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Abstract

Text recognition is a long-standing research problem for doc-
ument digitalization. Existing approaches are usually built
based on CNN for image understanding and RNN for char-
level text generation. In addition, another language model is
usually needed to improve the overall accuracy as a post-
processing step. In this paper, we propose an end-to-end text
recognition approach with pre-trained image Transformer and
text Transformer models, namely TrOCR, which leverages
the Transformer architecture for both image understanding
and wordpiece-level text generation. The TrOCR model is
simple but effective, and can be pre-trained with large-scale
synthetic data and fine-tuned with human-labeled datasets.
Experiments show that the TrOCR model outperforms the
current state-of-the-art models on the printed, handwritten
and scene text recognition tasks. The TrOCR models and
code are publicly available at https://aka.ms/trocr.

Introduction
Optical Character Recognition (OCR) is the electronic or
mechanical conversion of images of typed, handwritten or
printed text into machine-encoded text, whether from a
scanned document, a photo of a document, a scene photo
or from subtitle text superimposed on an image. Typically,
an OCR system includes two main modules: a text detec-
tion module and a text recognition module. Text detection
aims to localize all text blocks within the text image, ei-
ther at word-level or textline-level. The text detection task
is usually considered as an object detection problem where
conventional object detection models such as YoLOv5 and
DBNet (Liao et al. 2019) can be applied. Meanwhile, text
recognition aims to understand the text image content and
transcribe the visual signals into natural language tokens.
The text recognition task is usually framed as an encoder-
decoder problem where existing methods leveraged CNN-
based encoder for image understanding and RNN-based de-
coder for text generation. In this paper, we focus on the text
recognition task for document images and leave text detec-
tion as the future work.

*Work done during internship at Microsoft Research Asia.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Recent progress in text recognition (Diaz et al. 2021)
has witnessed the significant improvements by taking ad-
vantage of the Transformer (Vaswani et al. 2017) architec-
tures. However, existing methods are still based on CNNs
as the backbone, where the self-attention is built on top of
CNN backbones as encoders to understand the text image.
For decoders, Connectionist Temporal Classification (CTC)
(Graves et al. 2006) is usually used compounded with an
external language model on the character-level to improve
the overall accuracy. Despite the great success achieved by
the hybrid encoder/decoder method, there is still a lot of
room to improve with pre-trained CV and NLP models:
1) the network parameters in existing methods are trained
from scratch with synthetic/human-labeled datasets, leav-
ing large-scale pre-trained models unexplored. 2) as image
Transformers become more and more popular (Dosovitskiy
et al. 2021; Touvron et al. 2020), especially the recent self-
supervised image pre-training (Bao, Dong, and Wei 2021),
it is straightforward to investigate whether pre-trained im-
age Transformers can replace CNN backbones, meanwhile
exploiting the pre-trained image Transformers to work to-
gether with the pre-trained text Transformers in a single
framework on the text recognition task.

To this end, we propose TrOCR, an end-to-end
Transformer-based OCR model for text recognition with
pre-trained CV and NLP models, which is shown in Fig-
ure 1. Distinct from the existing text recognition models,
TrOCR is a simple but effective model which does not use
the CNN as the backbone. Instead, following (Dosovitskiy
et al. 2021), it first resizes the input text image into 384×384
and then the image is split into a sequence of 16×16 patches
which are used as the input to image Transformers. Stan-
dard Transformer architecture with the self-attention mecha-
nism is leveraged on both encoder and decoder parts, where
wordpiece units are generated as the recognized text from
the input image. To effectively train the TrOCR model, the
encoder can be initialized with pre-trained ViT-style mod-
els (Dosovitskiy et al. 2021; Touvron et al. 2020; Bao,
Dong, and Wei 2021) while the decoder can be initialized
with pre-trained BERT-style models (Devlin et al. 2019;
Liu et al. 2019; Dong et al. 2019; Wang et al. 2020b), re-
spectively. Therefore, the advantage of TrOCR is three-fold.
First, TrOCR uses the pre-trained image Transformer and
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Figure 1: The architecture of TrOCR, where an encoder-decoder model is designed with a pre-trained image Transformer as
the encoder and a pre-trained text Transformer as the decoder.

text Transformer models, which take advantages of large-
scale unlabeled data for image understanding and language
modeling, with no need for an external language model. Sec-
ond, TrOCR does not require any convolutional network for
the backbone and does not introduce any image-specific in-
ductive biases, which makes the model very easy to im-
plement and maintain. Finally, experiment results on OCR
benchmark datasets show that the TrOCR can achieve state-
of-the-art results on printed, handwritten and scene text im-
age datasets without any complex pre/post-processing steps.
Furthermore, we can easily extend the TrOCR for multi-
lingual text recognition with minimum efforts, where just
leveraging multilingual pre-trained models in the decoder-
side and expand the dictionary.

