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Abstract

Audio-Visual Question Answering (AVQA) is a sophisticated
QA task, which aims at answering textual questions over
given video-audio pairs with comprehensive multimodal rea-
soning. Through detailed causal-graph analyses and careful
inspections of their learning processes, we reveal that AVQA
models are not only prone to over-exploit prevalent language
bias, but also suffer from additional joint-modal biases caused
by the shortcut relations between textual-auditory/visual co-
occurrences and dominated answers. In this paper, we pro-
pose a COllabrative CAusal (COCA) Regularization to rem-
edy this more challenging issue of data biases. Specifically,
a novel Bias-centered Causal Regularization (BCR) is pro-
posed to alleviate specific shortcut biases by intervening bias-
irrelevant causal effects, and further introspect the predictions
of AVQA models in counterfactual and factual scenarios.
Based on the fact that the dominated bias impairing model
robustness for different samples tends to be different, we in-
troduce a Multi-shortcut Collaborative Debiasing (MCD) to
measure how each sample suffers from different biases, and
dynamically adjust their debiasing concentration to differ-
ent shortcut correlations. Extensive experiments demonstrate
the effectiveness as well as backbone-agnostic ability of our
COCA strategy, and it achieves state-of-the-art performance
on the large-scale MUSIC-AVQA dataset.

Introduction
AVQA is an emerging yet sophisticated QA task stem-
ming from Visual-QA (Antol et al. 2015), Video-QA (Zhu
et al. 2017) and Audio-QA (Fayek and Johnson 2020). Be-
yond these conventional QA tasks that concern reasoning
from single- or cross-modality data, AVQA requires mod-
els to comprehensively understand multimodal data and per-
form spatio-temporal reasoning over audio-visual scenes (Li
et al. 2022a). The additional core challenge in AVQA is
that reasoning the answer necessarily needs to jointly un-
derstand the audio and the video as depicted in Fig. 1(a),
which is easily hindered by data biases. Although there are
many studies that focus on the data bias in VQA tasks,
there has no research work on addressing the bias issue
for AVQA. To reveal this problem and discover its poten-
tial over-dependences on different modalities, we conduct
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Figure 1: (a) AVQA requires a comprehensive multimodal
reasoning to answer the textual question over video-audio
information. (b) Exploratory experiments by removing one
or two modalities at one time for AVQA training. (c) Illus-
tration of the examples from three types of shortcut biases.

a group of exploratory experiments based on the state-of-
the-art model (Li et al. 2022a). Concretely, we remove one
or two modalities in the training process on MUSIC-AVQA
dataset (Li et al. 2022a). Fig. 1(b) shows that there is no sig-
nificant accuracy drop when deleting ether visual or audio
modality. It is also surprising that only exploiting question
can achieve a decent accuracy of 55% for open-ended ques-
tions. Undoubtedly, excluding textual information would re-
markably impair the performance on audio-visual questions.

In this paper, by thoroughly analyzing the AVQA model
with a causal-effect retrospection (Yao et al. 2021) and care-
fully inspecting its learning process, we find that the bi-
ases hindering robustness are mainly caused by three short-
cut correlations: 1) Q→G: directly reasoning from question
patterns and words to statistically frequent ground-truth an-
swers G. 2) V&Q→G: over-exploiting the co-occurrence
of questions and some specific visual objects to deduce
related answers. 3) A&Q→G: only focusing on question
patterns accompanied with certain audio waves to pre-
dict corresponding answers. Some illustrated examples for
the aforementioned superficial correlations are in Fig. 1
(c). Compared with VQA or AQA tasks with uni-modal
bias (Agrawal et al. 2018), the debiasing strategies for
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Figure 2: Causal Graph of AVQA, where dashed arrows in
blue indicate the potential shortcut biases.

AVQA should collaboratively alleviate both uni-modal and
joint-modal biases from different shortcut correlations.

