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Abstract

Text-to-speech (TTS) and singing voice synthesis (SVS) aim
at generating high-quality speaking and singing voice accord-
ing to textual input and music scores, respectively. Unifying
TTS and SVS into a single system is crucial to the applica-
tions requiring both of them. Existing methods usually suf-
fer from some limitations, which rely on either both singing
and speaking data from the same person or cascaded mod-
els of multiple tasks. To address these problems, a simpli-
fied elegant framework for TTS and SVS, named UniSyn,
is proposed in this paper. It is an end-to-end unified model
that can make a voice speak and sing with only singing
or speaking data from this person. To be specific, a multi-
conditional variational autoencoder (MC-VAE), which con-
structs two independent latent sub-spaces with the speaker-
and style-related (i.e. speak or sing) conditions for flexible
control, is proposed in UniSyn. Moreover, supervised guided-
VAE and timbre perturbation with the Wasserstein distance
constraint are leveraged to further disentangle the speaker
timbre and style. Experiments conducted on two speakers
and two singers demonstrate that UniSyn can generate natu-
ral speaking and singing voice without corresponding training
data. The proposed approach outperforms the state-of-the-art
end-to-end voice generation work, which proves the effec-
tiveness and advantages of UniSyn.

Introduction
Recent advances in text-to-speech (TTS) (Ren et al. 2019;
Wang et al. 2017; Li et al. 2019; Chen et al. 2021; Liu et al.
2021a; Jeong et al. 2021; Weiss et al. 2021) and singing
voice synthesis (SVS) (Nishimura et al. 2016; Kim et al.
2018; Blaauw and Bonada 2020; Liu et al. 2022; Gu et al.
2021; Lu et al. 2020; Ren et al. 2020) have greatly im-
proved the quality and naturalness of the generated speech
and singing voices, which results in the widespread applica-
tions of TTS and SVS. The increasing requirements in real-
world applications necessitate the ability for versatile voices
that can not only speak but also sing. Intuitively, training
such a system needs high-quality speech and singing voice
from the same speaker. However, obtaining such a corpus
is more difficult than the corpus consisting of speaking and
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singing voice recorded by different persons, e.g., it is non-
trivial to build a singing corpus for a person who is not good
at singing. While the multi-task cascaded system consisting
of TTS and singing voice conversion (SVC) (Zhang et al.
2020; Guo et al. 2022; Liu et al. 2021c) models can achieve
this goal, it leads to a complex pipeline and inflexible gener-
ation depending on reference audio.

Both TTS and SVS share a similar pipeline that generates
vocal voices from abstract information, i.e., textual input or
musical scores, thus making it intuitively reasonable to real-
ize the SVS and TTS tasks with a unified model that enables
a target speaker timbre to speak and sing with the absence
of speech or singing data. However, several challenges will
rise to unify TTS and SVS into one model. First, as the im-
portant input information, musical scores in the SVS task
are quite different from the textual input in the TTS task.
Second, although both speaking and singing voices are gen-
erated from the same vocal articulation system, the acous-
tic outcomes have substantial differences in both timbre and
prosodic aspects. Third, the speaker timbre and style (i.e.
speak and sing) of source audio are heavily entangled. When
only one style from each person is accessible in the training
phase, this entanglement tends to result in the timbre leak-
age issue (Lee et al. 2020; Xue et al. 2021), which means the
synthesized singing voice sounds like the timbre that pro-
vides the singing training data rather than the target speaker
that only has speech training data and vice versa. Due to
these challenges, previous efforts to build the unified TTS
and SVS model did not obey the typical pipeline but uti-
lized the explicit features (e.g. pitch contour and rhythm)
extracted from the waveform as input to generate the desired
speaking or singing voice for the target speaker timbre (Valle
et al. 2020; Zhang et al. 2020; Xue et al. 2021). However, the
reference signals are always essential for providing explicit
features at inference time. Therefore, the generated singing
voice relies on the reference and cannot synthesize arbitrary
songs, which reduces the flexibility in practical applications.

In this paper, we develop UniSyn, which is an end-to-end
unified system for both speech and singing voice synthe-
sis with only speaking or singing data from each person.
UniSyn consists of three components: 1) a variational au-
toencoder to encode the waveform into a latent space, 2) a
prior model to estimate the latent distribution from the input
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linguistic representations, and 3) a wave decoder to generate
the waveform from sampled latent variables.

