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Abstract

One of the recent best attempts at Text-to-SQL is the pre-
trained language model. Due to the structural property of the
SQL queries, the seq2seq model takes the responsibility of
parsing both the schema items (i.e., tables and columns) and
the skeleton (i.e., SQL keywords). Such coupled targets in-
crease the difficulty of parsing the correct SQL queries es-
pecially when they involve many schema items and logic
operators. This paper proposes a ranking-enhanced encod-
ing and skeleton-aware decoding framework to decouple the
schema linking and the skeleton parsing. Specifically, for a
seq2seq encoder-decode model, its encoder is injected by
the most relevant schema items instead of the whole un-
ordered ones, which could alleviate the schema linking ef-
fort during SQL parsing, and its decoder first generates the
skeleton and then the actual SQL query, which could im-
plicitly constrain the SQL parsing. We evaluate our pro-
posed framework on Spider and its three robustness vari-
ants: Spider-DK, Spider-Syn, and Spider-Realistic. The ex-
perimental results show that our framework delivers promis-
ing performance and robustness. Our code is available at
https://github.com/RUCKBReasoning/RESDSQL.

Introduction
Relational databases that are used to store heterogeneous
data types including text, integer, float, etc., are omnipresent
in modern data management systems. However, ordinary
users usually cannot make the best use of databases be-
cause they are not good at translating their requirements to
the database language—i.e., the structured query language
(SQL). To assist these non-professional users in querying
the databases, researchers propose the Text-to-SQL task (Yu
et al. 2018a; Cai et al. 2018), which aims to automati-
cally translate users’ natural language questions into SQL
queries. At the same time, related benchmarks are becom-
ing increasingly complex, from the single-domain bench-
marks such as ATIS (Iyer et al. 2017) and GeoQuery (Zelle
and Mooney 1996) to the cross-domain benchmarks such as
WikiSQL (Zhong, Xiong, and Socher 2017) and Spider (Yu
et al. 2018c). Most of the recent works are done on Spi-
der because it is the most challenging benchmark which in-
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Serialize schema items.

Question
What are flight numbers of flights departing from City 
"Aberdeen"?

Database schema (including tables and columns)
airlines (airlines)

country
(country)

abbreviation
(abbreviation)

uid
(airline id)

airline
(airline name)

airports (airports)
country
(country)

airportname
(airport name)

city
(city)

airportcode
(airport code)

countryabbrev
(country abbrev)

flights (flights)

destairport
(destination airport)

sourceairport
(source airport)

airline
(airline)

flightno
(flight number)

Schema sequence
airlines: uid, airline, abbreviation, county|airports: 
city, airportcode, airportname, county, countyabbrev|
flights: airline, flightno, sourceairport, destairport

Question + Schema sequence

SQL query
select flights.flightno from flights join airports on 
flights.sourceairport = airports.airportcode where 
airports.city = “Aberdeen”

Seq2seq PLM (such as BART and T5)

Figure 1: Illustration of a Text-to-SQL instance solved by a
seq2seq PLM. In the database schema, each schema item is
denoted by its “original name (semantic name)”.

volves many complex SQL operators (such as GROUP BY,
ORDER BY, and HAVING, etc.) and nested SQL queries.

With the recent advances in pre-trained language mod-
els (PLMs), many existing works formulate the Text-to-SQL
task as a semantic parsing problem and use a sequence-to-
sequence (seq2seq) model to solve it (Scholak, Schucher,
and Bahdanau 2021; Shi et al. 2021; Shaw et al. 2021). Con-
cretely, as shown in Figure 1, given a question and a database
schema, the schema items are serialized into a schema se-
quence where the order of the schema items is either default
or random. Then, a seq2seq PLM, such as BART (Lewis
et al. 2020) and T5 (Raffel et al. 2020), is leveraged to gen-
erate the SQL query based on the concatenation of the ques-
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tion and the schema sequence. We observe that the target
SQL query contains not only the skeleton that reveals the
logic of the question but also the required schema items.
For instance, for a SQL query: “SELECT petid FROM pets
WHERE pet age = 1”, its skeleton is “SELECT FROM

WHERE ” and its required schema items are “petid”,
“pets”, and “pet age”.

Since Text-to-SQL needs to perform not only the schema
linking which aligns the mentioned entities in the question
to schema items in the database schema, but also the skele-
ton parsing which parses out the skeleton of the SQL query,
the major challenges are caused by a large number of re-
quired schema items and the complex composition of opera-
tors such as GROUP BY, HAVING, and JOIN ON involved
in a SQL query. The intertwining of the schema linking and
the skeleton parsing complicates learning even more.

