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Abstract
Knowledge base question answering (KBQA) has attracted a
lot of interest in recent years, especially for complex ques-
tions which require multiple facts to answer. Question de-
composition is a promising way to answer complex ques-
tions. Existing decomposition methods split the question into
sub-questions according to a single compositionality type,
which is not sufficient for questions involving multiple com-
positionality types. In this paper, we propose Question De-
composition Tree (QDT) to represent the structure of com-
plex questions. Inspired by recent advances in natural lan-
guage generation (NLG), we present a two-staged method
called Clue-Decipher to generate QDT. It can leverage
the strong ability of NLG model and simultaneously pre-
serve the original questions. To verify that QDT can enhance
KBQA task, we design a decomposition-based KBQA system
called QDTQA. Extensive experiments show that QDTQA out-
performs previous state-of-the-art methods on ComplexWe-
bQuestions dataset. Besides, our decomposition method im-
proves an existing KBQA system by 11% and sets a new
state-of-the-art on LC-QuAD 1.0.

Introduction
Question answering (QA) is a long-standing challenge in ar-
tificial intelligence. With the emergence of knowledge bases
(KBs), such as DBpedia (Auer et al. 2007) and Freebase
(Bollacker et al. 2008), knowledge base question answer-
ing (KBQA) has attracted intensive attention (Lan et al.
2021). However, answering complex questions with multi-
ple hops or constraints is still challenging. The difficulty of
linking and compositing KB items (entities, relations, and
constraints) grows intractably as questions become complex.

To tackle the problems brought by complex questions,
recent works (Min et al. 2019; Talmor and Berant 2018;
Zhang et al. 2019) put efforts into question decomposi-
tion and achieve remarkable performance. In these meth-
ods (sequence-based decomposition), a question is firstly
classified into a single compositionality type, i.e., compo-
sition (with an inner question) or conjunction (with con-
junctive descriptions). Then, the question is split into two
sub-questions according to its compositionality type. For
the exemplar question in Figure 1, sequence-based meth-
ods would classify the question as a conjunction question
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Figure 1: An example of Question Decomposition Tree
(QDT) and sequence-based decomposition for the question
“What home of the Florida Marlins is also the birthplace
of a notable professional athlete who began their career in
1997?”. [INQ] is a placeholder for an inner question.

and split it into two sub-questions (shown in the upper part).
However, we find that 39% and 31% of the questions in
ComplexWebQuestions (CWQ) (Talmor and Berant 2018)
and LC-QuAD 1.0 (LC) (Trivedi et al. 2017), contain more
than one compositionality type, respectively. For the above
example, the latter sub-question still contains an inner ques-
tion, namely “a notable professional athlete who began their
career in 1997”, but sequence-based methods do not fur-
ther decompose it, preventing this question from being an-
swered correctly. EDGQA (Hu et al. 2021) alleviates such
problem by decomposing the question into an entity-centric
graph through hand-crafted rules. But such graph structure
is complicated and difficult to train with a neural model.

In this paper, we focus on how to make question decom-
position an effective way to answer complex questions over
KBs. We propose Question Decomposition Tree (QDT), a
tree-based decomposition structure to better model the struc-
ture of complex questions. An example of QDT is shown
in the lower part of Figure 1. The root (green oval) is a
question node that represents the whole question. It points
to two description nodes, D1 and D2 (dashed rectangles).
D2 contains a placeholder “[INQ]” which indicates a sub-
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question. In this manner, a QDT can represent the decompo-
sition structure of a question with a combination of multiple
compositionality types. We also construct a decomposition
benchmark named QDTrees with 6,607 QDTs.

In order to generate QDT, we build our decomposition
model Clue-Decipher based on NLG model and pro-
pose linearized QDT as target format, which makes it easier
to generate a tree-based structure in a neural way. Neverthe-
less, sometimes the generative method suffers from missing
words or generating unexpected words (as shown in Table
1). Clue-Decipher addresses this issue by first generat-
ing a preliminary decomposition as a clue then inserting sep-
arators to the original question according to the clue. It lever-
ages the strong generation ability of NLG models and simul-
taneously ensures that the question remains unchanged.

