. The solutions
with higher qualification scores are allowed to contribute

13185



There are 18 boxes of apples and 22 boxes of pears, 
with each box of 50 kilograms. How many kilograms 

of apples and pears in total?

Qualifying

Exploration

Solution Buffer

*

50 +

18 22

+

* *

18 5022 50

Solution Score 
S = 0.8

Solution Score  
S = 0.2

*

50 +

18 22

*

50 +

22 18

*

50+

18 22

*

50 *

18 22

*

50-

22 18

*

50+

50 22

Discriminator

Encoder-Decoder

Discriminator Learning

Positives Negatives

Training

Figure 1: An overview of our proposed framework. The encoder-decoder solver is trained to generate multiple solutions to
enlarge the solution buffer. Next, a discriminator is trained with positive samples and negative samples to evaluate the qualified
solution. The solver is then trained again with all potential solutions in the buffer with different weights which are given by the
encoder-decoder solver and the discriminator.

more in future training. The interactive process of the MWP
solver, the buffer and the discriminator follows three steps
in an iterative manner. We introduce the details of the three
steps in each iteration as follows.

Step 1: Probabilistic Training. In a standard fully super-
vised setting with training problem-equation (W -S) pairs,
the MWP solver parameters of both encoder and decoder can
be tuned by minimizing the following negative likelihood:

θ∗ = argmin
θ
{− logP (S|W, θ)}, (1)

where θ∗ covers all the parameters of the solver and is the
best to minimize the loss by finishing one entire training
round at the present moment. The MWP solver with θ∗ is
thus supposed to recognize the correct solution S for problem
W , although its generalizability may be limited due to the
training experience with only a single S for each problem
W .

The buffer in our proposed framework is designed to in-
clude diverse alternative solutions for a problem W . Al-
though initialized differently in different training settings,
the buffer B is updated during training to include more high-
quality alternative solution equations. Note that at the begin-
ning of the first Step 1 when an MWP solver with parameter
θ has not been trained, the buffer B has only one equation
of a problem W or empty. In the fully supervised setting,
B includes the given single ground-truth S for W . In the
weakly supervised setting, B includes the generated equa-
tion S by WDA for W if searchable, otherwise B is empty
for W . In semi-weakly supervised setting, we only initialize
the buffers of equation-annotated problems and leave others
empty. Therefore, the quality score ai = 1 (ai = 0 when the
buffer is empty) before starting to run Step 1 in the first itera-
tion, even though at this moment θ is randomly initialized and
the MWP solver performs badly on evaluating P (Bi|W, θ).

After the first iteration, the buffer is updated (step 2) and
the solutions in the buffer are assigned with their qualification
scores ai (step 3). With these scored solutions in buffer B,

the MWP solver parameter θ is optimized by a new objective
function:

θ∗ = argmin
θ
{−ΣBi∈B ai logP (Bi|W, θ)}. (2)

The quality weight ai enables an alternative solution Bi to
participate in the training process in a probabilistic manner,
instead of only focusing on the single annotated ground truth.
Initially, all available Bi participate with the same probability
(ai=1). This solution quality weight ai will be updated in Step
3.

Step 2: Solution Buffer Update. The trained MWP solver
with optimized encoder and decoder θ∗ in Step 1 is expected
to generate the correct solutions for those training MWPs. To
make full use of the well-trained solver, we apply k-beam
search to generate solutions with top-k probabilities. As long
as the generated solutions lead to the correct value answer,
we regard them as potential solutions. Then if the generated
solutions do not exist in the current buffer B, we update the
buffer with the new solutions. In this way, the buffer B is
filled by more diverse solutions.

In the initial iterations, the solver θ∗ may still have limited
generalizability since θ∗ is optimized by using mostly (one-
problem; one-solution) pairs. However, the top-k generated
solutions are the most likely reasonable alternative solutions
since the solver θ∗ does have a good understanding of the
given problem. Even if some generated solutions are not good
enough, our next step of qualification score evaluation can
identify them and minimize their influence in the next update
of θ∗. After running several iterations, the MWP solver has
experienced diverse solutions, improved its generalizability,
and then been able to generate even more diverse solutions.
This is an imitation of learning with self-correction in our
human-like ways, i.e., gaining richer experience helps us to
learn better.