To investigate whether the Text-to-SQL task could be-
come easier if the schema linking and the skeleton pars-
ing are decoupled, we conduct a preliminary experiment
on Spider’s dev set. Concretely, we fine-tune a T5-Base
model to generate the pure skeletons based on the ques-
tions (i.e., skeleton parsing task). We observe that the exact
match accuracy on such a task achieves about 80% using the
fine-tuned T5-Base. However, even the T5-3B model only
achieves about 70% accuracy (Shaw et al. 2021; Scholak,
Schucher, and Bahdanau 2021). This pre-experiment indi-
cates that decoupling such two objectives could be a poten-
tial way of reducing the difficulty of Text-to-SQL.

To realize the above decoupling idea, we propose
a Ranking-enhanced Encoding plus a Skeleton-aware
Decoding framework for Text-to-SQL (RESDSQL). The
former injects a few but most relevant schema items into
the seq2seq model’s encoder instead of all schema items. In
other words, the schema linking is conducted beforehand to
filter out most of the irrelevant schema items in the database
schema, which can alleviate the difficulty of the schema
linking for the seq2seq model. For such purpose, we train an
additional cross-encoder to classify the tables and columns
simultaneously based on the input question, and then rank
and filter them according to the classification probabilities
to form a ranked schema sequence. The latter does not add
any new modules but simply allows the seq2seq model’s de-
coder to first generate the SQL skeleton, and then the actual
SQL query. Since skeleton parsing is much easier than SQL
parsing, the first generated skeleton could implicitly guide
the subsequent SQL parsing via the masked self-attention
mechanism in the decoder.

Contributions (1) We investigate a potential way of de-
coupling the schema linking and the skeleton parsing to re-
duce the difficulty of Text-to-SQL. Specifically, we propose
a ranking-enhanced encoder to alleviate the effort of the
schema linking and a skeleton-aware decoder to implicitly
guide the SQL parsing by the skeleton. (2) We conduct ex-
tensive evaluation and analysis and show that our framework
not only achieves the new state-of-the-art (SOTA) perfor-
mance on Spider but also exhibits strong robustness.

Problem Definition
Database Schema A relational database is denoted as
D. The database schema S of D includes (1) a set of
N tables T = {t1, t2, · · · , tN}, (2) a set of columns
C = {c11, · · · , c1n1

, c21, · · · , c2n2
, · · · , cN1 , · · · , cNnN

} associ-
ated with the tables, where ni is the number of columns in
the i-th table, (3) and a set of foreign key relations R =

{(cik, c
j
h)|cik, c

j
h ∈ C}, where each (cik, c

j
h) denotes a for-

eign key relation between column cik and column cjh. We use
M =

∑N
i=1 ni to denote the total number of columns in D.

Original Name and Semantic Name We use “schema
items” to uniformly refer to tables and columns in the
database. Each schema item can be represented by an origi-
nal name and a semantic name. The semantic name can in-
dicate the semantics of the schema item more precisely. As
shown in Figure 1, it is obvious that the semantic names “air-
line id” and “destination airport” are more clear than their
original names “uid” and “destairport”. Sometimes the se-
mantic name is the same as the original name.

Text-to-SQL Task Formally, given a question q in natural
language and a database D with its schema S , the Text-to-
SQL task aims to translate q into a SQL query l that can be
executed on D to answer the question q.

Methodology
In this section, we first give an overview of the proposed
framework and then delve into its design details.

Model Overview
Following Shaw et al. (2021); Scholak, Schucher, and Bah-
danau (2021), we treat Text-to-SQL as a translation task,
which can be solved by an encoder-decoder transformer
model. Facing the above problems, we extend the existing
seq2seq Text-to-SQL methods by injecting the most relevant
schema items in the input sequence and the SQL skeleton
in the output sequence, which results in a ranking-enhanced
encoder and a skeleton-aware decoder. We provide the high-
level overview of the proposed RESDSQL framework in
Figure 2. The encoder of the seq2seq model receives the
ranked schema sequence, such that the schema linking ef-
fort could be alleviated during SQL parsing. To obtain such
a ranked schema sequence, an additional cross-encoder is
proposed to classify the schema items according to the given
question, and then we rank and filter them based on the clas-
sification probabilities. The decoder of the seq2seq model
first parses out the SQL skeleton and then the actual SQL
query, such that the SQL generation can be implicitly con-
strained by the previously parsed skeleton. By doing this, to
a certain extent, the schema linking and the skeleton parsing
are not intertwined but decoupled.