In this paper, we propose a novel COllaborative CAusal
(COCA) Regularization to cooperatively overcome the com-
plex biases and improve model robustness from two aspects:

Bias-centered Causal Regularization (BCR). BCR
aims at mitigating the bias caused by a specific shortcut
correlation through regularization from counterfactual and
factual views. The former promotes AVQA models to intro-
spect the bias about the question “what will the answer G
will be, if other modality information is inconsistent with
the bias-centered modality”. For the most intuitive Q→G
shortcut bias, BCR conducts a counterfactual intervention
on bias-irrelevant video and audio features, and meanwhile
maintains the question-centered shortcut relation to synthe-
size counterfactual samples. Thus, the shortcut bias Q→G
could be alleviated by misleading its counterfactual answer
prediction. The latter mainly considers the type of ques-
tions “what will answer G will be, if other information
is intervened, but is still causally related to shortcut-based
modality”. To this end, BCR replaces original bias-unrelated
modality information with the generated informative factual
alternatives. As the causal correlation between factual inputs
and answer G is uninterrupted, BCR encourages the factual
answer prediction to be consistent with the prediction from
original inputs. Benefited from factual regularization, BCR
could effectively avoid AVQA model from over-correcting
in counterfactual scenarios, and further strengthen the gen-
eralization ability of multimodal representations.

Multi-shortcut Collaborative Debiasing (MCD). Al-
though BCR could reduce the data bias from a specific short-
cut, how to cooperatively leverage BCR for multi-shortcut
debiasing is still a challenge to improve model robustness.
It is mainly due to the fact that the dominated shortcut bias
resulted in model vulnerability for different AVQA samples
may be different. To this end, our MCD strategy presents a
novel Information Entropy driven Metric I to measure how
different shortcut biases impair model robustness for differ-
ent samples. Then, through the comparisons among Is from
different shortcut biases, MCD assigns instance-aware loss
weights to not only balance the contributions of BCR for
three shortcut bias, but also adjust the interdependence be-
tween counterfactual and factual regularization. Benefiting
from MCD, our COCA is capable of following the principle
of “suit the remedy to the case”, and dynamically focuses on
handling with the dominated bias for different samples.

The contributions of this paper are summarized as follow-
ing: 1)To our best knowledge, this work is the first attempt to
analyze the potential biases in AVQA task from the perspec-
tive of causal graph, and further reveal the multi-shortcut
biases problem in this task. 2) We propose a backbone-
agnostic COCA approach to cooperatively alleviate different
biases with an instance-aware manner, and enhance the mul-
timodal reasoning capacity of AVQA models. Extensive ex-
periments verify the effectiveness of COCA, and show state-
of-the-art performance on the MUSIC-AVQA dataset.

A Causal View with Bias Revelation on AVQA
In this section, we exhibit the causal graph of AVQA from
the perspective of causal theory (Glymour, Pearl, and Jewell
2016), to indepthly disclose its reasoning process. Further-
more, through comprehensively analysing the causal graph,
we derive three important shortcut bias, which heavily de-
grade the model’s robustness and generalization ability.

Causal Graph of AVQA
Given the multimodal inputs and the ground-truth answer
G, the causal graph is illustrated in Fig. 2, where nodes and
links refer to variables and causal-effect relations.
• V → F ← Q: The causal video frames F are in-

ferred from the jointly reasoning between question Q and
raw video V , which normally filters the question-related
frames with important visual objects through visual at-
tention mechanism.

• A→ S ← Q: The causal audio sounds S are determined
by the question Q and raw audio A to discover the crucial
auditory cues from the question-related time slice in the
whole redundant audio.

• K → G: Joint knowledge K is entirely conditional
upon the comprehensive understanding of the causal ef-
fect Q→ K, F → G and S → G from three modalities
through multimodal fusion. Hence, this causal-effect re-
lation denotes the unbiased reasoning by projecting the
joint knowledge into the final answer prediction.

Potential Shortcut Biases in AVQA
By deducing the causal graph, we find that the question-
related variables can be spuriously correlated with answers,
which results in uni-modal and joint-modal shortcut biases.
• Q99KG: implies the uni-modal language bias from Q to
G, which is prone to caused by statistical regularities be-
tween answer occurrences and question patterns. Practi-
cally, if the language bias is severe, Q → K tends to
dominant the contribution for joint knowledge K inte-
gration, whereas the cause-and-effect relations F → G
and S → G would be ignored.