Step 3: Solutions Evaluation. There are two ways to cal-
culate the solution quality weight ai in Eq. (2). The first way
is to rely on the MWP solver θ∗, from which solutions are
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generated. Since the generated solutions selected in buffer
B are those with high P (Bi|W, θ), their weights are further
normalized in B by

si =
P (Bi|W, θ)

ΣBj∈BP (Bj |W, θ)
. (3)

Staying with the calculation of ai = si enlarges the
buffer continuously with generated solutions. The diversity is
boosted, however, the quality of generated solutions will drop.
To objectively evaluate the quality of one buffered solution
Bi for a problem W , we need a discriminator (classifier) to
evaluate the fitness of Bi and W , independent of the MWP
solver θ∗. Note that si in Eq. (3) is proportional to the prob-
ability of mapping the problem W to a solution Bi. It only
understands (by encoding) the problem W and has no un-
derstanding of Bi. Inspired by (Liang and Zhang 2021), we
build a solution discriminator by using a contrastive learn-
ing strategy to evaluate the qualification score of Bi being a
correct and diverse solution to W .

The discriminator encodes a solution S to be Zs by a bi-
direction GRU, and encodes the problem W to be Zw by the
encoder of MWP solver. Then the score t is calculated by the
bilinear similarity between the mean vector of Zw and Zs:
tws = σ(ZwXtZs) where Xt is a learnable matrix and σ is
the Sigmoid function. The score tws should be close to 1 if
S is one of the correct solutions to W . Otherwise, tws is 0.
To train the discriminator for this purpose, its parameter ϕ
(covering Xt and the bi-direction GRU of solution encoder)
is optimized over the following objective function:

ϕ∗ = argmin
ϕ
{−

∑
S∈Spos(W )

log(tws)

−
∑

S∈Sneg(W )

log(1− tws)}
(4)

The positive solutions Spos(W ) are generated by applying
commutative law and associative law on the ground truth
solution of W to encourage the diversity of solutions. In
weakly supervised settings, we just use the solution gener-
ated by either WDA or the model as the positive equation,
because there is no ground truth solution. The negative solu-
tions Sneg(W ) are generated by following (Liang and Zhang
2021), i.e., performing random manipulations on positive
solutions with a disturbance probability λ. In this way, the
discriminator is trained to distinguish the diverse correct so-
lutions and true negative solutions to problem W . This is
the first attempt to apply operation laws to encourage the
diversity of solutions in solving MWPs. We will show the ef-
fectiveness of this designed discriminator in the next section.
Note that we do not perform positive sample augmentation
in weakly supervised settings because there is no ground
truth solution. We just use the solution generated by either
WDA or the model as the positive equation. The details of
the generation algorithm can be found in the next section.

Solution Augmentation. In order to augment the ground
truth solutions to support the training of the discriminator. Let
capital letters like A,B,C denote a number or a complete
equation that can lead to a number. For example, A could be

Algorithm 2: Iterative Training
Input: Problem W , Solution Buffer S, Solver M , Discrimi-
nator D

1: for Each Problem W with a solution buffer S in the
dataset do

2: if Epoch <100 then
3: Set ai in Eq. 2 as si in Eq.3.
4: else
5: Set ai in Eq. 2 as (si + twsi)/2.
6: end if
7: Train the solver M with Eq. 2 and buffer S.
8: Train the discriminator D with Eq. 4.
9: Apply beam-search on M to solve W

10: Save equations that reach the correct value to buffer S
11: end for

the number 2, and also could be an equation 2+2 that leads to
4. We design the following rule-based solution augmentation
and apply them on both full solutions and partial solutions
(which still have to be equations):
• For solutions with a shape A+B, we swap the positions
A and B if there is no ∗ and / connected to either A or B.

• For solutions with a shape A±B−C or A−C ±B, we
swap the positions of ±B and −C if there is no ∗ and /
connected to either B or C.

• For solutions with a shape A ∗B, we swap the positions
of A and B.

• For solutions with a shape A∗B/C, A/C ∗B or A/B/C,
we swap the positions of ∗B and /C or the positions of
/B and /C.

Training Process. Training the discriminator by Eq. (4)
needs a good MWP encoder to represent W as Zw. However,
the problem encoder is updated with the decoder as a whole
in the MWP solver by Eq. (2). In addition, the qualification
score tws from the discriminator is not usable to replace ai in
Eq. (2) until the discriminator is well trained. Therefore, to
have a stable and effective training process, we organize the
training epochs in two stages. In the first stage, e.g., the first
100 epochs, the weight ai in Eq. (2) is set to si in Eq. (3). The
training process goes through step 1-3 iteratively: optimizing
θ∗, generating solutions to buffer, calculating si, and optimiz-
ing ϕ∗. In the second stage when the discriminator is good
enough to give reasonable scores, the weight ai is changed to
(si + twsi)/2, taking into account the generation probability
of the decoder and the fitness judged by the discriminator.
Then the training process again goes through the iteration of
optimizing θ∗, generating solutions to buffer, calculating ai
and optimizing ϕ∗, until the maximum epoch is reached. For
the sake of better understanding, we formulate our training
process with a pseudo-code as shown in Alg. 2.