Ranking-Enhanced Encoder
Instead of injecting all schema items, we only consider the
most relevant schema items in the input of the encoder. For
this purpose, we devise a cross-encoder to classify the tables
and columns simultaneously and then rank them based on
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Cross-encoder

What are … City "Aberdeen"?|airlines: airline id, airline name, …|airports: city, airport code, … 

Question Serialize schema items in default order. (using semantic names)

0.02 0.01 0.94 0.99 0.95…0.03

flights: flights.flightno, flights.sourceairport, …|airports: airports.city, airports.airportcode, …

What are … City "Aberdeen"?|flights: flights.flightno, flights.sourceairport, …|airports: 
airports.city, airports.airportcode, …|flights.destairport = airports.airportcode …

T5 encoder

Rank and filter schema items.  (using original names)

Question + Ranked schema sequence + Optional foreign keys.

Skeleton-aware decoder

select  _  from _ where _ | select flights.flightno from … where …

<BOS> select _ from _ where …
…

Ranking-enhanced encoder

SQL skeleton SQL query

…

Seq2seq Pre-trained Language Model

… …

Figure 2: An overview of the ranking-enhanced encoding and skeleton-aware decoding framework. We train a cross-encoder
for classifying the schema items. Then we take the question, the ranked schema sequence, and optional foreign keys as the input
of the ranking-enhanced encoder. The skeleton-aware decoder first decodes the SQL skeleton and then the actual SQL query.

their probabilities. Based on the ranking order, on one hand,
we filter out the irrelevant schema items. On the other hand,
we use the ranked schema sequence instead of the unordered
schema sequence, so that the seq2seq model could capture
potential position information for schema linking.

As for the input of the cross-encoder, we flatten the
schema items into a schema sequence in their default or-
der and concatenate it with the question to form an input
sequence: X = q | t1 : c11, · · · , c1n1

| · · · | tN : cN1 , · · · , cNnN
,

where | is the delimiter. To better represent the semantics of
schema items, instead of their original names, we use their
semantic names which are closer to the natural expression.

Encoding Module We feed X into RoBERTa (Liu et al.
2019), an improved version of BERT (Devlin et al. 2019).
Since each schema item will be tokenized into one or more
tokens by PLM’s tokenizer (e.g., the column “airline id” will
be split into two tokens: “airline” and “id”), and our target is
to represent each schema item as a whole for classification,
we need to pool the output embeddings belonging to each
schema item. To achieve this goal, we use a pooling mod-
ule that consists of a two-layer BiLSTM (Hochreiter and
Schmidhuber 1997) and a non-linear fully-connected layer.
After pooling, each table embedding can be denoted by Ti ∈
R1×d (i ∈ {1, ..., N}) and each column embedding can be
denoted by Ci

k ∈ R1×d (i ∈ {1, ..., N}, k ∈ {1, ..., ni}),
where d denotes the hidden size.

Column-Enhanced Layer We observe that some ques-
tions only mention the column name rather than the table
name. For example in Figure 1, the question mentions a
column name “city”, but its corresponding table name “air-
ports” is ignored. This table name missing issue may com-
promise the table classification performance. Therefore, we
propose a column-enhanced layer to inject the column infor-
mation into the corresponding table embedding. In this way,

a table could be identified even if the question only men-
tions its columns. Concretely, for the i-th table, we inject
the column information Ci

: ∈ Rni×d into the table embed-
ding Ti by stacking a multi-head scaled dot-product atten-
tion layer (Vaswani et al. 2017) and a feature fusion layer on
the top of the encoding module:

TC
i = MultiHeadAttn(Ti,C

i
: ,C

i
: , h), (1)

T̂i = Norm(Ti + TC
i ).

Here, Ti acts as the query and Ci
: acts as both the key and

the value, h is the number of heads, and Norm(·) is a row-
wise L2 normalization function. TC

i represents the column-
attentive table embedding. We fuse the original table em-
bedding Ti and the column-attentive table embedding TC

i to
obtain the column-enhanced table embedding T̂i ∈ R1×d.