To overcome the challenges of unified modeling, we pro-
pose unified linguistic representations for the text content of
TTS and the music score of SVS. To facilitate speaking/sing-
ing style transfer cross speakers in the unified model, we
propose a multi-conditional variational autoencoder (MC-
VAE) to lead the learned latent space more interpretable by
being divided into two independent sub-spaces. One sub-
space is for speaker conditioned on speaker identity, and
the other is for the remaining information in the voice con-
ditioned on other input representations except for speaker
identity (Ding et al. 2020). To better decouple the speaker
timbre and style (speaking/singing), we adopt the speaker
identity and pitch contour as supervision to conduct disen-
tanglement on the latent variables. Furthermore, the timbre
perturbation strategy (Choi et al. 2021) with the Wasserstein
distance constraint is also utilized to auxiliarily learn the re-
maining sub-space for improving the robustness of the dis-
entangled speaker timbre. Note that different from the well-
settled two-stage voice generation system that adopts an in-
dependently trained acoustic model and neural vocoder to
output waveform, UniSyn is an end-to-end trained neural
generation model that directly produces waveform.

The main contributions of our work are summarized as
follows:

• We propose UniSyn, an end-to-end unified system for
text-to-speech and singing voice synthesis. It leverages
MC-VAE to learn an interpretable latent space for flexi-
ble control and utilizes guided-VAE and formant pertur-
bation to conduct better disentanglement.

• We conduct experiments on both TTS and SVS. The re-
sults demonstrate that UniSyn significantly outperforms
the state-of-the-art end-to-end generation model on SVS
for speakers without singing training data, as well as TTS
for singers without speech training data.

• To the best of our knowledge, this is the first work on
speech and singing voice synthesis unified system in the
end-to-end way, which can not only teach the speaker
without singing data to sing but also teach the singer
without speech data to speak.

Background
Unified Speech & Singing Generation
Singing voice conversion (SVC) is a common solution for
making a voice sing and speak without his/her singing or
speaking data. Recent works (Saito et al. 2018; Polyak et al.
2020; Guo et al. 2022; Li et al. 2021) use the Phonetic Pos-
teriorGrams (PPGs) extracted from audio to represent the
linguistic content and eliminate the speaker characteristics.
With PPGs and F0 modeling, these methods can convert the
timbre of the singing voice while preserving the linguistic
content. A framework (Zhang et al. 2020) is designed by
unifying the features of speech and singing synthesis and
hiring a speaker verification-based speaker encoder to dis-
entangle the speaker timbre from the audio signal. The ex-
tracted speaker embedding is conditioned on the generation

model to synthesize speech and singing voice in the target
timbre. For converting speaker timbre of the singing voice,
VAE is employed in (Luo et al. 2020) to disentangle speaker
timbre from audio in the latent space. The literature on the
unified model for TTS and SVS without relying on speech
or singing training data usually utilizes the explicit features
extracted from the audio signal as the input representations.
Mellotron (Valle et al. 2020) is proposed for both speech
and singing voice synthesis by explicitly conditioning on
the melodic information such as pitch and rhythm. However,
reference audio is necessary for providing explicit features
of speech or singing at inference time, which is inflexible for
synthesizing arbitrary content. Instead of reference audio,
approaches Xue et al. (2022); Liu et al. (2021b) are proposed
to utilize the music score to produce singing voice condi-
tioned on the speaker identity, whereas they cannot generate
speech since the non-universal input. In this paper, we unify
the textual content of speech and music score of singing and
construct a unified model for TTS and SVS without leverag-
ing any reference audio when inference.

VAE-Based Speech Generation

VAE is a generation model that extracts a latent distribu-
tion of the data and reconstructs the data from the sampled
latent variables. The VAE family has been successfully ap-
plied to TTS and SVS. Recently, the conditional-VAE-based
voice synthesis model, VITS (Kim, Kong, and Son 2021),
has brought success to high-quality speech generation in a
parallel end-to-end TTS framework. VITS adopts a varia-
tional autoencoder to approximate the latent distribution of
waveform x and a text encoder followed by a stochastic du-
ration predictor to encode the text sequence for producing a
condition c. Then a normalizing flow-based decoder is used
to generate waveform from the sampled latent variables z.
VITS can be expressed in the CVAE process by optimiz-
ing the evidence lower bound (ELBO) of the interactable
marginal log-likelihood of waveform log p (x|c):

log p (x|c) ≥ Eq(z|x)

[
log p (x|z)− log

q (z|x)
p (z|c)