Experiments
In this section, we first introduce the datasets and baselines
that we use. Then we give a brief description about the com-
putational environment and hyperparameters. For quantitative
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Problem
Description: Please calculate: 840/6/70+630

Answer: 840/6/70+630 = 632

Table 2: An MWP example having an explicit equation in
the problem description, which are too easy, also not suitable
for weak-supervised solver training and solution diversity
evaluation.

analysis, our solver outperforms all baseline methods under
three different supervision in terms of accuracy. Besides, we
conduct a solution diversity evaluation that shows our solver
is able to generate multiple solutions in beam search, which
confirms that the solution diversification ability is embedded
into our solver. Also, we have an ablation study to show the
contribution of different components. Due to the space limit,
some qualitative experiments are located in our appendix.

Used Datasets
D-Math23k. Math23k contains 23,162 Chinese MWPs,
which are annotated with equations as their solutions. In the
Math23k dataset, there are some problems whose solutions
are explicitly given in the problem description, as shown in
Table 2. It is more reasonable to discard those problems with-
out solution diversity. After cleaning, there are 22,195 MWPs
left in Math23k. And we call this subset D(iversity)-Math23k.
We report the performance of 5-fold cross-validation on it fol-
lowing (Xie and Sun 2019) and (Hong et al. 2021a). Since we
filtered out many simple problems and evaluate them under
a more difficult setting, i.e. 5-fold cross-validation. There-
fore, our re-produced performance on D-Math23k is not as
good as some baseline (Zhang et al. 2020b; Liang et al. 2022)
reported.

Weak12k. We curate and release a novel math word prob-
lem (MWP) dataset called Weak12k with 12,117 MWPs.
Each problem in this dataset is annotated with a final value
answer instead of an equation solution. To our knowledge,
Weak12k is the first Chinese MWP dataset in a weakly su-
pervised manner. This dataset will be released to the pub-
lic upon paper acceptance to facilitate future studies like
semi-weakly supervised solver development. Compared with
the most commonly used dataset Math23k, the problems in
Weak12k are more difficult to solve, analysis and examples
can be found in our appendix. In addition, the LBF method
(Hong et al. 2021a) has a large performance gap on Math23k
(over 50%) and Weak12k (below 30%) as shown in Table
4. Therefore, we believe that the new dataset Weak12k is
an indispensable benchmark to the MWP community. In the
experiment of this paper, we also report the results of 5-fold
cross-validation on this dataset.

Baselines
In fully supervised setting, we select DNS (Wang, Liu, and
Shi 2017), S-Aligned (Chiang and Chen 2018), GTS (Xie
and Sun 2019), Graph2Tree(Zhang et al. 2020b) and MWP-
BERT (Liang et al. 2022) as our baselines. DNS stands for the
deep neural solver, which is a vanilla GRU-based Seq2Seq

(Fully supervised) D-Math23k
DNS 50.2

S-Aligned 55.4

GTS 65.7

Graph2Tree 66.6

MWP-BERT 69.2

D-GTS 67.1

D-Graph2Tree 68.9

D-MWP-BERT 73.3

Table 3: Comparison of answer accuracy (%) on D-Math23k
dataset under the fully supervised setting. The best results
are in boldface. D-solver is our proposed diversity-injected
solver.

D-Math23k Weak12k
Semi-weakly supervised

LBF 54.1 33.6
D-GTS w WDA 67.1 57.9

D-MWP-BERT w WDA 73.2 67.5
D-GTS w/o WDA 68.4 59.2

D-MWP-BERT w/o WDA 74.4 70.9

Weakly supervised
LBF 53.1 29.5

D-GTS w WDA 55.2 35.0
D-MWP-BERT w WDA 56.0 31.8

Table 4: Comparison of answer accuracy (%) on D-Math23k
dataset under semi-weakly and weakly supervised setting.
The best results are in boldface. “w WDA” indicates that we
initialize the solution buffers for problems in Weak12k with
the proposed WDA. “w/o WDA” means we leave the solution
buffers for Weak12k empty.

model. S-Aligned uses a stack to generate solutions. GTS
presents a goal-driven tree-based solver. Graph2Tree devel-
ops a GNN-based encoder to capture more information about
quantities and MWP-BERT develops a pre-trained-language-
model-based encoder. For semi-weakly and weakly super-
vised settings, all other baselines like GTS, MWP-BERT
cannot work. Therefore, we take (Hong et al. 2021a) as a
baseline method, which uses a fixing mechanism to modify
wrong solutions into correct ones for training.