The contributions of this paper are summarized as fol-
lows:
1. We propose TrOCR, an end-to-end Transformer-based

OCR model for text recognition with pre-trained CV and
NLP models. To the best of our knowledge, this is the
first work that jointly leverages pre-trained image and
text Transformers for the text recognition task in OCR.

2. TrOCR achieves state-of-the-art results with a stan-
dard Transformer-based encoder-decoder model, which
is convolution free and does not rely on any complex
pre/post-processing steps.

3. The TrOCR models and code are publicly available at
https://aka.ms/trocr.

TrOCR
Model Architecture
TrOCR is built up with the Transformer architecture, includ-
ing an image Transformer for extracting the visual features
and a text Transformer for language modeling. We adopt the
vanilla Transformer encoder-decoder structure in TrOCR.
The encoder is designed to obtain the representation of the

image patches and the decoder is to generate the wordpiece
sequence with the guidance of the visual features and previ-
ous predictions.

Encoder The encoder receives an input image ximg ∈
ℜ3×H0×W0 , and resizes it to a fixed size (H,W ). Since the
Transformer encoder cannot process the raw images unless
they are a sequence of input tokens, the encoder decomposes
the input image into a batch of N = HW/P 2 foursquare
patches with a fixed size of (P, P ), while the width W and
the height H of the resized image are guaranteed to be divis-
ible by the patch size P . Subsequently, the patches are flat-
tened into vectors and linearly projected to D-dimensional
vectors, aka the patch embeddings. D is the hidden size of
the Transformer through all of its layers.

Similar to ViT (Dosovitskiy et al. 2021) and DeiT (Tou-
vron et al. 2020), we keep the special token “[CLS]” that
is usually used for image classification tasks. The “[CLS]”
token brings together the information from all the patch em-
beddings and represents the whole image. Meanwhile, we
also keep the distillation token in the input sequence when
using the DeiT pre-trained models for encoder initialization,
which allows the model to learn from the teacher model. The
patch embeddings and special tokens are given learnable 1D
position embeddings according to their absolute positions.

Unlike the features extracted by the CNN-like network,
the Transformer models have no image-specific inductive bi-
ases and process the image as a sequence of patches, which
makes the model easier to pay different attention to either
the whole image or the independent patches.

Decoder We use the original Transformer decoder for
TrOCR. The standard Transformer decoder also has a stack
of identical layers, which have similar structures to the
layers in the encoder, except that the decoder inserts the
“encoder-decoder attention” between the multi-head self-
attention and feed-forward network to distribute different at-
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tention on the output of the encoder. In the encoder-decoder
attention module, the keys and values come from the en-
coder output, while the queries come from the decoder in-
put. In addition, the decoder leverages the attention masking
in the self-attention to prevent itself from getting more in-
formation during training than prediction. Based on the fact
that the output of the decoder will right shift one place from
the input of the decoder, the attention mask needs to ensure
the output for the position i can only pay attention to the
previous output, the input on the positions less than i:

hi = Proj(Emb(Tokeni))

σ(hij) =
ehij∑V
k=1 e

hik

for j = 1, 2, . . . , V

The hidden states from the decoder are projected by a lin-
ear layer from the model dimension to the dimension of the
vocabulary size V , while the probabilities over the vocabu-
lary are calculated on that by the softmax function. We use
beam search to get the final output.

Model Initialization
Both the encoder and the decoder are initialized by the pub-
lic models pre-trained on large-scale labeled and unlabeled
datasets.

Encoder Initialization The DeiT (Touvron et al. 2020)
and BEiT (Bao, Dong, and Wei 2021) models are used for
the encoder initialization in the TrOCR models. DeiT trains
the image Transformer with ImageNet (Deng et al. 2009)
as the sole training set. The authors try different hyper-
parameters and data augmentation to make the model data-
efficient. Moreover, they distill the knowledge of a strong
image classifier to a distilled token in the initial embedding,
which leads to a competitive result compared to the CNN-
based models.

Referring to the Masked Language Model pre-training
task, BEiT proposes the Masked Image Modeling task to
pre-train the image Transformer. Each image will be con-
verted to two views: image patches and visual tokens. They
tokenize the original image into visual tokens by the latent
codes of discrete VAE (Ramesh et al. 2021), randomly mask
some image patches, and make the model recover the orig-
inal visual tokens. The structure of BEiT is the same as the
image Transformer and lacks the distilled token when com-
pared with DeiT.

Decoder Initialization We use the RoBERTa (Liu et al.
2019) models and the MiniLM (Wang et al. 2020b) models
to initialize the decoder. Generally, RoBERTa is a replica-
tion study of (Devlin et al. 2019) that carefully measures
the impact of many key hyperparameters and training data
size. Based on BERT, they remove the next sentence predic-
tion objective and dynamically change the masking pattern
of the Masked Language Model.

The MiniLM are compressed models of the large pre-
trained Transformer models while retaining 99% perfor-
mance. Instead of using the soft target probabilities of

masked language modeling predictions or intermediate rep-
resentations of the teacher models to guide the training of
the student models in the previous work. The MiniLM mod-
els are trained by distilling the self-attention module of the
last Transformer layer of the teacher models and introducing
a teacher assistant to assist with the distillation.