]
, (1)

where p (x|z) is the likelihood function that generate wave-
form x given the latent variables z, q (z|x) is the posterior
distribution approximated by the posterior encoder, p (z|c)
is the prior distribution of latent variables z given the con-
dition c. Because of the success of VITS, its framework has
been extended to SVS. By replacing the Monotonic Align-
ment Search (MAS), Zhang et al. (2022) introduce a length
regulator with a duration predictor (Ren et al. 2019) and a
frame prior network to predict a frame-level distribution for
natural singing voice synthesis in an end-to-end way. How-
ever, these works leverage flow-decoder to disentangle the
speaker information, which may reduce the robustness of the
generation system and lack of interpretability of the latent
space. In this paper, we improve the CVAE-based end-to-
end synthesis framework by conducting disentanglement in
the latent space for a more robust generation.
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Figure 1: The architecture of UniSyn. In subfigure (a), Encin is the unified input label for text encoder; Durin is the unified
input for duration prediction; Speaker ID is the speaker identity; style ID is the style identity for speaking or singing; x(s) is
the waveform of the speaker s; x̂(s) is the reconstructed waveform; the dotted lines are the KL divergence. In subfigure (b),
Excitation and Inhibition are the excitation function and inhibition function in the guided-VAE respectively. In subfigure
(c), x(s̃) is the speaker perturbed waveform; W is the Wasserstein distance loss between the latent distributions.

UniSyn
We will introduce the proposed unified model for cross-
speaker speech and singing voice generation as illustrated in
Figure 1, including 1) the unified textual information mod-
eling for TTS and SVS, 2) the proposed MC-VAE for flexi-
ble multi-speaker voice generation with multiple conditions,
3) the supervised guided-VAE to disentangle speaker timbre
and pitch contour from the latent representations of audio
signals, and 4) the timbre perturbation strategy with Wasser-
stein distance constraint to further enhance the disentangle-
ment ability on the timbre of speech.

Unified Textual Features for TTS and SVS
Previous work (Valle et al. 2020) has shown that both speak-
ing and singing voice could be simultaneously decomposed
into explicit acoustic features like rhythm, pitch, speaking
style, and text content. To achieve the unified voice gener-
ation, we design a unified textual representation for speak-
ing and singing. In TTS, the textual information often can
be factorized as phoneme, tone (for tonal language), and
phoneme duration. While in SVS, the music score usu-
ally includes phoneme, note pitchID, phoneme duration, and
note duration. Aiming at building a unified voice synthesis
model, it’s necessary to factorize the common and different
aspects between the text and music score inputs.

For the common part, 1) the linguistic content can be de-
fined as the phoneme attribute for both speech and singing,
which is marked as pho in our model; 2) the melody vari-
ations of speaking and singing voice are defined as an at-
tribute named tp merged by the note pitchID of the music
score and the tone of input text, since both they determine
the melody acoustic feature. Noted that for non-tonal lan-
guages, there is no explicit input feature representing speech
melody, so the note pitchID should be treated as a different
feature in unified textual representations.

With the basic pronunciation skeleton, the phoneme dura-
tion durpho defines the rhythm of both speech and singing.
But unlike speech, the duration of a phoneme in singing
voice is bound by the music note duartion durnote in the mu-
sic scores. To form a unified representation, we set a place-
holder of durnote for speaking voice. To unify speaking and
singing prosody rhythm, a shared duration predictor is lever-
aged for modeling the phoneme duration of both speech and
singing voices. Intuitively, durpho is strong affected by pho,
durnote, and the style tag. Besides, we observe that in Man-
darin Chinese, the vowel always has a longer duration than
the consonant in the same syllable, especially in singing
voices. Therefore, we introduce a relative position attribute
pos for a more accurate estimation of phoneme duration in
the duration model, which is obtained based on the total
number of phonemes and the rank of the current phoneme
in the current music note or speaking syllable.

As a summary, the attribute set Encin = {pho, tp}
is involved to model the linguistic information in the text
encoder, while the duration predictor takes the Durin =
{pho, durnote, pos, style} to predict the phoneme duration
for both speech and singing, which is then applied in the
Length Regulator to match the time resolution of acoustic
latent features.