Loss Function of Cross-Encoder Cross-entropy loss is a
well-adopted loss function in classification tasks. However,
since a SQL query usually involves only a few tables and
columns in the database, the label distribution of the train-
ing set is highly imbalanced. As a result, the number of nega-
tive examples is many times that of positive examples, which
will induce serious training bias. To alleviate this issue, we
employ the focal loss (Lin et al. 2017) as our classification
loss. Then, we form the loss function of the cross-encoder in
a multi-task learning way, which consists of both the table
classification loss and the column classification loss, i.e.,

L1 =
1

N

N∑
i=1

FL(yi, ŷi) +
1

M

N∑
i=1

ni∑
k=1

FL(yik, ŷ
i
k), (2)

where FL denotes the focal loss function and yi is the
ground truth label of the i-th table. yi = 1 indicates the
table is referenced by the SQL query and 0 otherwise. yik is
the ground truth label of the k-th column in the i-th table.
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Similarly, yik = 1 indicates the column is referenced by the
SQL query and 0 otherwise. ŷi and ŷik are predicted proba-
bilities, which are estimated by two different MLP modules
based on the table and column embeddings T̂i and Ci

k:

ŷi = σ((T̂iU
t
1 + bt1)U

t
2 + bt2), (3)

ŷik = σ((Ci
kU

c
1 + bc1)U

c
2 + bc2),

where U t
1, U c

1 ∈ Rd×w, bt1, bc1 ∈ Rw, U t
2, U c

2 ∈ Rw×2, bt2,
bc2 ∈ R2 are trainable parameters, and σ(·) denotes Softmax.

Prepare Input for Ranking-Enhanced Encoder During
inference, for each Text-to-SQL instance, we leverage the
above-trained cross-encoder to compute a probability for
each schema item. Then, we only keep top-k1 tables in the
database and top-k2 columns for each remained table to
form a ranked schema sequence. k1 and k2 are two impor-
tant hyper-parameters. When k1 or k2 is too small, a portion
of the required tables or columns may be excluded, which is
fatal for the subsequent seq2seq model. As k1 or k2 becomes
larger, more and more irrelevant tables or columns may be
introduced as noise. Therefore, we need to choose appro-
priate values for k1 and k2 to ensure a high recall while
preventing the introduction of too much noise. The input
sequence for the ranking-enhanced encoder (i.e., seq2seq
model’s encoder) is formed as the concatenation of the ques-
tion, the ranked schema sequence, and optional foreign key
relations (see Figure 2). Foreign key relations contain rich
information about the structure of the database, which could
promote the generation of the JOIN ON clauses. In the
ranked schema sequence, we use the original names instead
of the semantic names because the schema items in the SQL
queries are represented by their original names, and using
the former will facilitate the decoder to directly copy re-
quired schema items from the input sequence.

Skeleton-Aware Decoder
Most seq2seq Text-to-SQL methods tell the decoder to gen-
erate the target SQL query directly. However, the apparent
gap between the natural language and the SQL query makes
it difficult to perform the correct generation. To alleviate this
problem, we would like to decompose the SQL generation
into two steps: (1) generate the SQL skeleton based on the
semantics of the question, and then (2) select the required
“data” (i.e., tables, columns, and values) from the input se-
quence to fill the slots in the skeleton.

To realize the above decomposition idea without adding
additional modules, we propose a new generation objective
based on the intrinsic characteristic of the transformer de-
coder, which generates the t-th token depending on not only
the output of the encoder but also the output of the decoder
before the t-th time step (Vaswani et al. 2017). Concretely,
instead of decoding the target SQL directly, we encourage
the decoder to first decode the skeleton of the SQL query,
and based on this, we continue to decode the SQL query.

By parsing the skeleton first and then parsing the SQL
query, at each decoding step, SQL generation will be easier
because the decoder could either copy a “data” from the in-
put sequence or a SQL keyword from the previously parsed

Q List the duration, file size and format of songs
whose genre is pop, ordered by title?

SQLo

SELECT T1.duration, T1.file size, T1.formats
FROM files AS T1 JOIN song AS T2 ON T1.f id =
T2.f id WHERE T2.genre is = “pop” ORDER BY
T2.song name

SQLn

select files.duration, files.file size, files.formats
from files join song on files.f id = song.f id where
song.genre is = ‘pop’ order by song.song name asc

SQLs select from where order by asc

Table 1: An example from Spider. Here, Q, SQLo, SQLn,
and SQLs denote the question, the original SQL query, the
normalized SQL query, and the SQL skeleton, respectively.

skeleton. Now, the objective of the seq2seq model is:

L2 =
1

G

G∑
i=1

p(lsi , li|Si), (4)

where G is the number of Text-to-SQL instances, Si is the
input sequence of the i-th instance which consists of the
question, the ranked schema sequence, and optional foreign
key relations. li denotes the i-th target SQL query and lsi is
the skeleton extracted from li. We will present some neces-
sary details on how to normalize SQL queries and how to
extract their skeletons.