When loading the above models to the decoders, the struc-
tures do not precisely match since both of them are only the
encoder of the Transformer architecture. For example, the
encoder-decoder attention layers are absent in these models.
To address this, we initialize the decoders with the RoBERTa
and MiniLM models by manually setting the corresponding
parameter mapping, and the absent parameters are randomly
initialized.

Task Pipeline
In this work, the pipeline of the text recognition task is that
given the textline images, the model extracts the visual fea-
tures and predicts the wordpiece tokens relying on the image
and the context generated before. The sequence of ground
truth tokens is followed by an “[EOS]” token, which indi-
cates the end of a sentence. During training, we shift the
sequence backward by one place and add the “[BOS]” to-
ken to the beginning indicating the start of generation. The
shifted ground truth sequence is fed into the decoder, and
the output of that is supervised by the original ground truth
sequence with the cross-entropy loss. For inference, the de-
coder starts from the “[BOS]” token to predict the output it-
eratively while continuously taking the newly generated out-
put as the next input.

Pre-training
We use the text recognition task for the pre-training phase,
since this task can make the models learn the knowledge of
both the visual feature extraction and the language model.
The pre-training process is divided into two stages that differ
by the used dataset. In the first stage, we synthesize a large-
scale dataset consisting of hundreds of millions of printed
textline images and pre-train the TrOCR models on that.
In the second stage, we build two relatively small datasets
corresponding to printed and handwritten downstream tasks,
containing millions of textline images each. We use the ex-
isted and widely adopted synthetic scene text datasets for
the scene text recognition task. Subsequently, we pre-train
separate models on these task-specific datasets in the second
stage, all initialized by the first-stage model.

Fine-tuning
Except for the experiments regarding scene text recognition,
the pre-trained TrOCR models are fine-tuned on the down-
stream text recognition tasks. The outputs of the TrOCR
models are based on Byte Pair Encoding (BPE) (Sennrich,
Haddow, and Birch 2015) and SentencePiece (Kudo and
Richardson 2018) and do not rely on any task-related vo-
cabularies.

Data Augmentation
We leverage data augmentation to enhance the variety of the
pre-training and fine-tuning data. Six kinds of image trans-
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Encoder Decoder Precision Recall F1
DeiTBASE RoBERTaBASE 69.28 69.06 69.17
BEiTBASE RoBERTaBASE 76.45 76.18 76.31
ResNet50 RoBERTaBASE 66.74 67.29 67.02
DeiTBASE RoBERTaLARGE 77.03 76.53 76.78
BEiTBASE RoBERTaLARGE 79.67 79.06 79.36
ResNet50 RoBERTaLARGE 72.54 71.13 71.83

Table 1: Ablation study on the SROIE dataset, where all the
models are trained using the SROIE dataset only.

Model Precision Recall F1
From Scratch 38.06 38.43 38.24
+ Pre-trained Model 72.95 72.56 72.75
+ Data Augmentation 82.58 82.03 82.30
+ First-Stage Pre-train 95.31 95.65 95.48
+ Second-Stage Pre-train 95.76 95.91 95.84

Table 2: Ablation study of pre-trained model initialization,
data augmentation and two stages of pre-training on the
SROIE dataset.

formations plus keeping the original are taken for printed
and handwritten datasets, which are random rotation (-10
to 10 degrees), Gaussian blurring, image dilation, image
erosion, downscaling, and underlining. We randomly de-
cide which image transformation to take with equal possi-
bilities for each sample. For scene text datasets, RandAug-
ment (Cubuk et al. 2020) is applied following (Atienza
2021), and the augmentation types include inversion, curv-
ing, blur, noise, distortion, rotation, etc.

Experiments
Data
Pre-training Dataset To build a large-scale high-quality
dataset, we sample two million document pages from the
publicly available PDF files on the Internet. Since the PDF
files are digital-born, we can get pretty printed textline im-
ages by converting them into page images and extracting the
textlines with their cropped images. In total, the first-stage
pre-training dataset contains 684M textlines.

We use 5,427 handwritten fonts1 to synthesize handwrit-
ten textline images by the TRDG2, an open-source text
recognition data generator. The text used for generation is
crawled from random pages of Wikipedia. The handwritten
dataset for the second-stage pre-training consists of 17.9M
textlines, including IIIT-HWS dataset (Krishnan and Jawa-
har 2016). In addition, we collect around 53K receipt im-
ages in the real world and recognize the text on them by
commercial OCR engines. According to the results, we
crop the textlines by their coordinates and rectify them into
normalized images. We also use TRDG to synthesize 1M
printed textline images with two receipt fonts and the built-
in printed fonts. In total, the printed dataset consists of 3.3M

1The fonts are obtained from https://fonts.google.com/
?category=Handwriting and https://www.1001fonts.com/
handwritten-fonts.html.