MC-VAE for Voice Generation
For building an end-to-end generation system, we follow the
CVAE-based skeleton in VITS (Kim, Kong, and Son 2021)
to produce waveform from the latent variables. In this work,
we separate the latent space into two sub-spaces to make
the latent variables learned from VAE more interpretable.
Ideally, we tend to decompose the audio signal into two
independent attributes, named speaker timbre and remain-
ing attributes. To achieve this goal, we propose the multi-
conditional variational autoencoder (MC-VAE).
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Given input waveform x, we can learn its latent dis-
tribution q(z|x) through the VAE encoder. In MC-VAE,
we try to divide the latent z into two independent spaces
z = (zs, z

rst
s ), where zs only defines a speaker subspace

and zrsts ) denotes the remaining information in waveform
such as linguistic content and style. To make the zs and
zrsts independent, we utilize two independent conditions
c = (cs, c

rst
s ) to restrict the sub-spaces, where cs is the cat-

egorical speaker label speakerID for modeling zs and crsts
is the remaining information generated from the frame-level
speaker-independent prior network for modeling zrsts .

We define the prior distribution of speaker follows the
conditional Gaussian distribution p(zs|cs) = N(µcs , σcs),
where µcs and σcs are the prior mean and variance and only
determined by the speaker ids. Meanwhile, the remaining in-
formation zrsts of audio can be approximated from the uni-
fied textual features and the style embedding, which we de-
note as crsts . With the independent conditions c = (cs, c

rst
s )

and independent latent variables z = (zs, z
rst
s ), by the con-

ditionally independent property of joint probability distribu-
tions, the variational lower bound of MC-VAE in our model
can be written as:

ELBO (p, q;x, c)

= Eq(z|x)

[
log p (x|z)− log

q (z|x)
p (z|c)

]
= Eq(z|x) [log p (x|z)]− Eq(zs,zr|x)

[
log

q (zs, z
rst
s |x)

p (zs, zrsts |c)

]
= Eq(z|x) [log p (x|z)]

− Eq(zs|x)q(zrst
s |x)

[
log

q (zs|x) q (zrsts |x)
p (zs|cs) p (zrsts |crsts )

]
= Eq(z|x) [log p (x|z)]
−KL (q (zs|x) ||p (zs|cs))
−KL

(
q
(
zrsts |x

)
||p

(
zrsts |crsts

))
,

(2)
where the first term is the reconstruction loss Lrec. The sec-
ond and third terms are KL divergences, marked as Lzs

kl and

Lzrst
s

kl respectively. We use the L1 loss between the mel-
spectrogram melx from ground-truth waveform x and melx̂
from the predicted waveform x̂ in frequency domain to re-
construct x:

Lrec = ∥melx −melx̂∥1 . (3)
Lzs
kl is a reverse-KL divergence to estimate the true dis-

tribution p(zs|cs) ∼ N(µcs , σcs) with our approximate dis-
tribution q(zs|x). The reverse-KL divergence makes objec-
tive mode seeking (Vaswani et al. 2022; Mei et al. 2019)
that helps the approximate distribution q(zs|x) to find an ac-
curate speaker with high probability and mimic it exactly.
On the contrary, Lzrst

s

kl is a forward-KL divergence to esti-
mate the posterior distribution q(zrsts |x) with the approxi-
mate prior distribution p(zrsts |crsts ), which is a mode cover-
ing (Agarwal et al. 2019) instance that is suitable for learn-
ing the timbre-independent remaining information.

Since the timbre of speech is almost invariant over time,
the variance of the speaker distribution should be relatively

smaller. We directly treat the speaker id cs as µcs and set σcs
is equal to 0.01, where the smaller variance is also benefit to
distinguish speaker with the Gaussian distribution.

Supervised Guided-VAE for Disentanglement
To disentangle the desired attribute, such as speaker timbre,
from the latent variables z, we utilize a supervised guided-
VAE (GVAE) (Ding et al. 2020), as shown in Figure 1(b).
For an attribute f that needs to be disentangled from wave-
form, GVAE defines the latent variable from the posterior
encoder as z = (zf , z

rst
f ), where zf is a scalar variable de-

ciding this attribute and zrstf represents the remaining latent
variables. The objective of GVAE contains an adversarial
excitation and inhibition method as:

Lf
excitation = Lpred(Predf (zf ), fx) (4)

Lf
inhibition = Lpred(Predf (zrstf ), fx) (5)

Lf
gvae = Lf

excitation + 1

/
Lf
inhibition, (6)

where fx is the ground-truth value of the attribute f of wave-
form x, Predf refers to the network to predict the attribute
value from latent z,and Lpred denotes the loss function to
optimize prediction results. By minimizing the Eq. 6, the
excitation process encourages zf containing the attribute in-
formation f , and the inhibition process can be treated as an
adversarial term that makes zrstf as uninformative to f as
possible.