• F99KG&S99KG: indicate the joint-modal biases caused
by the superficial relations between textual-visual or
textual-audio co-occurrences and ground-truth answers.
For example, even though the training samples with
question “where...first sound...?” are unbiased towards
answers “right” and “left”, the joint-modality bias can
also discover a frequent combination of “first sound” and
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Figure 3: (a) Q99KG centered factual/counterfactual (+/-) scenarios under causal intervention. (b) F99KG centered +/- scenarios
under causal intervention. (c) S99KG centered +/- scenarios under causal intervention. (d) Illustrations of counterfactual (-) and
factual (+) inputs synthesizing for video, audio and question required in BCR. In (a), (b) and (c), the shallowed nodes and links
designate intervened variables and cause-and-effect relationships. The links with red cross means the relations were interrupted.

the scenes of “piano” to infer its statistically related an-
swer “left” without considering audio information. In
practice, if the textual-audio bias is severe, the causal
video frame F determined by Q and V would signifi-
cantly weaken the causal reasoning from Q → K and
S → K, and impair unbiased learning. Analogously, we
can derive the other joint-modal shortcut bias, S99KG.

Remark. Compared with the causal analysis (Niu et al.
2021) of VQA tasks, the derived joint-modal shortcut biases
additional exist in AVQA tasks because of involving more
modalities for reasoning.

Methodology
Given inputs v ∈ V , a ∈ A and q ∈ Q, an AVQA model
aims to learn a function F to generate a distribution over the
ground-truth answer space G, which is formulated as:

P (G | v, a, q) = F (v, a, q) . (1)

To reach competitive performance, conventional AVQA
models (Li et al. 2022a; Yun et al. 2021) prefer to parse
the audio-question as well as visual-question pairs through
attention mechanism h(·) before multimodal fusion f(·).
Thus, we can revisit the formulation of AVQA model as:

F (v, a, q) = f (hqv(v, q), hqa(a, q), q) , (2)

where hqa(·) and hqv(·) imply the question-guide audio and
visual attention for causal sounds and frames extraction.

Subsequently, we elaborate our proposed COllaborative
CAusal (COCA) Regularization, which consists of two cru-
cial modules: 1) Bias-centered Causal Regularization (BCR)
and 2) Multi-shortcut Collabrative Debiasing (MCD).

Bias-Centered Causal Regularization
Removing the bias caused by a specific shortcut is a funda-
mental yet challenging procedure for AVQA models. To ad-
dress the issue, BCR introduces bias-centered counterfac-

tual and factual scenarios by causal interventions on bias-
irrelevant inputs.
Uni-modal Shortcut Bias. As depicted in Fig. 3(a), we as-
sume that the language bias Q99KG is due to the fact that,
Q dominates the joint knowledge K aggregation through
Q → K, thereby limiting the contributions from paths
F → K and S → K. In order to uncover and highlight the
spurious relation, we establish Q99KG centered counterfac-
tual and factual scenarios by intervening the bias-irrelevant
video V and audio A with counterfactual (−) and factual
(+) alternatives as shown in Fig. 3(a).

Specifically, in counterfactual world, we change them by
an entirely different and also un-matched video-audio pair
(V − and A−) in Fig. 3(d). Then, we exploit a counterfactual
regularization loss to enforces the unreasonable prediction
from (V −,A− ,Q) fails to answer the question by yielding
uniform prediction over answer candidates:

Lqs
cf = KL

(
F
(
v−, a−, q

)
∥X

)
, (3)

where Lqs
cf denotes the counterfactual loss for Q99KG short-

cut debiasing, and X indicates the uniform distribution
over the ground-truth answer candidates. As the interference
thoroughly shears the causal relations F → K as well as
S → K, Lqs

cr can forthrightly mitigate the uni-modal short-
cut bias by significantly increasing its predictive uncertainty.