SQL Normalization The Spider dataset is manually cre-
ated by 11 annotators with different annotation habits, which
results in slightly different styles among the final annotated
SQL queries, such as uppercase versus lowercase keywords.
Although different styles have no impact on the execution
results, the model requires some extra effort to learn and
adapt to them. To reduce the learning difficulty, we normal-
ize the original SQL queries before training by (1) unifying
the keywords and schema items into lowercase, (2) adding
spaces around parentheses and replacing double quotes with
single quotes, (3) adding an ASC keyword after the ORDER
BY clause if it does not specify the order, and (4) remov-
ing the AS clause and replacing all table aliases with their
original names. We present an example in Table 1.

SQL Skeleton Extraction Based on the normalized SQL
queries, we can extract their skeletons which only contain
SQL keywords and slots. Specifically, given a normalized
SQL query, we keep its keywords and replace the rest parts
with slots. Note that we do not keep the JOIN ON keyword
because it is difficult to find a counterpart from the ques-
tion (Gan et al. 2021b). As shown in Table 1, although the
original SQL query looks complex, its skeleton is simple and
each keyword can find a counterpart from the question. For
example, “order by asc” in the skeleton can be inferred
from “ordered by title?” in the question.

Execution-Guided SQL Selector Since we do not con-
strain the decoder with SQL grammar, the model may gen-
erate some illegal SQL queries. To alleviate this problem, we
follow Suhr et al. (2020) to use an execution-guided SQL se-
lector which performs the beam search during the decoding

13070



procedure and then selects the first executable SQL query in
the beam as the final result.

Experiments
Experimental Setup
Datasets We conduct extensive experiments on Spider and
its three variants which are proposed to evaluate the robust-
ness of the Text-to-SQL parser. Spider (Yu et al. 2018c) is
the most challenging benchmark for the cross-domain and
multi-table Text-to-SQL task. Spider contains a training set
with 7,000 samples1, a dev set with 1,034 samples, and a
hidden test set with 2,147 samples. There is no overlap be-
tween the databases in different splits. For robustness, we
train the model on Spider’s training set but evaluate it on
Spider-DK (Gan, Chen, and Purver 2021) with 535 sam-
ples, Spider-Syn (Gan et al. 2021a) with 1034 samples,
and Spider-Realistic (Deng et al. 2021) with 508 samples.
These evaluation sets are derived from Spider by modify-
ing questions to simulate real-world application scenarios.
Concretely, Spider-DK incorporates some domain knowl-
edge to paraphrase questions. Spider-Syn replaces schema-
related words with synonyms in questions. Spider-Realistic
removes explicitly mentioned column names in questions.

Evaluation Metrics To evaluate the performance of the
Text-to-SQL parser, following Yu et al. 2018c; Zhong, Yu,
and Klein 2020, we adopt two metrics: Exact-set-Match
accuracy (EM) and EXecution accuracy (EX). The former
measures whether the predicted SQL query can be exactly
matched with the gold SQL query by converting them into
a special data structure (Yu et al. 2018c). The latter com-
pares the execution results of the predicted SQL query and
the gold SQL query. The EX metric is sensitive to the gen-
erated values, but the EM metric is not. In practice, we use
the sum of EM and EX to select the best checkpoint of the
seq2seq model. For the cross-encoder, we use Area Under
ROC Curve (AUC) to evaluate its performance. Since the
cross-encoder classifies tables and columns simultaneously,
we adopt the sum of table AUC and column AUC to select
the best checkpoint of the cross-encoder.