Moreover, we design a QDT-based KBQA system called
QDTQA to evaluate the effectiveness of QDT in answering
complex questions over KB. Experimental results show that
QDTQA achieves state-of-the-art result on CWQ. In addition,
our decomposition method improves an existing QA system
by 11% and sets a new state-of-the-art on LC1.

Related Work
Complex KBQA
Complex KBQA aims at answering a question involving
more than a single fact over KBs. There are two mainstream
methods to solve complex KBQA: information retrieval-
based (IR-based) and semantic parsing-based (SP-based)
methods (Lan et al. 2021). IR-based methods extract a
question-specific subgraph from KB and then rank the can-
didate entities in the subgraph to get the final answer (Sun,
Bedrax-Weiss, and Cohen 2019).

SP-based methods fall into another line and generally per-
form better. They parse questions into formal queries that
can be executed against KB. Traditional SP-based methods
follow a staged query graph generation manner, enumerating
all possible query structures starting from a topic entity in
limited hops, which introduces a large number of noisy can-
didates (Yih et al. 2015; Chen et al. 2020). Researchers have
made efforts in pruning the search space. QGG (Lan and
Jiang 2020) considers constraints in query generation and
uses beam search to control the search space. AQG (Chen
et al. 2020) predicts an abstract query graph to restrict candi-
date queries. Recently, with the rise of natural language gen-
eration, some works cast KBQA to a Seq2Seq task. CBR-
KBQA (Das et al. 2021) uses T5 to directly transform a
question into a SPARQL and outperforms previous state-of-
the-art result by a large margin. RnG-KBQA (Ye et al. 2022)
proposes a Rank-and-Generate approach which first adopts
a contrastive ranker to rank candidate logic forms, then gen-
erates the final logic form in a Seq2Seq manner.

In this paper, we propose QDTQA following the promis-
ing SP-based paradigm. By incorporating question decom-
position into KBQA system, we outperform state-of-the-
art methods on both CWQ and LC datasets.

1Our code and dataset are available at https://github.com/cdhx/
QDTQA

Question: What films featuring Taylor Swift have netflix id
numbers above 70068848
SubQ1: what films featuring swift
SubQ2: have netflix id numbers above
Ours: What films [DES] featuring Taylor Swift [DES] have
netflix id numbers above 70068848

Question: What schools were attended by the characted of fo-
cus in the film “William & Kate”
SubQ1: what schools were attended by [INQ]
SubQ2: the characted of “characted focus & the film”
Ours: What schools [DES] were attended by [INQL] the
characted of focus in the film “William & Kate” [INQR]

Table 1: Failed cases of another generative method HSP
(Zhang et al. 2019), compared with our results. HSP splits
each question into two sub-questions, namely SubQ1 and
SubQ2. The bold words indicate the missing tokens or unex-
pected tokens that are in conflict between the original ques-
tion and sub-questions.

Question Decomposition
Question decomposition essentially provides an ungrounded
query graph that handles structure disambiguation. With the
help of the question’s structure, the QA system can avoid in-
efficient traversal of relation paths (Chen et al. 2020). There
are mainly three kinds of question decomposition methods:

(1) Splitting-based methods, such as SplitQA (Talmor
and Berant 2018) and DecompRC (Min et al. 2019), adopt
pointer network to split a question into two parts. While
these methods can preserve the original questions, they are
too specific to support more complex structure.

(2) Generative methods are more flexible and can be eas-
ily extended to different target formats. HSP (Zhang et al.
2019) employs a Seq2Seq model with copy mechanism to
generate sub-questions. However, these methods still de-
compose a question into two parts and can not guarantee
that the sentence semantics stay unchanged (as shown in Ta-
ble 1). As a result, they may lose some tokens or generate
unexpected tokens, which would corrupt the semantics of
the input question and pose difficulties in evaluating the per-
formance.