In Unisyn, we utilize the GVAE to disentangle both
speaker timbre and pitch information, since the pitch con-
tour is critical to singing voice generation for the speaker
without singing data. Specifically, the latent z can be pre-
sented as z = (zs, z

rst
s ) and z = (zp, z

rst
p ) respectively. For

speaker disentanglement, we optimize the shared latent vari-
able z = (zs, z

rst
s ) from MC-VAE, where the cross entropy

is treated as Lpred to predict the speaker identity. As for
pitch disentanglement, z = (zp, z

rst
p ) is optimized to make

sure the zp only contains pitch-related information, where
the MSE loss is used to predict pitch values.

Speaker Timbre Perturbation
With the above MC-VAE and GVAE, the timbre and pitch
contour can be disentangled from the waveform, and the vo-
cal timbre also can be flexibly controlled by a manual label
or sampling from reference audio. To further improve the ro-
bustness of generating speaking or singing voice with a tar-
get timbre without corresponding training data, we further
conduct information perturbation (Choi et al. 2021) on for-
mant of waveform to obtain speaker-independent augmented
training data.

In detail, we utilize a formant shifting function fs to dis-
tort the timbre of the audio at a random range, since the for-
mant is highly related to vocal timbre. Given the waveform
x(s) from speaker s, we apply the function fs on it dur-
ing each training step to obtain x(s̃), where only formant
is randomly shifted and other information is preserved. In
this way, we assume the latent variables zrsts and zrsts̃ in
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MC-VAE should follow the same distribution. We then uti-
lize a Wasserstein distance (Zhao et al. 2018) constraint be-
tween zrsts and zrsts̃ to encourage them to learn the speaker-
independent information:

Lpert = W
(
q
(
zrsts |x(s)

)
||q

(
zrsts̃ |x(s̃)

))
, (7)

where W represents the Wasserstein distance between two
distributions. We utilize the Wasserstein distance since it has
been shown good performance on the text sequences (Zhao
et al. 2018).

Training
To further improve the quality of generated audio, we also
apply the adversarial training strategy during training (Kong,
Kim, and Bae 2020; Kim, Kong, and Son 2021). Following
the state-of-the-art vocoder HiFi-GAN (Kim, Kong, and Son
2021), we utilize several discriminators, including a Multi-
Period Discriminator (MPD) and a Multi-Scale Discrimina-
tor (MSD), to discriminate the real and fake waveform on
different scales. The feature-mapping loss Lfm is also ap-
plied to the generator to constrain its output in each hidden
layer of the discriminators (Kong, Kim, and Bae 2020).

Combining the above MC-VAE, GVAE, speaker pertur-
bation and adversarial training, we optimize the model by
minimizing the loss function as

LG =αLrec + βLzs
kl + γLzrst

s

kl + λLgvae

+ µLpert + ηLfm + θLadv(G) + ϕLdur,
(8)

where Lgvae is the sum of Ls
gvae and Lp

gvae, Ldur is the
L1 loss between the predicted duration and the ground-truth
duration in the log domain, and Ladv(G) is the adversarial
loss for the generator. The hyper-parameters α, β, γ, λ, µ,
η, θ, and ϕ are the weights of the losses. We set α = 60,
β = 12, γ = 1.5, λ = 10, µ = 0.02, η = 2, θ = 2, and
ϕ = 1.5 in our model empirically.

Inference
The inference procedure of UniSyn is shown in Figure 2,
which supports both TTS and SVS. The speaker-related la-
tent variable zs is sampled from the speaker prior distribu-
tion conditioned on speaker ID, and the latent zrsts is en-
coded from the prior model with the unified textual features.
With z = (zs, z

rst
s ), the wave decoder can generate corre-

sponding speech and singing voice of the target speaker.

W
av

e
D

ec
od

er

Speaker ID

Prior ModelStyle ID

Figure 2: The inference procedure of UniSyn.

Model Architecture
Prior Model. The prior model aims at providing the
speaker and remaining prior distributions. It consists of sev-
eral components: 1) a text encoder followed by a length
regulator to encode the unified textual inputs into frame-
level representations, which contains 6 Feed-Forward Trans-
former blocks (Ren et al. 2019); 2) a duration predic-
tor including 3 convolution layers with dropout to provide
each phoneme duration during inference; 3) a frame prior
network, including 6 Transformer blocks, to produce the
frame-level prior latent variables zrsts ; 4) a speaker prior pro-
cedure to produce the p(zs|cs).