Implementation Details We train RESDSQL in two
stages. In the first stage, we train the cross-encoder for rank-
ing schema items. The number of heads h in the column-
enhanced layer is 8. We use AdamW (Loshchilov and Hut-
ter 2019) with batch size 32 and learning rate 1e-5 for opti-
mization. In the focal loss, the focusing parameter γ and the
weighted factor α are set to 2 and 0.75 respectively. Then,
k1 and k2 are set to 4 and 5 according to the statistics of the
datasets. For training the seq2seq model in the second stage,
we consider three scales of T5: Base, Large, and 3B. We
fine-tune them with Adafactor (Shazeer and Stern 2018) us-
ing different batch size (bs) and learning rate (lr), resulting in
RESDSQL-Base (bs = 32, lr = 1e-4), RESDSQL-Large (bs

1Spider also provides additional 1,659 training samples, which
are collected from some single-domain datasets, such as Geo-
Query (Zelle and Mooney 1996) and Restaurants (Giordani and
Moschitti 2012). But following (Scholak, Schucher, and Bahdanau
2021), we ignore this part in our training set.

= 32, lr = 5e-5), and RESDSQL-3B (bs = 96, lr = 5e-5). For
both stages of training, we adopt linear warm-up (the first
10% training steps) and cosine decay to adjust the learning
rate. We set the beam size to 8 during decoding. Moreover,
following Lin, Socher, and Xiong (2020), we extract poten-
tially useful contents from the database to enrich the column
information.

Environments We conduct all experiments on a server
with one NVIDIA A100 (80G) GPU, one Intel(R) Xeon(R)
Silver 4316 CPU, 256 GB memory and Ubuntu 20.04.2 LTS
operating system.

Results on Spider
Table 2 reports EM and EX results on Spider. Notice-
ably, we observe that RESDSQL-Base achieves better per-
formance than the bare T5-3B, which indicates that our
decoupling idea can substantially reduce the learning dif-
ficulty of Text-to-SQL. Then, RESDSQL-3B outperforms
the best baseline by 1.6% EM and 1.3% EX on the dev
set. Furthermore, when combined with NatSQL (Gan et al.
2021b), an intermediate representation of SQL, RESDSQL-
Large achieves competitive results compared to powerful
baselines on the dev set, and RESDSQL-3B achieves new
SOTA performance on both the dev set and the test set.
Specifically, on the dev set, RESDSQL-3B + NatSQL brings
4.2% EM and 3.6% EX absolute improvements. On the
hidden test set, RESDSQL-3B + NatSQL achieves com-
petitive performance on EM and dramatically increases
EX from 75.5% to 79.9% (+4.4%), showing the effective-
ness of our approach. The reason for the large gap be-
tween EM (72.0%) and EX (79.9%) is that EM is overly
strict (Zhong, Yu, and Klein 2020). For example in Spider,
given a question “Find id of the candidate who most re-
cently accessed the course?”, its gold SQL query is “select
candidate id from candidate assessments order by assess-
ment date desc limit 1”. In fact, there is another SQL query
“select candidate id from candidate assessments where as-
sessment date = (select max(assessment date) from candi-
date assessments)” which can also be executed to answer
the question (i.e., EX is positive). However, EM will judge
the latter to be wrong, which leads to false negatives.

Results on Robustness Settings
Recent studies (Gan et al. 2021a; Deng et al. 2021) show that
neural Text-to-SQL parsers are fragile to question pertur-
bations because explicitly mentioned schema items are re-
moved or replaced with semantically consistent words (e.g.,
synonyms), which increases the difficulty of schema link-
ing. Therefore, more and more efforts have been recently
devoted to improving the robustness of neural Text-to-SQL
parsers, such as TKK (Qin et al. 2022) and SUN (Gao et al.
2022). To validate the robustness of RESDSQL, we train our
model on Spider’s training set and evaluate it on three chal-
lenging Spider variants: Spider-DK, Spider-Syn, and Spider-
Realistic. Results are reported in Table 3. We can observe
that in all three datasets, RESDSQL-3B + NatSQL surpris-
ingly outperforms all strong competitors by a large margin,
which suggests that our decoupling idea can also improve
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Approach Dev Set Test Set
EM EX EM EX

Non-seq2seq methods

RAT-SQL + GRAPPA (Yu et al. 2021) 73.4 - 69.6 -
RAT-SQL + GAP + NatSQL (Gan et al. 2021b) 73.7 75.0 68.7 73.3
SMBOP + GRAPPA (Rubin and Berant 2021) 74.7 75.0 69.5 71.1
DT-Fixup SQL-SP + RoBERTa (Xu et al. 2021) 75.0 - 70.9 -
LGESQL + ELECTRA (Cao et al. 2021) 75.1 - 72.0 -
S2SQL + ELECTRA (Hui et al. 2022) 76.4 - 72.1 -