(3) Rule-based methods. A representative work is EDG
(Hu et al. 2021). It iteratively transforms the constituency
tree into an entity-centric graph with hand-crafted rules.
Generally, this method has limited coverage and is heav-
ily dependent on constituency parsing. Moreover, the iter-
ative decomposition approach lacks global awareness and
can lead to error cascade when further decomposing sub-
questions. EDG can handle questions with multiple compo-
sitionality types, but how to generate the complex structure
in a neural way is challenging.

To better model the structure of question, in this paper, we
propose a tree-based decomposition structure called QDT,
along with a two-staged method Clue-Decipher to gen-
erate QDT. Clue-Decipher can leverage the advantages
of both splitting-based methods (questions remaining un-
changed) and generative methods (strong generation ability
and flexibility).
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Question Decomposition Tree
In this section, we propose Question Decomposition Tree
(QDT), a tree-based structure, to model the decomposition
structure of complex question. We first define QDT and then
present our QDT dataset, named QDTrees.

Definitions
Given a question q, the QDT of q is a tree containing two
types of nodes: the question node and the description node.
As shown in the example in the lower part of Figure 1,
the root question node (green oval) indicates the original
question, whose answer is constrained by two description
nodes, D1 and D2 (dashed rectangle). Note that D2 contains
a placeholder “[INQ]”, indicating the existence of an inner
question. The inner question is represented by a subtree, the
root of which is an inner question node (red oval) pointed by
D2. Meanwhile, the inner question node points to two de-
scription nodes, D3 and D4 (dashed rectangle). The structure
of QDT enables it to represent the combinations of multiple
compositionality types. We also provide an equivalent lin-
ear representation of QDT under the tree illustration by in-
troducing three separators, i.e., [INQL], [INQR], [DES].
Among them, [INQL] and [INQR] indicate the left and
right boundaries of an inner question, while [DES] splits
conjunctive descriptions.

A similar work to QDT is Entity Description Graph
(EDG) (Hu et al. 2021), an entity-centric graph structure.
Compared to EDG, QDT has three differences. Firstly, QDT
supports more kinds of questions. For example, EDG can-
not represent the questions whose answers are not entities,
e.g., “Did [INQL] Curry join the Warriors [INQR] be-
fore [INQL] LeBron played for the Lakers [INQR]?”. Sec-
ondly, the structure of EDG (i.e., a graph with three types of
nodes and three types of edges) is complicated, rendering
it hard to train with a neural model. In comparison, QDT is
more concise and has an equivalent linearized representation
(as indicated in Figure 1), making it easier to generate tree-
based structure in a neural way. Thirdly, QDT keeps the orig-
inal question unchanged, except inserting some tags, while
EDG removes some dummy words, such as which, that, etc.

QDT Dataset
To train a model for question decomposition and provide a
benchmark, we construct a dataset called QDTrees, with
6,607 Question Decomposition Trees of complex questions
from existing KBQA datasets.

Data Collection The questions in QDTrees are derived
from two complex KBQA datasets: ComplexWebQuestions
(CWQ) (Talmor and Berant 2018) and LC-QuAD 1.0 (LC)
(Trivedi et al. 2017). For CWQ, we annotate three subsets
with 2,000/500/500 questions randomly sampled from the
training/validation/test sets, respectively. Following (Talmor
and Berant 2018), we regard the comparative and superla-
tive questions as conjunction question. Since LC does not
provide an official validation set, we split the training set
into a new training set (the first 3,200 questions) and a vali-
dation set (the last 800 questions). We annotate all complex
questions of LC which have more than one triple pattern in

Source Comp. Conj. Comp.&Conj. Total
CWQ 1,350 2,864 1,214 3,000

Train 900 1,916 816 2,000
Dev 225 473 198 500
Test 225 475 200 500

LC 1,958 3,002 1,554 3,607
Train 1,270 1,895 983 2,313
Dev 308 487 246 576
Test 380 620 325 718

Total 3,308 6,067 2,768 6,607

Table 2: Statistics of QDTrees. Comp. and Conj. refer to
the number of questions containing the compositionality
type of composition and conjunction, respectively.