2https://github.com/Belval/TextRecognitionDataGenerator

textlines. The second-stage pre-training data for the scene
text recognition are MJSynth (MJ) (Jaderberg et al. 2014)
and SynthText (ST) (Gupta, Vedaldi, and Zisserman 2016),
totaling about 16M text images.

Benchmarks The SROIE (Scanned Receipts OCR and In-
formation Extraction) dataset (Task 2) focuses on text recog-
nition in receipt images. There are 626 receipt images and
361 receipt images in the training and test sets of SROIE.
Since the text detection task is not included in this work, we
use cropped images of the textlines for evaluation, which are
obtained by cropping the whole receipt images according to
the ground truth bounding boxes.

The IAM Handwriting Database is composed of hand-
written English text, which is the most popular dataset for
handwritten text recognition. We use the Aachen’s partition
of the dataset3: 6,161 lines from 747 forms in the train set,
966 lines from 115 forms in the validation set and 2,915 lines
from 336 forms in the test set.

Recognizing scene text images is more challenging
than printed text images, as many images in the wild
suffer from blur, occlusion, or low-resolution problems.
Here we leverage some widely-used benchmarks, including
IIIT5K-3000 (Mishra, Alahari, and Jawahar 2012), SVT-647
(Wang, Babenko, and Belongie 2011), IC13-857, IC13-1015
(Karatzas et al. 2013), IC15-1811, IC15-2077 (Karatzas
et al. 2015), SVTP-645 (Phan et al. 2013), and CT80-288
(Risnumawan et al. 2014) to evaluate the capacity of TrOCR.

Model Recall Precision F1
CRNN 28.71 48.58 36.09

Tesseract OCR 57.50 51.93 54.57
H&H Lab 96.35 96.52 96.43
MSOLab 94.77 94.88 94.82

CLOVA OCR 94.3 94.88 94.59
TrOCRSMALL 95.89 95.74 95.82
TrOCRBASE 96.37 96.31 96.34

TrOCRLARGE 96.59 96.57 96.58

Table 3: Evaluation results (word-level Precision, Recall,
F1) on the SROIE dataset, where the baselines come
from the SROIE leaderboard (https://rrc.cvc.uab.es/?ch=
13&com=evaluation&task=2).

Settings
The TrOCR models are built upon the Fairseq (Ott et al.
2019) which is a popular sequence modeling toolkit. For the
model initialization, the DeiT models are implemented and
initialized by the code and the pre-trained models from the
timm library (Wightman 2019) while the BEiT models and
the MiniLM models are from the UniLM’s official repos-
itory4. The RoBERTa models come from the correspond-
ing page in the Fairseq GitHub repository. We use 32 V100
GPUs with the memory of 32GBs for pre-training and 8
V100 GPUs for fine-tuning. For all the models, the batch
size is set to 2,048 and the learning rate is 5e-5. We use the

3https://github.com/jpuigcerver/Laia/tree/master/egs/iam
4https://github.com/microsoft/unilm
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BPE and sentencepiece tokenizer from Fairseq to tokenize
the textlines to wordpieces.

We employ the 384×384 resolution and 16×16 patch size
for DeiT and BEiT encoders. The DeiTSMALL has 12 layers
with 384 hidden sizes and 6 heads. Both the DeiTBASE and
the BEiTBASE have 12 layers with 768 hidden sizes and 12
heads while the BEiTLARGE has 24 layers with 1024 hidden
sizes and 16 heads. We use 6 layers, 256 hidden sizes and
8 attention heads for the small decoders, 512 hidden sizes
for the base decoders and 12 layers, 1,024 hidden sizes and
16 heads for the large decoders. For this task, we only use
the last half of all layers from the corresponding RoBERTa
model, which are the last 6 layers for the RoBERTaBASE and
the last 12 layers for the RoBERTaLARGE. The beam size is
set to 10 for TrOCR models.

We take the CRNN model (Shi, Bai, and Yao 2016) as the
baseline model. The CRNN model is composed of convo-
lutional layers for image feature extraction, recurrent layers
for sequence modeling and the final frame label prediction,
and a transcription layer to translate the frame predictions to
the final label sequence. To address the character alignment
issue, they use the CTC loss to train the CRNN model. For
a long time, the CRNN model is the dominant paradigm for
text recognition. We use the PyTorch implementation5 and
initialized the parameters by the provided pre-trained model.

Evaluation Metrics
The SROIE dataset is evaluated using the word-level pre-
cision, recall and f1 score. If repeated words appear in the
ground truth, they are also supposed to appear in the predic-
tion. The precision, recall and f1 score are described as:

Precision =
Correct matches

The number of the detected words

Recall =
Correct matches

The number of the ground truth words

F1 =
2 × Precision × Recall

Precision + Recall

The IAM dataset is evaluated by the case-sensitive Char-
acter Error Rate (CER). The scene text datasets are eval-
uated by the Word Accuracy. For fair comparison, we filter
the final output string to suit the popular 36-character charset
(lowercase alphanumeric) in this task.