Implementation Details
We use Pytorch to construct the code and the NVIDIA RTX
2080Ti graphic card to train the solvers. The code and data
can be found in 1. The dimension of the embedding matrix is
128, and the dimension of all hidden features is 512. We train
the model 200 epochs with the Adam optimizer (Kingma
and Ba 2014) and the learning rate 0.001, which will be
halved every 30 epochs. For the first 100 epochs use ai = si
and the remaining epochs use (si + twsi)/2. We update the

1https://github.com/LZhenwen/Solution Diversity
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Top-1 Top-3 Top-5
Fully supervised

GTS 65.7 38.3 29.0
LBF 65.2 59.3 51.2

D-GTS 67.1 61.0 55.9
Weakly supervised

LBF 53.1 47.1 43.0
D-GTS w WDA 55.2 53.9 51.8

Table 5: Comparison of top-k answer accuracy (%) on D-
Math23k dataset. A higher accuracy on a larger k indicates
stronger generalizability to produce better and more diverse
solutions.

solution buffer every 5 epochs of parameter learning, to leave
sufficient time to train the model solution buffer updates.

Quantitative Results
Fully Supervised Training. In this setting, we train the
model with MWPs and ground truth equation solutions. Only
the D-Math23k dataset is used because MWPs in Weak12k
are not annotated with equations. Benefiting from our train-
ing method, the accuracies of GTS, Graph2Tree, and MWP-
BERT are improved. The potential reason for such improve-
ment is our training method enables the model to witness
more diverse solutions which leads to a better generalization
ability across MWPs.

Semi-weakly Supervised Training. In real-world scenar-
ios, we usually get mixed data, some MWPs are annotated
with equations and others are annotated with values. The
baseline method LBF is not able to work well under this
setting because it is specially designed for weakly super-
vised training only. We take a combination of D-Math23k
and Weak12k for training and evaluate the answer accuracy
on them separately for comparison. The results in Table 4
show that our method outperforms baseline methods by a
large margin. We also find that the proposed WDA is not
necessary under the semi-weakly supervised setting, since
the equations generated by WDA have lower quality than
those generated by trained MWP solvers in the augmentation
stage. Therefore, it is better to leave the solution buffers of
Weak12k MWPs empty in the beginning and fill them with
solutions generated by the model trained on D-Math23k.

Weakly Supervised Training. Our training method is also
able to work under the weakly supervised setting with the
help of WDA, when no equation-annotated problems are
available. As we clarified in Section 3.2, WDA is nec-
essary for weakly supervised setting because we always
need equation-annotated problems to start training. Although
WDA may generate spurious solutions, the model learns
from them and achieves a satisfying performance. We eval-
uate on D-Math23k and Weak12k datasets in this setting
separately. Experimental results in Table 4 show that our pro-
posed method is better than other baselines. The accuracy
on Weak12k is lower than that on D-Math23k because the
problems in Weak12k are generally more difficult to solve.

Figure 2: Ablation study under fully, semi-weakly and weakly
supervised settings.

Solution Diversity. Following LBF (Hong et al. 2021a),
we measure the overall answer accuracy in a complete beam
search instead of only taking the first one. And we call this
top-k accuracy when the beam size is k. The higher accu-
racy of top-k (k > 1) represents the more diverse solution
that a solver can generate. The experiment results in Table
5 show that our solver outperforms GTS in the fully super-
vised setting and beats LBF in two different settings. We also
conduct a qualitative analysis in our appendix, showing the
effectiveness of our proposed solution diversification. This
diversity analysis strongly demonstrates the generalizability
of solution diversity that our method brings to the solver.

Ablation Study
Some ablation on WDA is already included in Table 4.
To further understand the effect of our two-stage training
method, we conduct an analysis as shown in Figure 2. We use
MWP-BERT as the backbone solver and conduct the exper-
iment on the D-Math23k dataset across 3 different settings
(Weak12k is also used in semi-weakly supervised setting).
Non-probabilistic training means that we keep the solution
buffer but assign the same weights on all solutions in the
buffer, ignoring the quality differences among them. One-
stage training is abandoning the qualifying stage and only
using the model to score solutions. The result demonstrates
that our approach is not only able to help the solver generate
diverse solutions as the learning targets, but also diminish the
bad effect of spurious solutions during the qualifying stage.

Conclusion
We present a novel training framework, aiming to augment
diverse solutions for MWPs and score them based on their
quality. With the help of the solution buffer and the proposed
buffer update method, our training framework is able to find
multiple solutions for one MWP. A discriminator is trained
by a contrastive learning mechanism to qualify solutions.
Our method works under fully, semi-weakly, and weakly
supervised situations to improve the accuracy of arbitrary
MWP solvers. Moreover, we develop a simple but effective
solution generation method called weak data augmentation
(WDA) in the weakly supervised situation.
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