Seq2seq methods

T5-3B (Scholak, Schucher, and Bahdanau 2021) 71.5 74.4 68.0 70.1
T5-3B + PICARD (Scholak, Schucher, and Bahdanau 2021) 75.5 79.3 71.9 75.1
RASAT + PICARD (Qi et al. 2022) 75.3 80.5 70.9 75.5

Our proposed method

RESDSQL-Base 71.7 77.9 - -
RESDSQL-Base + NatSQL 74.1 80.2 - -
RESDSQL-Large 75.8 80.1 - -
RESDSQL-Large + NatSQL 76.7 81.9 - -
RESDSQL-3B 78.0 81.8 - -
RESDSQL-3B + NatSQL 80.5 84.1 72.0 79.9

Table 2: EM and EX results on Spider’s development set and hidden test set (%). We compare our approach with some powerful
baseline methods from the top of the official leaderboard of Spider.

the robustness of seq2seq Text-to-SQL parsers. We attribute
this to the fact that our proposed cross-encoder can alleviate
the difficulty of schema linking and thus exhibits robustness
in terms of question perturbations.

Ablation Studies
We take a thorough ablation study on Spider’s dev set to
analyze the effect of each design.

Effect of Column-Enhanced Layer We investigate the
effectiveness of the column-enhanced layer, which is de-
signed to alleviate the table missing problem. Table 4 shows
that removing such a layer will lead to a decrease in the total
AUC, as it can inject the human prior into the cross-encoder.

Effect of Focal Loss We also study the effect of focal
loss by replacing it with the cross-entropy loss for schema
item classification. Table 4 shows that cross-entropy leads
to a performance drop because it cannot alleviate the label-
imbalance problem in the training data.

Effect of Ranking Schema Items As shown in Table 5,
when we replace the ranked schema sequence with the orig-
inal unordered schema sequence, EM and EX significantly
decrease by 4.5% and 7.8% respectively. This result proves
that the ranking-enhanced encoder takes a crucial role.

Effect of Skeleton Parsing Meanwhile, from Table 5, we
can observe that EM and EX drop 0.7% and 0.8% respec-
tively when removing the SQL skeleton from the decoder’s
output (i.e., without skeleton parsing). This is because the
seq2seq model needs to make extra efforts to bridge the gap
between natural language questions and SQL queries when
parsing SQL queries directly.

Related Work
Our method is related to the encoder-decoder architecture
designed for Text-to-SQL, the schema item classification
task, and the intermediate representation.

Encoder-Decoder Architecture
The encoder aims to jointly encode the question and
database schema, which is generally divided into sequence
encoder and graph encoder. The decoder aims to generate
the SQL queries based on the output of the encoder. Due to
the special format of SQL, grammar- and execution-guided
decoders are studied to constrain the decoding results.

Sequence Encoder The input is a sequence that concate-
nates the question with serialized database schema (Yu et al.
2021; Lin, Socher, and Xiong 2020). Then, each token in the
sequence is encoded by a PLM encoder, such as BERT (De-
vlin et al. 2019) and encoder part of T5 (Raffel et al. 2020).

Graph Encoder The input is one or more heterogeneous
graphs (Wang et al. 2020a; Hui et al. 2022; Cao et al. 2021;
Cai et al. 2021), where a node represents a question token,
a table or a column, and an edge represents the relation
between two nodes. Then, relation-aware transformer net-
works (Shaw, Uszkoreit, and Vaswani 2018) or relational
graph neural networks, such as RGCN (Schlichtkrull et al.
2018) and RGAT (Wang et al. 2020b), are applied to en-
code each node. Some works also employ PLM encoders
to initialize the representation of nodes on the graph (Cao
et al. 2021; Wang et al. 2020a; Rubin and Berant 2021). It
is undeniable that the graph encoder can flexibly and ex-
plicitly represent the relations between any two nodes via
edges (e.g., foreign key relations). However, compared to
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Approach Spider-DK Spider-Syn Spider-Realistic
EM EX EM EX EM EX

RAT-SQL + BERT (Wang et al. 2020a) 40.9 - 48.2 - 58.1 62.1
RAT-SQL + GRAPPA (Yu et al. 2021) 38.5 - 49.1 - 59.3 -
T5-3B (Gao et al. 2022) - - 59.4 65.3 63.2 65.0
LGESQL + ELECTRA (Cao et al. 2021) 48.4 - 64.6 - 69.2 -
TKK-3B (Gao et al. 2022) - - 63.0 68.2 68.5 71.1
T5-3B + PICARD (Qi et al. 2022) - - - - 68.7 71.4
RASAT + PICARD (Qi et al. 2022) - - - - 69.7 71.9
LGESQL + ELECTRA + SUN (Qin et al. 2022) 52.7 - 66.9 - 70.9 -

RESDSQL-3B + NatSQL 53.3 66.0 69.1 76.9 77.4 81.9

Table 3: Evaluation results on Spider-DK, Spider-Syn, and Spider-Realistic (%).