Results
Architecture Comparison We compare different combi-
nations of the encoder and decoder to find the best settings.
For encoders, we compare DeiT, BEiT and the ResNet-50
network. Both the DeiT and BEiT are the base models in
their original papers. For decoders, we compare the base de-
coders initialized by RoBERTaBASE and the large decoders
initialized by RoBERTaLARGE. For further comparison, we
also evaluate the CRNN baseline model and the Tesseract
OCR in this section, while the latter is an open-source OCR
Engine using the LSTM network.

5https://github.com/meijieru/crnn.pytorch

Table 1 shows the results of combined models. From
the results, we observe that the BEiT encoders show the
best performance among the three types of encoders while
the best decoders are the RoBERTaLARGE decoders. Ap-
parently, the pre-trained models on the vision task im-
prove the performance of text recognition models, and the
pure Transformer models are better than the CRNN mod-
els and the Tesseract on this task. According to the re-
sults, we mainly use three settings on the subsequent ex-
periments: TrOCRSMALL (total parameters=62M) consists
of the encoder of DeiTSMALL and the decoder of MiniLM,
TrOCRBASE (total parameters=334M) consists of the en-
coder of BEiTBASE and the decoder of RoBERTaLARGE,
TrOCRLARGE (total parameters=558M) consists of the en-
coder of BEiTLARGE and the decoder of RoBERTaLARGE.
In Table 2, we have also done some ablation experiments to
verify the effect of pre-trained model initialization, data aug-
mentation, and two stages of pre-training. All of them have
great improvements to the TrOCR models.

SROIE Task 2 Table 3 shows the results of the TrOCR
models and the current SOTA methods on the leaderboard of
the SROIE dataset. To capture the visual information, all of
these baselines leverage CNN-based networks as the feature
extractors while the TrOCR models use the image Trans-
former to embed the information from the image patches.
For language modeling, MSO Lab (Sang and Cuong 2019)
and CLOVA OCR (Sang and Cuong 2019) use LSTM lay-
ers and H&H Lab (Shi, Bai, and Yao 2016) use GRU lay-
ers while the TrOCR models use the Transformer decoder
with a pure attention mechanism. According to the results,
the TrOCR models outperform the existing SOTA mod-
els with pure Transformer structures. It is also confirmed
that Transformer-based text recognition models get compet-
itive performance compared to CNN-based networks in vi-
sual feature extraction and RNN-based networks in language
modeling on this task without any complex pre/post-process
steps. There are some methods on the SROIE leaderboard
that use additional human-labeled data and utilize ensemble
methods that TrOCR does not use, which are not comparable
and the results are not included in this paper.

IAM Handwriting Database Table 4 shows the results of
the TrOCR models and the existing methods on the IAM
Handwriting Database. According to the results, the meth-
ods with CTC decoders show good performance on this task
and the external LM will result in a significant reduction
in CER. By comparing the methods (Bluche and Messina
2017) with the TrOCR models, the TrOCRLARGE achieves a
better result, which indicates that the Transformer decoder is
more competitive than the CTC decoder in text recognition
and has enough ability for language modeling instead of re-
lying on an external LM. Most of the methods use sequence
models in their encoders after the CNN-based backbone ex-
cept the FCN encoders in (Wang et al. 2020a), which leads to
a significant improvement on CER. Instead of relying on the
features from the CNN-based backbone, the TrOCR mod-
els using the information from the image patches get simi-
lar and even better results, illustrating that the Transformer
structures are competent to extract visual features well after
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Model Architecture Training Data External LM CER
(Bluche and Messina 2017) GCRNN / CTC Synthetic + IAM Yes 3.2

(Michael et al. 2019) LSTM/LSTM w/Attn IAM No 4.87
(Wang et al. 2020a) FCN / GRU IAM No 6.4
(Kang et al. 2020) Transformer w/ CNN Synthetic + IAM No 4.67
(Diaz et al. 2021) S-Attn / CTC Internal + IAM No 3.53
(Diaz et al. 2021) S-Attn / CTC Internal + IAM Yes 2.75
(Diaz et al. 2021) Transformer w/ CNN Internal + IAM No 2.96

TrOCRSMALL Transformer Synthetic + IAM No 4.22
TrOCRBASE Transformer Synthetic + IAM No 3.42

TrOCRLARGE Transformer Synthetic + IAM No 2.89

Table 4: Evaluation results (CER) on the IAM Handwriting dataset.

Model Parameters Total Sentences Total Tokens Time Speed #Sentences Speed #Tokens
TrOCRSMALL 62M 2,915 31,081 348.4s 8.37 sentences/s 89.22 tokens/s
TrOCRBASE 334M 2,915 31,959 633.7s 4.60 sentences/s 50.43 tokens/s

TrOCRLARGE 558M 2,915 31,966 666.8s 4.37 sentences/s 47.94 tokens/s

Table 5: Inference time on the IAM Handwriting dataset.

pre-training. From the experiment results, the TrOCR mod-
els exceed all the methods which only use synthetic/IAM as
the sole training set with pure Transformer structures and
achieve a new state-of-the-art CER of 2.89. Without lever-
aging any extra human-labeled data, TrOCR even gets com-
parable results with the methods in (Diaz et al. 2021) using
the additional internal human-labeled dataset.