SPARQL queries (3,307 questions). Finally, we obtain 6,607
examples in total, detailed in Table 2.

Annotation We invite four graduate students, majored in
Computer Science and familiar with KBQA, to annotate
QDTrees. Before annotation, they are informed of the de-
tailed instructions with clear examples. The annotation con-
sists of two phases. In the annotation phase, two annotators
independently label linearized QDT for all examples. Auxil-
iary information, including machine questions, intermediary
questions, and SPARQL queries, is provided to help under-
stand the meaning of the question. In the validation phase,
for the examples with consistent annotations (exact-match
inter-annotator agreement is 0.92) in the annotation phrase,
the other two annotators check if they agree with the re-
sults. For the inconsistent examples, all annotators discuss
and determine the final annotation. The annotation lasts for
two weeks and takes around 60 hours for each annotator.

Question Decomposition Method
To obtain the tree-based structure, we propose a two-staged
decomposition method called Clue-Decipher. A run-
ning example of Clue-Decipher is shown in Figure 2.
Instead of deriving the generated decomposition result di-
rectly, we regard it as a clue for inserting separators into the
original question. Our method consists of ClueNet, used to
generate a preliminary decomposition result as a clue, and
DecipherNet, used to obtain the inserting positions of sepa-
rators in the original question.

ClueNet
ClueNet aims to generate a Clue for a question. We use T5
(Raffel et al. 2020) as basic model. A Clue is a preliminary
decomposition which is literally a corrupted question with
some separators. In other words, other than the separators, a
Clue may have some differences from the original question.
As shown in the example in Figure 2, the Clue loses “Motion
Picture” and part of type constrain (“child actor” is changed
to “actor”). Besides, it fails to generate the relation (whose
soundtrack is) between “the movie” and “Forrest Gump:
Original Motion Picture” in the original question, but instead
generates a relation (whose child is) that does not exist.
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ClueNet

(T5)

Which child actor played in the movie whose

soundtrack is Forrest Gump: Original Motion Picture

Which actor [DES] played in [INQL] the movie [DES]

whose child is forrest : gump original [INQR]

Clue

Question Queries&Options

Which child actor [DES] played in [INQL] the movie

[DES] whose soundtrack is Forrest Gump: Original

Motion Picture [INQR]

Which child actor [DES] played in the movie ... Forrest Gump: Original Motion Picture

Which child actor played in [INQL] the movie ... Forrest Gump: Original Motion Picture

Which child actor played in the movie [DES] ... Forrest Gump: Original Motion Picture

Which child actor played in the movie ... Forrest Gump: Original Motion Picture [INQR]

Final QDT
Branches

DecipherNet

(BERT

MultiChoice)

Query4: Which actor played in the movie whose child is forest : gump original [INQR]

Options:

...whose soundtrack is forest [INQR] gump: original motion picture

...whose soundtrack is forrest gump: [INQR] original motion picture

...whose soundtrack is forrest gump: original [INQR] motion picture

whose soundtrack is forrest gump: original motion [INQR] picture

...whose soundtrack is forrest gump: original motion picture [INQR]

Query3: Which actor played in the movie [DES] whose child is forest : gump original

Options:

Which child actor played [DES] in the movie whose soundtrack is ...

Which child actor played in [DES] the movie whose soundtrack is ...

Which child actor played in the [DES] movie whose soundtrack is ...

Which child actor played in the movie [DES] whose soundtrack is ...

Which child actor played in the movie whose [DES] soundtrack is ...

Query2: Which actor played in [INQL] the movie whose child is forest : gump original

Options:

Which child [INQL] actor played in the movie whose soundtrack is ...

Which child actor [INQL] played in the movie whose soundtrack is ...

Which child actor played [INQL] in the movie whose soundtrack is ...