In factual scenarios, we generate the factual V + and Q+

by attaching extra frames and voices into the front and back
sides of V and Q as shown in the right column of Fig. 3(d).
Though the raw representation of V and Q are disturbed,
their original causal relations to joint knowledge K are ex-
haustively maintained. Then, we employ the factual regu-
larization loss to encourage the reasonable prediction from
(V +, A+, Q), thereby holding the semantic consistency:

Lqs
f = KL

(
F
(
v+, a+, q

)
∥F (v, a, q)

)
, (4)

where Lqs
f implies the loss function to overcome the uni-

modal shortcut bias from the factual view. Accompanied
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by the counterfactual regularization, the factual regulariza-
tion prohibits AVQA model from over-correcting problem
in counterfactual scenarios, triggered by overwhelmingly
increasing the predictive uncertainty for any interventions
upon V and A, without considerations of whether the causal
relations are changed. Meanwhile, it boosts the diversity of
feature representations and effectively strengths the seman-
tic generalization of AVQA models.
Joint-Modal Shortcut Bias. The joint-modal shortcut bi-
ases F99KG and S99KG are owing to the over-dependence
on the causal effect F → K and S → K. To overcome the
bias F99KG in Fig. 3(b), we select to conduct causal inter-
ventions on Q in the paths Q→ K and A→ S ← Q to dis-
turb shortcut-irrelevant cause-and-effect correlations Q →
K and S → K. Meanwhile, the input Q in V → F ← Q
is unchanged to maintain the causality from F to K, so as
to establish bias F99KG centered counterfactual and factual
scenarios. In practice, the causal relations of Q → K and
V → F ← Q are implemented by multimodal fusion f(·)
and question-guide visual attention hqv(·) in Eq. (2), respec-
tively. In the counterfactual scenarios, we present to synthe-
size Q− by randomly exchanging 50% of the words between
raw question and other sampled question sentence to dam-
age its semantic information as shwon in Fig. 3(d). Then, the
counterfactual loss Lfs

cf for reducing F99KG bias is:

Lfs
cf = KL

(
f
(
hqv(v, q), hqa(a, q

−), q−
)
∥X

)
. (5)

Likewise, the counterfactual loss Lss
cf for alleviating the

bias S99KG is achieved by replacing Q with Q− in question-
guide visual attention hqv(·) and multimodal fusion f(·), to
break the causal effect from Q→ G and F → G as depicted
in Fig. 3(c). We define the loss function as:

Lss
cf = KL

(
f
(
hqv(v, q

−), hqa(a, q), q
−) ∥X ) . (6)

For factual regularization, as shown in Fig. 3(d) we syn-
thesize factual Q+ by adding extra suffixes (e.g., “in the
video” or “were heard”) to original Q, thereby enriching its
textual representation with no semantic change. The factual
regularization loss Lfs

f for F99KG is formatted as:

Lfs
f = KL

(
f
(
hqv(v, q), hqa(a, q

+), q+
)
∥F (v, a, q)

)
.
(7)

The factual loss function Lss
f for S99KG could be defined

similarly based on Eq. (7).

Multi-Shortcut Collabrative Debiasing
For different AVQA samples, the dominated shortcut biases
they suffered from are presumably different. Consequently,
the unbiased AVQA models are required to selectively re-
move biases for different samples, and encourage these de-
biasing objectives to complement mutually. To achieve this
goal, we present a novel Multi-shortcut Collaborative Debi-
asing (MCD) strategy through quantifying the degrees of
suffered biases for each sample, and further weighting dif-
ferent causal regularization loss functions.
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Figure 4: The distributions of different weights wfs
cf , wss

cf ,
wqs

cf on the MUSIC-AVQA training split.

For quantifying bias, we introduce an information entropy
driven metric IB to measure the how much the AVQA sam-
ple suffers from a specific shortcut bias B. Specifically, it is
defined by the comparison between the maximum informa-
tion entropy Hmax over answer distribution and the entropy
H(·) of B-centered counterfactual prediction PB

cf :

IB = Hmax −H(PB
cf )

= −
N∑
i

1

N
log

1

N
+

N∑
i

Pcf (i)
BlogPB

cf (i),
(8)

where N designates the number of answer candidates in
ground-truth, and i is the ith answer label. For instance,
if an AVQA sample severely suffers from joint-modal bias
F99KG, its counterfactual prediction P fs

cf is prone to be bi-
ased toward its statistically-related answers with lower un-
certainty. Thus, the gap of information entropy between the
uniform distribution X (maximum entropy) and its coun-
terfactual prediction P fs

cf would obviously larger than those
from other shortcut biases.