Scene Text Datasets In Table 6, we compare the
TrOCRBASE and TrOCRLARGE models of fine-tuning with
synthetic data only and fine-tuning with synthetic data and
benchmark datasets (the training sets of IC13, IC15, IIIT5K,
SVT) to the popular and recent SOTA methods. Compared
to all, the TrOCR models establish five new SOTA results of
eight experiments while getting comparable results on the
rest. Our model underperforms on the IIIT5K dataset, and
we find some scene text sample images contain symbols, but
the ground truth does not. It is inconsistent with the behavior
in our pre-training data (retaining symbols in ground truth),
causing the model to tend still to process symbols. There are
two kinds of mistakes: outputting symbols but truncating the
output in advance to ensure that the number of wordpieces is
consistent with the ground truth, or identifying symbols as
similar characters.

Inference Speed Table 5 shows the inference speed of
different settings TrOCR models on the IAM Handwriting
Database. We can conclude that there is no significant mar-
gin in inference speed between the base models and the
large models. In contrast, the small model shows compara-
ble results for printed and handwriting text recognition even
though the number of parameters is an order of magnitude
smaller and the inference speed is as twice as fast. The low
number of parameters and high inference speed means fewer
computational resources and user waiting time, making it
more suitable for deployment in industrial applications.

Related Work
Scene Text Recognition
For text recognition, the most popular approaches are usu-
ally based on the CTC-based models. (Shi, Bai, and Yao
2016) proposed the standard CRNN, an end-to-end archi-
tecture combined by CNN and RNN. The convolutional lay-
ers are used to extract the visual features and convert them
to sequence by concatenating the columns, while the recur-
rent layers predict the per-frame labels. They use a CTC de-
coding strategy to remove the repeated symbols and all the
blanks from the labels to achieve the final prediction. (Gao
et al. 2019) extracted the feature by the densely connected
network incorporating the residual attention block and cap-
ture the contextual information and sequential dependency
by the CNN network. They compute the probability distri-
bution on the output of the CNN network instead of using
an RNN network to model them.

The Sequence-to-Sequence models (Zhang et al. 2020b;
Wang et al. 2019; Sheng, Chen, and Xu 2019; Bleeker and
de Rijke 2019; Lee et al. 2020; Atienza 2021; Chen et al.
2021) are gradually attracting more attention, especially af-
ter the advent of the Transformer architecture (Vaswani et al.
2017). SaHAN (Zhang et al. 2020b), standing for the scale-
aware hierarchical attention network, are proposed to ad-
dress the character scale-variation issue. The authors use the
FPN network and the CRNN models as the encoder as well
as a hierarchical attention decoder to retain the multi-scale
features. (Wang et al. 2019) extracted a sequence of visual
features from the input images by the CNN with attention
module and BiLSTM. The decoder is composed of the pro-
posed Gated Cascade Attention Module (GCAM). For the
Transformer models, (Sheng, Chen, and Xu 2019) first ap-
plied the Transformer to Scene Text Recognition. A CNN-
based modality-transform block is employed to transform
2D input images to 1D sequences. (Bleeker and de Rijke
2019) added a direction embedding to the input of the de-
coder for the bidirectional text decoding with a single de-
coder, while (Lee et al. 2020) utilized the two-dimensional
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Test datasets and # of samples

Model IIIT5k SVT IC13 IC15 SVTP CUTE
3,000 647 857 1,015 1,811 2,077 645 288

PlugNet (Mou et al. 2020) 94.4 92.3 – 95.0 – 82.2 84.3 85.0
SRN (Yu et al. 2020) 94.8 91.5 95.5 – 82.7 – 85.1 87.8

RobustScanner (Yue et al. 2020) 95.4 89.3 – 94.1 – 79.2 82.9 92.4
TextScanner (Wan et al. 2020) 95.7 92.7 – 94.9 – 83.5 84.8 91.6
AutoSTR (Zhang et al. 2020a) 94.7 90.9 – 94.2 81.8 – 81.7 –

RCEED (Cui et al. 2021) 94.9 91.8 – – – 82.2 83.6 91.7
PREN2D (Yan et al. 2021) 95.6 94.0 96.4 – 83.0 – 87.6 91.7

VisionLAN (Wang et al. 2021) 95.8 91.7 95.7 – 83.7 – 86.0 88.5
Bhunia (Bhunia et al. 2021b) 95.2 92.2 – 95.5 – 84.0 85.7 89.7

CVAE-Feed.1 (Bhunia et al. 2021a) 95.2 – – 95.7 – 84.6 88.9 89.7
STN-CSTR (Cai, Sun, and Xiong 2021) 94.2 92.3 96.3 94.1 86.1 82.0 86.2 –