Which child actor played in [INQL] the movie whose soundtrack is ...

Which child actor played in the [INQL] movie whose soundtrack is ...

Query1: Which actor [DES] played in the movie whose child is forest : gump original

Options:

[DES] Which child actor played in the movie whose soundtrack is ...

Which [DES] child actor played in the movie whose soundtrack is ...

Which child [DES] actor played in the movie whose soundtrack is ...

Which child actor [DES] played in the movie whose soundtrack is ...

Which child actor played [DES] in the movie whose soundtrack is ...

Figure 2: An overview of our two-staged decomposition method Clue-Decipher, consisting of ClueNet and DecipherNet.
The tokens in red bold are the missing or unexpected tokens that are in conflict between question and clue.

DecipherNet

DecipherNet aims to locate the inserting position of each
separator in the original question, according to the Clue ob-
tained from ClueNet. Separators in the Clue are processed in
turn. As shown in the example in Figure 2, we first break the
Clue down into several Queries by preserving only one sep-
arator at a time. As a result, a Clue with k separators derives
k Queries.

For each Query, we construct five Options indicating the
possible positions for a separator in the original question.
After that, DecipherNet selects the most possible option,
called Branch, such process is formulated as a multiple-
choice task. For Query1 in Figure 2, we first estimate that
the approximate inserting position of the first [DES] is 2,
according to its token position. We provide five Options by
inserting [DES] into the original question in positions from
0 to 4. Then, DecipherNet selects the best choice (Branch),
from the Options. Compared to the Query, with a separator
in a corrupted question, the Branch is presented by inserting
a separator into the original question. After obtaining all the
Branches, we merge them to form a QDT.

Training Data Collection

DecipherNet selects the Branch for each Query from some
Options. Note that the only difference between Query and
Branch is that a Query is a corrupted question with a sep-
arator, while a Branch is the original question with a sep-
arator. Therefore, we formulate the training data collection
in three steps: Firstly, we break a golden QDT down into
several golden Branches by retaining only one separator at
a time. Secondly, we construct some negative Options for
each Branch by shifting the separator to other 4 neighbor-
ing positions. Thirdly, we corrupt the Branches to construct
the Queries. For each token in a Branch, we have 4 ways to
corrupt it, the probability of each way is a predefined hyper-
parameter given in parentheses: (1) replace this token with
a random word in this Branch (1%), (2) delete this token
(1%), (3) add another random token in this Branch after this
token (1%), (4) convert this token to its vocabulary id and
reconvert the id to the token by the same tokenizer (97%).

Evaluation of Decomposition Method
We evaluate the decomposition quality of different decom-
position methods from two aspects: tree-based evaluation
and sequence-based evaluation.

Baselines
We compare our method with four baseline methods. (1)
SplitQA (Talmor and Berant 2018) finds split points with
a pointer network. (2) DecompRC (Min et al. 2019) for-
mulates decomposition as a span prediction task. (3) HSP
(Zhang et al. 2019) leverages a Seq2Seq model to generate
sub-questions. (4) EDGQA (Hu et al. 2021) employs hand-
crafted rules to generate a graph to represent the question.
The first three methods are sequence-based methods which
are designed to split a question into two sub-questions while
EDGQA is a graph-based method.

Implementation Details
Our decomposition model is based on Pytorch (Paszke et al.
2019) and Hugging Face (Wolf et al. 2020). We use T5-
base with Adafactor optimizer for ClueNet, and BERT-base
with SGD optimizer for DecipherNet. The batch sizes for
ClueNet and DecipherNet are set to 64. We train our models
for 100 epochs on an NVIDIA GeForce RTX 3090 GPU and
save the best checkpoints on the validation set. All methods
except EDGQA are trained and tested on QDTrees.

Tree-based Evaluation
Metrics We consider three metrics:

Exact Match (EM) denotes whether the predicted de-
composition is completely the same as the golden one.

Tree Depth Accuracy (TDA) denotes the ratio of gener-
ated decomposition whose depth is equal to the golden ones.