After acquiring the bias index IB for each shortcut, we
assign different weights for their counterfactual and factual
loss functions. Explicitly, based on the example of F99KG,
its counterfactual wfs

cf and factual wfs
f weights are:

wfs
cf =

Ifs

Ifs + Iss + Iqs
, wfs

f =
Iss + Iqs

Ifs + Iss + Iqs
. (9)

The weights for the other two shortcuts can be determined
in similar manners. On the one hand, for the counterfac-
tual regularization for different shortcuts, we prompt AVQA
model to focus on more-biased shortcut debiasing. On the
other hand, for a specific shortcut bias, we encourage to
assign larger weight to its factual regularization loss when
the debiasing concentration for counterfactual scenario de-
creases, thereby enhancing its generalization and avoiding
over-correcting in debiasing process.

Fig. 4 visualizes the weight distributions of counterfactual
regularization loss for different shortcuts, which explicitly
reveals how they affect unbiased multimodal learning for
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different samples. It can be clearly observed that, for most
AVQA samples, the uni-modal language biases are the dom-
inated bias to be over-exploited, where the average value
of W qs

cf is around 0.5 on training dataset. On the contrary,
the influences of joint-modal bias for most samples are rela-
tively not severe, as the values of W ss

cf and W fs
cf are concen-

trated on the interval from 0.1 to 0.4.
Ultimately, we train the parameters in the whole AVQA

classification network to jointly minimize the loss terms:

Lall = Ltask + α
∑

B∈{fs,ss,qs}

(wB
cfLB

cf + wB
f LB

f ), (10)

where α is the trade-off factor to adjust the contributions
between the task and the COCA objectives. It is worth noting
that, COCA is model-agnostic debiasing strategy, which can
be incorporated into various AVQA architectures.

Experiments
We first conduct experiments to verify the superiority of
COCA compared with the state-of-the-art AQA, VideoQA
and AVQA methods. Then, we introduce the in-depth abla-
tion studies to validate the effectiveness of each component
in our COCA method. Next, we explore the model-agnostic
ability of COCA on different baseline models. Afterward,
we visualize and analysis the qualitative results.
Dataset. We evaluate our method on the large-scale
MUSIC-AVQA dataset (Li et al. 2022a), which consists of
more than 40K question-answer pairs covering comprehen-
sive question types over textual, visual and audio modalities.
To our best knowledge, MUSIC-AVQA is the only officially
released AVQA dataset, which includes audio-visual ques-
tions requiring joint understanding over auditory and visual
information for answer prediction.
Implementation Details. We build a simple and effective
model with audio-video temporal attention as the baseline.
For video features, we employ pretrained ResNet18 (He
et al. 2016) to extract features of 10 sampled frames for each
video; for audio, we exploit VGGish (Hershey et al. 2017) to
obtain 128-D feature vector from 16kHz sound; for textual
features, we set the dimension of word embedding is 512,
and fix the max length of words is 14. The initial learning
rate is 1e-4, which would be decayed by multiplying 0.1 for
every 8 epochs. The mini-batch and maximun epoch num-
ber are 64 and 24. The optimal trade-off factor we select is
α = 0.75, which is also validated in Fig. 5.
Compared Methods. To verify the effectiveness of our
COCA, we first compare COCA with 6 state-of-the-art
methods: 1) ConvLSTM (Fayek and Johnson 2020) is es-
tablished by the combination of widely-used ConvLSTM
AQA model with visual attention; 2) PSAC (Li et al. 2019)
is an advanced video-QA method with a positional self-
attention with co-attention; 3) HME (Fan et al. 2019) in-
troduces a heterogeneous memory to enhance accuracy; 4)
AVSD (Schwartz, Schwing, and Hazan 2019) is a state-of-
the-art method for video dialog task; 5) LAViT (Yun et al.
2021) is an advanced Pano-AVQA approach based on multi-
ple transformer auto-encoders; 6) AVST (Li et al. 2022a) is

the most competitive state-of-the-art AVQA method, which
introduce a spatio-temporal grounded audio-visual network
with a two-stage training strategy. Next, to verify the model-
agnostic ability of COCA, we incorporate COCA into two
additional model architectures: 1) VQAT-based: As current
existed AVQA model is limited, we modify the well-known
VideoQA model VQAT (Yang et al. 2021a) with audio atten-
tion to form a VQAT-based AVQA model; 2) ConvLSTM-
based: Analogously, we add a widely-used visual attention
module upon the ConvLSTM (Fayek and Johnson 2020).