Model variant Table AUC Column AUC Total

Cross-encoder 0.9973 0.9957 1.9930
- w/o enh. layer 0.9965 0.9939 1.9904
- w/o focal loss 0.9958 0.9943 1.9901

Table 4: Ablation studies of the cross-encoder.

Model variant EM (%) EX (%)

RESDSQL-Base 71.7 77.9
- w/o ranking schema items 67.2 70.1
- w/o skeleton parsing 71.0 77.1

Table 5: The effect of key designs.

PLMs, graph neural networks (GNNs) usually cannot be de-
signed too deep due to the limitation of the over-smoothing
issue (Chen et al. 2020), which restricts the representation
ability of GNNs. Then, PLMs have already encoded lan-
guage patterns in their parameters after pre-training (Zhang
et al. 2021), however, the parameters of GNNs are usually
randomized. Moreover, the graph encoder relies heavily on
the design of relations, which may limit its robustness and
generality on other datasets (Gao et al. 2022).

Grammar-Based Decoder To inject the SQL grammar
into the decoder, Yin and Neubig (2017); Krishnamurthy,
Dasigi, and Gardner (2017) propose a top-down decoder
to generate a sequence of pre-defined actions that can de-
scribe the grammar tree of the SQL query. Rubin and Be-
rant (2021) devise a bottom-up decoder instead of the top-
down paradigm. PICARD (Scholak, Schucher, and Bah-
danau 2021) incorporates an incremental parser into the
auto-regressive decoder of PLMs to prune the invalid par-
tially generated SQL queries during beam search.

Execution-Guided Decoder Some works use an off-the-
shelf SQL executor such as SQLite to ensure grammatical
correctness. Wang et al. (2018) leverage a SQL executor
to check and discard the partially generated SQL queries
which raise errors during decoding. To avoid modifying the
decoder, Suhr et al. (2020) check the executability of each
candidate SQL query, which is also adopted by our method.

Schema Item Classification
Schema item classification is often introduced as an aux-
iliary task to improve the schema linking performance for
Text-to-SQL. For example, GRAPPA (Yu et al. 2021) and
GAP (Shi et al. 2021) further pre-train the PLMs by using
the schema item classification task as one of the pre-training
objectives. Then, Text-to-SQL can be viewed as a down-
stream task to be fine-tuned. Cao et al. (2021) combine the
schema item classification task with the Text-to-SQL task
in a multi-task learning way. The above-mentioned methods
enhance the encoder by pre-training or the multi-task learn-
ing paradigm. Instead, we propose an independent cross-
encoder as the schema item classifier which is easier to be
trained. We use the classifier to re-organize the input of the
seq2seq model, which can produce a more direct impact on
schema linking. Bogin, Gardner, and Berant (2019) calcu-
late a relevance score for each schema item, which is then
used as the soft coefficient of the schema items in the subse-
quent graph encoder. Compared with them, our method can
be viewed as a hard filtering of schema items which can re-
duce noise more effectively.

Intermediate Representation
Because there is a huge gap between natural language ques-
tions and their corresponding SQL queries, some works have
focused on how to design an efficient intermediate repre-
sentation (IR) to bridge the aforementioned gap (Yu et al.
2018b; Guo et al. 2019; Gan et al. 2021b). Instead of di-
rectly generating full-fledged SQL queries, these IR-based
methods encourage models to generate IRs, which can be
translated to SQL queries via a non-trainable transpiler.

Conclusion
In this paper, we propose RESDSQL, a simple yet powerful
Text-to-SQL parser. We first train a cross-encoder to rank
and filter schema items which are then injected into the en-
coder of the seq2seq model. We also let the decoder generate
the SQL skeleton first, which can implicitly guide the sub-
sequent SQL generation. To a certain extent, such a frame-
work decouples schema linking and skeleton parsing, which
can alleviate the difficulty of Text-to-SQL. Extensive exper-
iments on Spider and its three variants demonstrate the per-
formance and robustness of RESDSQL.
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