Graph Edit Distance (GED)2 is to measure the mini-
mal transition cost from the predicted decomposition to the
golden one. The lower the GED score, the better. Three edit
operations (addition, deletion, and substitution) are consid-
ered, with predefined cost following (Wolfson et al. 2020).

2We use the implementation provided by https://networkx.org/
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Method EM TDA GED

EDGQA (Hu et al. 2021) - 0.7315 0.3799

Clue-Decipher 0.8332 0.9650 0.0554
w/o DecipherNet 0.8130 0.9650 0.0558

Table 3: Tree-based Decomposition evaluation.

Method EM BLEU ROUGE

SplitQA (Talmor and Berant 2018) 0.653 0.734 0.905
DecompRC (Min et al. 2019) 0.862 0.954 0.988
HSP (Zhang et al. 2019) 0.252 0.679 0.881
HSP + DecipherNet 0.793 0.935 0.983

Clue-Decipher 0.909 0.970 0.993
w/o DecipherNet 0.889 0.966 0.991

Table 4: Sequence-based Decomposition evaluation.

Results As shown in Table 3. Our method achieves 0.8332
on EM, and significantly outperforms EDGQA on GED and
TDA. We do not report the EM of EDGQA because it cannot
be trained on QDTrees and removes some dummy words,
making it hard to match with our annotation.

To demonstrate the effectiveness of our Decipher-
Net, we perform an ablation study by removing De-
cipherNet from Clue-Decipher. Results show that
Clue-Decipher is superior to the bare ClueNet by 2.02%
on tree-based EM. This suggests that our proposed Deci-
pherNet can further promote generative method. Besides,
we also find that none of the example become worse after
the incorporation of DecipherNet, which means Decipher-
Net is stable and safe as an external module for generative
decomposition method. Since we adopt separator-insertion
according to Clue, all generated QDTs do not change any
information in the original question, which prevents down-
stream tasks from error propagation.

Sequence-based Evaluation
Metrics To compare with sequence-based methods, we
degrade Clue-Decipher to decompose a question into
only two sub-questions. We evaluate the performance from
two aspects: Exact Match and Text Similarities. In order
to make a comprehensive evaluation with other generative
methods, we use two text similarity metrics introduced in
HSP (Zhang et al. 2019), i.e., BLEU-4 (Papineni et al. 2002)
and ROUGE-L (Lin 2004).

Results Table 4 shows that even with the degradation of
generating only 2 parts, Clue-Decipher still consistently
surpasses other methods on both Exact Match and Text
Similarities. Concretely, our method achieves the highest
EM score of 0.909, exceeding DecompRC by 4.7%. Be-
sides, by removing DecipherNet, the sequence-based EM
decreases from 0.909 to 0.889. Among the baselines, HSP
is a generative-based decomposition method and achieves a
poor performance on EM. Intuitively, our DecipherNet can
be leveraged to revise its result. After using DecipherNet,

the performance increases notably on all three metrics. It
shows that our DecipherNet is easy to be adapted to other
generative methods and reveal their potential performance.

KBQA based on QDT
In this section, we present QDTQA, following the Seq2Seq
manner and employing QDT to promote the performance.
The framework is shown in Figure 3. QDTQA receives the
concatenation of question, QDT, and candidate entities as
input and yields an executable query.

Entity Linking
To get candidate entities, we adopt off-the-shelf tools: ELQ
(Li et al. 2020) and FACC1 (Gabrilovich and Subramanya
2013). ELQ is an end-to-end linking model by dense re-
trieval and returns candidate entities CandEntELQ with
confidence scores. FACC1 is a large mapping from en-
tity mention to Freebase ID. We utilize a NER model pro-
vided by GrailQA (Gu et al. 2021) to detect mentions
and match with FACC1 through string similarity to get
CandEntFACC1. We adopt a BERT-based sentence clas-
sification model to rank CandEntFACC1 and merge the re-
sult with CandEntELQ to get the final candidate entities.