State-Of-The-Art Comparisons

From the performance between AQA/VideoQA models and
AVQA approaches on Audio/Visual Questions, apart from
the audio comparative question types, most AVQA models
achieve superior performance, which indicates that addition-
ally considering corresponding auditory/visual information
can facilitates the question answering over video/audio in-
put. For the comparison within AVQA methods, baseline
and AVST approaches outperform AVSD and LAVit models
by establishing more effective temporal visual-auditory at-
tention mechanisms to find crucial cues for question answer-
ing. Our COCA strategy established upon ‘baseline’ model
significantly enhances the overall performance with 1.67%
accuracy boost over A-V questions, and even slightly outper-
forms the state-of-the-art AVST model. Moreover, through
the integration with AVST, our method achieves state-of-
the-art performance of 72.33% overall accuracy on MUSIC-
AVQA test set, and occupies all the first places for average
results on audio, visual and audio-visual questions, which
further demonstrates the effectiveness of COCA.

Ablation Studies

As depicted in Tab. 2, we conduct extensive ablation stud-
ies to validate the contributions for different components in
COCA on baseline model. We find that exploiting counter-
factual regularization for each shortcut bias increases the
average accuracy, among which Lqs

cf remarkably enhances
the performance by around 0.9% upon baseline. It can be
explained by the fact that, even though AVQA model suf-
fers from multiple biases, most samples are still domi-
nated by the uni-modal language bias, which is consistent
to the weight distribution in Fig. 4. Based on counterfac-
tual loss, their factual regularization slightly improves the
performance by strengthening the generalization of shortcut-
irrelevant multimodal inputs. Then, from the last four rows
in Tab. 2, compared with evenly considering the contribu-
tions from three shortcut regularization, our MCD strategy
effectively facilitates their debiasing synergy by dynami-
cally assigning different weights to focus on dominated bias
for different AVQA samples. Detailed comparisons for be-
tween MCD and average weighting are illustrated in Fig. 5.
We can see that MCD is consistently superior to the aver-
age weighting under various setting of trade-off factor α,
and reach its best accuracy when α = 0.75 on both causal
and counterfactual regularization testing. There results fur-
ther validate the effectiveness and stability of MCD.
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Task Method Audio Question Visual Question Audio-Visual Question Answering All
CNT Comp Avg. CNT LOC Avg. Exist LOC CNT Comp Temp Avg. Avg.

AQA ConvLSTM 74.07 68.89 72.15 67.47 54.56 60.94 82.91 50.81 63.03 60.27 51.58 62.24 63.65

VQA PSAC 75.64 66.06 72.09 68.64 69.79 69.22 77.59 55.02 63.42 61.17 59.47 63.52 66.54
HME 74.76 63.56 70.61 67.97 69.46 68.76 80.30 53.18 63.19 62.69 59.83 64.05 66.45

AVQA

AVSD 72.41 61.90 68.52 67.39 74.19 70.83 81.61 58.79 63.89 61.52 61.41 65.49 67.44
LAViT 74.36 64.56 70.73 69.39 75.65 72.56 81.21 59.33 64.91 64.22 63.23 66.64 68.93

Baseline 74.53 65.99 71.38 69.76 74.69 72.25 81.38 61.20 67.04 61.20 63.99 67.80 69.61
+COCA 79.35 66.50 74.61 72.35 76.08 74.24 83.50 64.02 70.99 63.40 64.48 69.47 71.64
AVST 78.18 67.05 74.06 71.56 76.38 74.00 81.81 64.51 70.80 66.01 63.23 69.54 71.52

+COCA 79.94 67.68 75.42 75.10 75.43 75.23 83.50 66.63 69.72 64.12 65.57 69.96 72.33

Table 1: State-of-the-art Comparisons on MUSIC-AVQA dataset. Best and second best numbers are in bold and underlined.
CNT, comp, Avg, loc, Exist and Temp imply question types counting, comparative, average, location, existential and temporal.