Posterior Encoder. The posterior encoder contains a
linear-spectrogram extractor, several WaveNet (Shen et al.
2018) residual blocks, and a linear projection layer, aiming
at extracting the mean and variance of the posterior distribu-
tion q(z|x) from waveform.

Wave Decoder. Given the sampled z ∼ p(z|x) with re-
parametrization trick, the wave decoder tends to reconstruct
x from z, where z is sliced to fixed length for more effi-
cient training. The wave decoder consists of a stack of trans-
posed convolutions with the multireceptive field fusion mod-
ule (MRF) (Kong, Kim, and Bae 2020) to match the resolu-
tion of audio samples.

Experimental Setup
Dataset
To evaluate the performance of UniSyn, we conduct exper-
iments with a mixture of Mandarin speech and singing cor-
pora. The singing corpora contain data from two female
singers: 1) the Opencpop 1 (Wang et al. 2022), an open-
source singing corpus with 100 pop songs recorded by a
professional singer, which we denote as Singer-1; and 2) an
internal singing corpus with 100 songs from another female
singer, denoted as Singer-2. Both of the singing datasets
have about 5-hour audio, and we split them into sentence
pieces for training. The speech corpora consist of two speak-
ers: 1) an open-source Mandarin TTS dataset 2 recorded
from a female speaker, which contains about 10-hour neutral
speech, denoted as Speaker-1; and 2) an internal Mandarin
corpus recorded from another female speaker, totally about
5 hours, which we denote as Speaker-2.

To balance the amount of data for speech and singing,
we randomly select about 2 hours of audio from each
speaker for training. For validation and evaluation, 100 ut-
terances from the rest data and two preserved songs from
each singing corpus are involved. We down-sample all the
speech and singing audios into 24k Hz, and set the frame
size and hop size to 1200 and 300 respectively when extract-
ing optional auxiliary acoustic features like pitch and spec-
trogram. The auxiliary pitch contour is extracted through
WORLD (Morise, Yokomori, and Ozawa 2016), and the im-
plementation of formant shifting follows the NANSY (Choi
et al. 2021) model using Praat (Boersma and Van Heuven

1https://wenet.org.cn/opencpop/
2https://www.data-baker.com/open source.html
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2001). The phoneme duration is obtained through an HMM-
based force alignment model (Sjölander 2003).

Benchmark Systems
We choose the state-of-the-art end-to-end speech synthesis
framework VITS for comparison since VITS can conduct
the cross-speaker generation by the flow-decoder to disen-
tangle the speaker timbre. Because there is rare research to
make a singer speak, we use Learn2Sing 2.0 (Xue et al.
2022) to conduct a comparison on the SVS task addition-
ally. We separately measure the performance of TTS and
SVS for the unified model. We conduct experiments on the
following systems: 1) GT, the ground-truth recordings; 2)
VITSTTS, where we only train the system on the speak-
ing data as the top-line of the unified model; 3) VITSSVS,
which is only trained with the singing data as the top-line of
VITS for SVS; 4) VITSunify, the unified model constructed
on VITS using the flow-decoder for generating speaking and
singing voice; 5) UniSynTTS, the proposed system trained
on the speech data as the top-line of the proposed model;
6) UniSynSVS, which is only trained with the singing data
as the top-line of UniSyn for SVS; 7) UniSynunify, the pro-
posed model for both TTS and SVS; 8) Learn2sing (Xue
et al. 2022), the system to teach speakers to sing with a HiFi-
GAN vocoder (Kong, Kim, and Bae 2020) to synthesize au-
dio from mel-spectrogram. All VITS family systems utilize
the same length regulator and duration predictor with our
proposed methods instead of Monotonic Alignment Search
(MAS). Because the duration of the singing voice is highly
related to the music score and MAS will lead to the failure
of duration prediction. All the above models are trained with
4 NVIDIA V100 GPUs for fair comparison.

Evaluation Metrics
We conduct Mean Opinion Score (MOS) and Comparative
Mean Opinion Score (CMOS) tests to evaluate the percep-
tual audio quality and speaker similarity of the synthetic
speech and singing samples. The score of MOS test ranges
from 1 to 5 with an interval of 0.5, in which 1 means
very bad and 5 means excellent. The rating score of CMOS
ranges from −3 to 3, in which a positive score means the
first model is better and vice versa. In evaluations, we gener-
ate 20 speech and singing samples for each speaker/singer,
which are listened to by at least 20 listeners. For an addi-
tional subjective evaluation, we calculate the note-level pitch
RMSE and Pearson correlation between generated voice and
the ground-truth recordings. Note that in the speaker sim-
ilarity evaluation, the real speech of the two speakers is
used as reference for both TTS and SVS tasks as the real
singing voices of the speakers are not available. Likewise,
the ground truth singing of the two singers are used as refer-
ence for both TTS and SVS evaluation.