ViTSTR-B (Atienza 2021) 88.4 87.7 93.2 92.4 78.5 72.6 81.8 81.3
CRNN (Shi, Bai, and Yao 2016) 84.3 78.9 – 88.8 – 61.5 64.8 61.3

TRBA (Baek, Matsui, and Aizawa 2021) 92.1 88.9 – 93.1 – 74.7 79.5 78.2
ABINet (Fang et al. 2021) 96.2 93.5 97.4 – 86.0 – 89.3 89.2

Diaz (Diaz et al. 2021) 96.8 94.6 96.0 – 80.4 – – –
PARSeqA (Bautista and Atienza 2022) 97.0 93.6 97.0 96.2 86.5 82.9 88.9 92.2
MaskOCR (ViT-B) (Lyu et al. 2022) 95.8 94.7 98.1 - 87.3 - 89.9 89.2
MaskOCR (ViT-L) (Lyu et al. 2022) 96.5 94.1 97.8 - 88.7 - 90.2 92.7

SVTR-L (Du et al. 2022) 96.3 91.7 97.2 - 86.6 - 88.4 95.1

TrOCRBASE (Syn) 90.1 91.0 97.3 96.3 81.1 75.0 90.7 86.8
TrOCRLARGE (Syn) 91.0 93.2 98.3 97.0 84.0 78.0 91.0 89.6

TrOCRBASE (Syn+Benchmark) 93.4 95.2 98.4 97.4 86.9 81.2 92.1 90.6
TrOCRLARGE (Syn+Benchmark) 94.1 96.1 98.4 97.3 88.1 84.1 93.0 95.1

Table 6: Word accuracy on the six benchmark datasets (36-char), where “Syn” indicates the model using synthetic data only
and “Syn+Benchmark” indicates the model using synthetic data and benchmark datasets.

dynamic positional embedding to keep the spatial struc-
tures of the intermediate feature maps for recognizing texts
with arbitrary arrangements and large inter-character spac-
ing. (Yu et al. 2020) proposed semantic reasoning networks
to replace RNN-like structures for more accurate text recog-
nition. (Atienza 2021) only used the image Transformer
without text Transformer for the text recognition in a non-
autoregressive way.

The texts in natural images may appear in irregular shapes
caused by perspective distortion. (Shi et al. 2016; Baek et al.
2019; Litman et al. 2020; Shi et al. 2018; Zhan and Lu 2019)
addressed this problem by processing the input images with
an initial rectification step. For example, thin-plate spline
transformation (Shi et al. 2016; Baek et al. 2019; Litman
et al. 2020; Shi et al. 2018) is applied to find a smooth spline
interpolation between a set of fiducial points and normal-
ize the text region to a predefined rectangle, while (Zhan
and Lu 2019) proposed an iterative rectification network to
model the middle line of scene texts as well as the orienta-
tion and boundary of textlines. (Baek et al. 2019; Diaz et al.
2021) proposed universal architectures for comparing differ-
ent recognition models.

Handwritten Text Recognition
(Memon et al. 2020) gave a systematic literature review
about the modern methods for handwriting recognition. Var-
ious attention mechanisms and positional encodings are

compared in the (Michael et al. 2019) to address the align-
ment between the input and output sequence. The combina-
tion of RNN encoders (mostly LSTM) and CTC decoders
(Bluche and Messina 2017; Graves and Schmidhuber 2008;
Pham et al. 2014) took a large part in the related works for a
long time. Besides, (Graves and Schmidhuber 2008; Voigt-
laender, Doetsch, and Ney 2016; Puigcerver 2017) have also
tried multidimensional LSTM encoders. Similar to the scene
text recognition, the seq2seq methods and the scheme for at-
tention decoding have been verified in (Michael et al. 2019;
Kang et al. 2020; Chowdhury and Vig 2018; Bluche 2016).

Conclusion
In this paper, we present TrOCR, an end-to-end
Transformer-based OCR model for text recognition
with pre-trained models. Distinct from existing approaches,
TrOCR does not rely on the conventional CNN models
for image understanding. Instead, it leverages an image
Transformer model as the visual encoder and a text Trans-
former model as the textual decoder. Moreover, we use
the wordpiece as the basic unit for the recognized output
instead of the character-based methods, which saves the
computational cost introduced by the additional language
modeling. Experiment results show that TrOCR achieves
state-of-the-art results on printed, handwritten and scene
text recognition with just a simple encoder-decoder model,
without any post-processing steps.

13100



Acknowledgments
This work was supported in part by the National Natu-
ral Science Foundation of China (Grant Nos. 62276017,
U1636211, 61672081).