Method Component Avg.
Lqs
cf Lqs

f Lfs
cf Lfs

f Lss
cf Lss

f C

Baseline 69.61

Q99KG ✓ 70.50
✓ ✓ 70.86

F99KG
✓ 69.91
✓ ✓ 70.12

S99KG
✓ 70.04
✓ ✓ 70.37

Multiple
Shortcuts

✓ ✓ ✓ 70.81
✓ ✓ ✓ ✓ 71.21
✓ ✓ ✓ ✓ ✓ ✓ 71.03
✓ ✓ ✓ ✓ ✓ ✓ ✓ 71.64

Table 2: Ablation study for different components in COCA
based on the average accuracy on MUSIC-AVQA test set. C
indicates our collaborative debiasing strategy

Model-Agnostic Evaluation Intuitively, COCA over-
comes multiple shortcut bias by intervening multimodal in-
puts and conduct debiasing regularization for factual/coun-
terfactual output logits. Therefore, COCA should be orthog-
onal to model architecture design, and incorporated into var-
ious AVQA models. To testify its backbone-agnostic abil-
ity, we integrate COCA into multiple different AVQA mod-
els in Tab. 3. Established upon Baseline, VQAT-based and
ConvLSTM-based backbones, COCA can consistently im-
prove the performance over all question types. Furthermore,
blending COCA with the state-of-the-art AVST model could
still enhance the performance reached at 72.33% with 0.81%
accuracy boost. It also exhibits the effectiveness of COCA
on advanced AVQA model. Also, we conclude the reason for
the improvement gap between Baseline and AVST is that,
AVST employs superior model architectures, such as visual-
spatial attention, self-supervised matching loss with two-
stage training. These advanced strategies facilitate the mul-
timodal interactions, and indirectly prevents AVQA model
from over-exploiting partial information.

Qualitative Results For the first sample in Fig. 6, though
both baseline and our method select the correct answer for
the given question, their reasoning behaviors may be dif-
ferent from their attention weights. Baseline model tends to
evenly focus on temporal video frames and audio waves,
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Figure 5: The performance of average weighting and our
MCD to integrate multiple shortcut debiasing under various
settings of trade-off factor α.

and we deduce that the correct answer may be determined
by language bias in training set, which also supported by
its higher weight W qs

cf for uni-modal debiasing. On the con-
trary, COCA is capable to concentrate more on the question-
related video frames and audio clips, and increase its ex-
plainability over visual-auditory information. For the second
sample, we can see that the uncertainty for temporal audio-
visual attention distributions in COCA are obviously less
than those in baseline model, so as to unbiasedly obtain the
correct answer ‘Piano’. The illustrated superiority of tempo-
ral attention for COCA also support its remarkable perfor-
mance on audio-visual temporal question type in Tab. 1.

Related Works
Audio-Visual Question Answering. In the last few years,
several question answering (QA) tasks have realized impres-
sive progress in different modalities, including text question
answering (Rajpurkar et al. 2016), visual question answer-
ing (Antol et al. 2015; Jang et al. 2017; Yu et al. 2015;
Lee, Cheon, and Han 2021; Ye and Kovashka 2021; Tanaka,
Nishida, and Yoshida 2021; Lao et al. 2021b), audio ques-
tion answering (Fayek and Johnson 2020), and video ques-
tion answering (Zhu et al. 2017). Beyond these QA tasks
that concern reasoning from single- or cross-modality data,
Audio-Visual Question Answering (AVQA) requires models
to comprehensively understand three modalities and perform
spatio-temporal reasoning over audio-visual scenes (Li et al.
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17.37 12.34 11.53 7.37 4.56 7,96 6.98 6.44 6.52

15.33 13.85 11.35 7.73 9.52 8.12 13.49 10.99 7.44 2.18

14.53 16.71 11.34 9.98 13.38 7.53 8.13 10.13 6.68 5.23

24.28 21.12 17.98 11.13 6.32 4,81 3.12 4.58 2.38 1.11

Question: What is the first instrument that comes in? Base:Violin Ours:Piano 

7.71 6.09 14.34 13.21 15.91 16.17 11.98 3.81 4.21 6.57

11.39 8.78 10.57 9.97 9.13 9.55 8.91 10.99 10.87 9.84

7.13 10.43 12.31 11.57 10.07 7.19 8.23 12.22 11.37 9.48

5.78 7.21 6.98 10.37 12.12 10.10 8.90 16.21 14.57 7.76

Question: Is the instrument on the right louder than that on the left? 