Results
Subjective Evaluation
We first conduct MOS evaluation on both TTS and SVS
tasks separately in terms of naturalness and speaker simi-
larity, as shown in Table 1 and Table 2 respectively.

Evaluation on Text-to-speech. According to the MOS re-
sults of TTS shown in Table 1, given the target speech data,
VITSTTS, UniSynTTS, VITSunify and UniSynunify achieve
similar scores on both audio naturalness and speaker sim-
ilarity on Speakers-1 and Speaker-2. It demonstrates that
the proposed UniSyn with interpretable latent distribution
has the equivalent ability in speech generation with VITS.
When generating speaking voice for singers, the proposed
UniSynunify significantly outperforms VITSunify on speech
naturalness and speaker similarity. Specifically, the scores
of generated speech of singers from VITSunify drop signif-
icantly compared to the generated speech of speakers, and
UniSynunify can still maintain relatively high MOS scores.
This result shows the superiority of the proposed method in
producing synthetic speaking voice of the target singer with-
out speech training data. 3

Speaker-1 Speaker-2 Singer-1 Singer-2
Naturalness MOS (↑)

GT 4.67±0.08 4.62±0.06 - -

VITS TTS 4.17±0.09 4.13±0.08 - -
VITS unify 4.15±0.09 4.14±0.10 3.33±0.11 3.36±0.12

UniSyn TTS 4.18±0.08 4.16±0.12 - -
UniSyn Unify 4.19±0.08 4.15±0.09 3.79±0.06 3.81±0.10

Similarity MOS (↑)
GT 4.78±0.05 4.75±0.07 - -

VITSTTS 4.26±0.13 4.25±0.11 - -
VITSunify 4.23±0.10 4.23±0.12 3.45±0.11 3.48±0.09

UniSynTTS 4.27±0.11 4.25±0.10 - -
UniSynUnify 4.24±0.09 4.22±0.12 3.71±0.11 3.76±0.12

Table 1: Speech naturalness and speaker similarity MOS of
TTS with 95% confidence interval

Evaluation on Singing Voice Synthesis. We then investi-
gate the performance of singing voice synthesis for all the
testing speakers and singers, as shown in Table 2. For the
singer singing task, the UniSyn family can be on par with
the VITS family, and they are much better than the baseline
Learn2Sing. For the speaker singing task, the naturalness
scores of VITSunify and Leanr2Sing are much lower than
the singer singing task, where the produced singing voice
of the speakers has obvious artifacts. UniSynunify surpasses
VITS and Leanr2Sing by a large margin when generating
speaker’s singing voice. As for speaker similarity, the scores
of Learn2Sing, VITS, and Unisyn are close, which means
the three models have similar ability to maintain speaker
timbre. The results of naturalness and speaker similarity in-
dicate that the UniSyn can generate natural singing voices
for the speakers, even if they do not have any singing train-
ing data. It is worth noticing that the speaker similarity
scores of speakers are much lower than the singers in the
SVS task. This is mainly because there is no ground-truth
singing voice for the speakers, he listeners only can judge

3Audio samples are available at: https://leiyi420.github.io/
UniSyn
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the similarity with the speaking data, which has obvious dif-
ferences from their singing speech.

Speaker-1 Speaker-2 Singer-1 Singer-2
Naturalness MOS (↑)

GT - - 4.65±0.08 4.78±0.05

Learn2Sing 3.07±0.16 3.03±0.15 3.85±0.08 3.87±0.09

VITSSVS - - 3.95±0.08 3.97±0.09
VITSunify 3.15±0.10 3.05±0.09 3.93±0.11 3.95±0.12

UniSynSVS - - 3.95±0.06 3.96±0.07
UniSynunify 3.73±0.11 3.78±0.10 3.95±0.06 3.97±0.08

Speaker similarity MOS (↑)
GT - - 4.57±0.06 4.61±0.04

Learn2Sing 3.75±0.12 3.76±0.15 3.89±0.12 3.93±0.08

VITSSVS - - 4.15±0.08 4.17±0.07
VITSunify 3.75±0.11 3.79±0.13 4.15±0.13 4.16±0.11

UniSynSVS - - 4.17±0.07 4.18±0.09
UniSynunify 3.76±0.10 3.78±0.12 4.14±0.08 4.18±0.07

Table 2: Speech naturalness and speaker similarity MOS of
SVS with 95% confidence interval.