References
Atienza, R. 2021. Vision Transformer for Fast and Efficient
Scene Text Recognition. arXiv preprint arXiv:2105.08582.
Baek, J.; Kim, G.; Lee, J.; Park, S.; Han, D.; Yun, S.; Oh,
S. J.; and Lee, H. 2019. What is wrong with scene text
recognition model comparisons? dataset and model analy-
sis. In ICCV.
Baek, J.; Matsui, Y.; and Aizawa, K. 2021. What if We
Only Use Real Datasets for Scene Text Recognition? To-
ward Scene Text Recognition With Fewer Labels. In CVPR.
Bao, H.; Dong, L.; and Wei, F. 2021. BEiT: BERT Pre-
Training of Image Transformers. arXiv:2106.08254.
Bautista, D.; and Atienza, R. 2022. Scene Text Recogni-
tion with Permuted Autoregressive Sequence Models. arXiv
preprint arXiv:2207.06966.
Bhunia, A. K.; Chowdhury, P. N.; Sain, A.; and Song, Y.-Z.
2021a. Towards the Unseen: Iterative Text Recognition by
Distilling From Errors. In ICCV.
Bhunia, A. K.; Sain, A.; Kumar, A.; Ghose, S.; Chowdhury,
P. N.; and Song, Y.-Z. 2021b. Joint Visual Semantic Reason-
ing: Multi-Stage Decoder for Text Recognition. In ICCV.
Bleeker, M.; and de Rijke, M. 2019. Bidirectional scene
text recognition with a single decoder. arXiv preprint
arXiv:1912.03656.
Bluche, T. 2016. Joint line segmentation and transcription
for end-to-end handwritten paragraph recognition. NIPS.
Bluche, T.; and Messina, R. 2017. Gated convolutional re-
current neural networks for multilingual handwriting recog-
nition. In ICDAR.
Cai, H.; Sun, J.; and Xiong, Y. 2021. Revisiting classifica-
tion perspective on scene text recognition. arXiv preprint
arXiv:2102.10884.
Chen, J.; Yu, H.; Ma, J.; Guan, M.; Xu, X.; Wang, X.; Qu, S.;
Li, B.; and Xue, X. 2021. Benchmarking chinese text recog-
nition: Datasets, baselines, and an empirical study. arXiv
preprint arXiv:2112.15093.
Chowdhury, A.; and Vig, L. 2018. An efficient end-to-
end neural model for handwritten text recognition. arXiv
preprint arXiv:1807.07965.
Cubuk, E. D.; Zoph, B.; Shlens, J.; and Le, Q. V. 2020. Ran-
daugment: Practical automated data augmentation with a re-
duced search space. In CVPR Workshops.
Cui, M.; Wang, W.; Zhang, J.; and Wang, L. 2021. Represen-
tation and Correlation Enhanced Encoder-Decoder Frame-
work for Scene Text Recognition. In Lladós, J.; Lopresti,
D.; and Uchida, S., eds., ICDAR.
Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei-
Fei, L. 2009. Imagenet: A large-scale hierarchical image
database. In CVPR.

Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2019.
BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. arXiv:1810.04805.
Diaz, D. H.; Qin, S.; Ingle, R.; Fujii, Y.; and Bissacco,
A. 2021. Rethinking Text Line Recognition Models.
arXiv:2104.07787.
Dong, L.; Yang, N.; Wang, W.; Wei, F.; Liu, X.; Wang,
Y.; Gao, J.; Zhou, M.; and Hon, H.-W. 2019. Unified
Language Model Pre-training for Natural Language Under-
standing and Generation. arXiv:1905.03197.
Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn,
D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.;
Heigold, G.; Gelly, S.; Uszkoreit, J.; and Houlsby, N. 2021.
An Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale. ICLR.
Du, Y.; Chen, Z.; Jia, C.; Yin, X.; Zheng, T.; Li, C.; Du, Y.;
and Jiang, Y.-G. 2022. SVTR: Scene Text Recognition with
a Single Visual Model. arXiv preprint arXiv:2205.00159.
Fang, S.; Xie, H.; Wang, Y.; Mao, Z.; and Zhang, Y. 2021.
Read Like Humans: Autonomous, Bidirectional and Itera-
tive Language Modeling for Scene Text Recognition. In
CVPR.
Gao, Y.; Chen, Y.; Wang, J.; Tang, M.; and Lu, H. 2019.
Reading scene text with fully convolutional sequence mod-
eling. Neurocomputing.
Graves, A.; Fernández, S.; Gomez, F.; and Schmidhuber, J.
2006. Connectionist temporal classification: labelling un-
segmented sequence data with recurrent neural networks. In
ICML.
Graves, A.; and Schmidhuber, J. 2008. Offline handwrit-
ing recognition with multidimensional recurrent neural net-
works. NeurIPS.
Gupta, A.; Vedaldi, A.; and Zisserman, A. 2016. Synthetic
data for text localisation in natural images. In CVPR.
Jaderberg, M.; Simonyan, K.; Vedaldi, A.; and Zisserman,
A. 2014. Synthetic Data and Artificial Neural Networks
for Natural Scene Text Recognition. In Workshop on Deep
Learning, NIPS.
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