19.93

Base:Yes Ours:Yes 

Figure 6: Two AVQA samples for qualitative analysis of our COCA based on the baseline model. The numbers above and
below the videos and audio waves are the temporal visual and auditory attention weights for question answering, among which
numbers in red and green refer to the weights generated from baseline and COCA approach respectively.

Method V Ques A Ques A-V Ques Average

Baseline 72.25 71.38 67.80 69.61
+COCA 74.24 74.61 69.47 71.64
AVST 74.00 74.06 69.54 71.52

+COCA 75.23 75.42 69.96 72.33
VQAT-based 71.59 71.14 67.66 69.32

+COCA 75.43 73.25 68.78 70.81
ConvLSTM-based 70.54 72.57 66.42 68.37

+COCA 72.87 73.12 67.15 69.74

Table 3: Performance for visual, auditory, visual-auditory
and all questions types on MUSIC-AVQA test set.

2022a). Particularly, for audio-visual questions in AVQA
task, without considering either visual or auditory infor-
mation would fail to deduce correct answers reasonably.
MUSIC-AVQA (Li et al. 2022a) and Pano-AVQA (Yun
et al. 2021) are proposed to explore such high-level rea-
soning tasks. Pano-AVQA (Yun et al. 2021) designs a ro-
bust transformer-based multimodality encoder for address-
ing cross-modality inference, while its dataset has not been
released yet. MUSIC-AVQA (Li et al. 2022a) proposes a
spatio-temporal grounding approach for long-term audio-
visual scenes. Unlike those AVQA approaches that develop
advanced network architectures, our method attends mainly
on reducing multi-shortcut data biases of AVQA models.
Causal Inference for Debiasing. Causal inference is the
process of determining the independent, actual effect of a
particular phenomenon (Pearl 2009), which has been ex-
plored for years in psychology, politics and epidemiol-
ogy (Keele 2015; Richiardi, Bellocco, and Zugna 2013). Re-

cently, some works (Agarwal, Shetty, and Fritz 2020; Ca-
dene et al. 2019; Chen et al. 2020; Niu et al. 2021; Li et al.
2022b; Yang et al. 2021b; Pan et al. 2022) introduced causal
inference into VQA tasks. Most of recent solutions to re-
duce the bias in VQA can be grouped into three categories:
strengthening visual grounding (Selvaraju et al. 2019; Wu
and Mooney 2019), weakening language prior (Ramakrish-
nan, Agrawal, and Lee 2018; Abbasnejad et al. 2020; Lao
et al. 2022; Chen et al. 2020; Lao et al. 2021a), and implic-
it/explicit data argumentation (Abbasnejad et al. 2020; Zhu
et al. 2020). Different from the aforementioned methods that
focus only on uni-modality shortcut biases, our work is the
first to study a multi-variable causal analysis for the poten-
tial joint-modality biases in the AVQA task, and correspond-
ingly proposes a collaborative debiasing method MCD that
is tailor-made for multi-shortcut biases.

Conclusion

In this paper, we have introduced a model-agnostic COllab-
orative CAusal (COCA) Regularization to overcome uni-
modal and joint-modal biases in AVQA models. Specifi-
cally, a novel Bias-centered Causal Regularization was pro-
posed to alleviate shortcut bias by causal intervention to in-
trospect from counterfactual/factual scenarios. We also pre-
sented a Multi-Shortcut Collaborative Debiasing strategy to
facilitate the cooperation among different Causal Regular-
ization. We validated the effectiveness of COCA through ex-
tensive comparative and ablative studies. Moving forward,
we are going to extend COCA for other textual-visual-
auditory tasks which require comprehensive reasoning.
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