Objective Evaluation
Since pitch is critical to the singing voice, we further con-
duct objective evaluations to measure the pitch accuracy of
the synthesized singing voice, as shown in Table 3. The
measurements include root mean squared error (RMSE) and
Pearson correlation (Corr) with the ground-truth recordings.
For Singer-1 and Singer-2, all the models achieve a simi-
lar level of RMSE and Corr on pitch. While for the singing
voice of Speaker-1 and Speaker-2, the proposed UniSynunify
achieves the lowest RMSE and highest Corr results, which
reaches the same level as those of the singer’s singing voice.
But for Learn2Sing and VITS, RMSE remains very high
while Corr is obviously at a lower level. The objective eval-
uation results are consistent with the subjective tests and
further prove that our unified model can synthesize natural
singing voices for the speakers without singing training data.

Speaker-1 Speaker-2 Singer-1 Singer-2
Learn2Sing
RMSE (↓) 29.559 33.554 10.868 10.280
Corr (↑) 0.837 0.813 0.922 0.925

VITSunify

RMSE (↓) 24.651 29.458 9.012 9.389
Corr (↑) 0.866 0.835 0.964 0.963

UniSynunify

RMSE (↓) 8.672 9.954 8.698 8.738
Corr (↑) 0.967 0.957 0.967 0.967

Table 3: Objective evaluation on pitch, where “RMSE” and
“Corr” denote the RMSE and Pearson correlation of pitch.

Ablation Studies
The CMOS results of ablation studies are illustrated in Ta-
ble 4, where “-pert” and “-GVAE” denote removing speaker

perturbation and supervised guided-VAE from UniSyn re-
spectively. A more negative CMOS score means UniSyn is
much better. From the TTS of speakers and SVS of singers
results, we find removing the perturbation or GVAE would
not have much impact on the synthetic voices, which indi-
cates the proposed MC-VAE can effectively conduct voice
generation. From the cross-over TTS and SVS, it can be seen
that: 1) removing the speaker perturbation strategy leads to
a significant decline in speaker similarity, which indicates
that speaker perturbation mainly contributes to the timbre
during cross-speaker TTS; 2) removing GVAE results in a
significant drop on naturalness and also noticeable influence
on speaker similarity, which demonstrates that GVAE plays
an important role in keeping naturalness and speaker sim-
ilarity; 3) removing both components have medium scores
compared with individually removing them.

We also notice that removing the two strategies leads to
different degrees of performance degradation. To be spe-
cific, removing speaker timbre perturbation noticeably leads
to different degree of degradation on speaker similarity for
TTS and SVS. We also find that GVAE is more important to
the naturalness of the TTS task although it is necessary for
both tasks and metrics.

Naturalness (↑) Similarity (↑)
TTS

-pert Speakers -0.006 -0.012
Singers 0.002 -0.356

-GVAE Speakers -0.015 -0.023
Singers -0.430 -0.164

-pert-GVAE Speakers -0.015 -0.014
Singers -0.347 -0.224

SVS

-pert Speakers -0.004 -0.235
Singers -0.021 -0.018

-GVAE Speakers -0.163 -0.102
Singers -0.012 -0.007

-pert-GVAE Speskers -0.104 -0.106
Singers -0.021 -0.036

Table 4: CMOS values for ablation studies of UniSyn

Conclusions
In this work, we propose UniSyn to conduct TTS and SVS
in an end-to-end unified trained neural model. UniSyn also
has the advantage of synthesizing both speaking and singing
voice with only speaking or only singing training data of a
target person. Based on a specifically designed unified tex-
tual representation, we propose MC-VAE to create a more
interpretable latent space for speaking/singing style trans-
fer across speakers. We further introduce GVAE and tim-
bre perturbation into UniSyn to improve the speaker similar-
ity and naturalness of synthetic speech and singing. Exper-
iments and ablation studies show that UniSyn outperforms
the state-of-the-art end-to-end synthesis framework, VITS,
on both speaker singing and singer speaking tasks, which
indicates the effectiveness of the proposed approach in the
unified modeling of TTS and SVS.
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