Query Normalization
In order to better adapt Pre-trained Language Model (PLM)
to a KBQA task, we consider normalized S-expression as
target format of query generation model instead of SPARQL.
The conversion from SPARQL to S-expression is accom-
plished via the script provided by (Ye et al. 2022). After
that, we make some modifications to the entities and rela-
tions of S-expression to get the normalized S-expression. In
detail, for each entity, the Freebase ID is mapped to its la-
bel via rdfs:labels. For each relation, it is converted into a
word list which is closer to nature language. Furthermore,
we surround each KB element, including entity, relation,
and literal, with a pair of brackets to remind the language
model that this is a KB element. For example, in Figure 3,
the Freebase entity “m.02 x” is mapped to “[Miami Mar-
lins]” and the relation “location.location.people born here”
is converted to “ [location, location, people born here]”.

Training Query Generation Model
Following (Das et al. 2021), we employ T5-base as our back-
bone query generation model. Given the question Q and its
golden SPARQL sq, we first convert sq to normalized S-
expression Sexp, according to Query Normalization. Af-
ter that, we extract golden entities Ent from sq, then map
each entity e in Ent to its label el to obtain Entlabel. We
construct the model input by concatenating Q with the lin-
earized QDT QDT and Entlabel. Such input is fed to T5
encoder to obtain the representation HSexp′ . After that, the
T5 decoder decodes HSexp′ to a logic form Sexp′ token by
token. We optimize the cross-entropy loss between Sexp′

and Sexp using teacher forcing.

HSexp′ = T5Encoder([Q;QDT ;Entlabel]) (1)

Sexp′ = T5Decoder(HSexp′) (2)

12928



T5

AND (JOIN [location, location,
people born here] (JOIN

[sports, pro athlete, career
start] [1997])

(JOIN (R [sports, sports team,
location]) [Miami Marlins]

What home of the Florida Marlins [DES] is also the
birthplace of [INQL] a notable professional

athlete [DES] who began their career in 1997 [INQR] 

What home of the Florida Marlins is also the birthplace of a
notable professional athlete who began their career in 1997? 

m.02__x: 
{"label":"Miami Marlins" 

"mention": "the Florida Marlins"} 

What home of ... ; 
What  home...  [DES] ... ; 
Miami Marlins 

Entity Linker

Clue-Decipher

Normalized S-expression

QDT

Question

Candidate Entities

Input

Figure 3: An overview of QDTQA.

Inference
During inference, we first conduct entity linking to get can-
didate entities and concatenate them with question and QDT
as the input of the query generation model. After obtaining
the normalized S-expression, we convert each normalized
element, including the entity label, modified relation, and
literal, to its KB representation to get S-expression. The S-
expression is converted to an executable SPARQL query by
the script provided by (Gu et al. 2021). The SPARQLs that
can not be executed against KB are skipped. We regard the
result of the first SPARQL that returns a non-empty result as
the final answer.

Evaluation of KBQA Method
In this section, we evaluate the performance of QDTQA and
apply Clue-Decipher to another KBQA system:
EDGQA (Hu et al. 2021).

Implementation Details
QDTQA : We employ T5-base as the query generation
model and train with AdamW optimizer. The batch size is
set to 16 and the max length is set to 196. The entity dis-
ambiguation model is based on BERT-base, in which we set
batch size to 16 and max length to 96.

EDGQA +Clue-Decipher : We replace the decompo-
sition method in EDGQA with Clue-Decipher. Other
settings remain the same for fair comparison.

Datasets
We conduct experiments on two popular complex ques-
tion answering datasets: CWQ (for QDTQA) and LC (for
EDGQA +Clue-Decipher).

ComlexWebQuestions (CWQ) (Talmor and Berant
2018) contains 34,689 complex questions over Freebase
(version 2015-08-09). The train/validation/test sets contain
27,639/3,519/3,531 questions, respectively.

LC-QuAD 1.0 (LC) (Trivedi et al. 2017) contains 5,000
questions over DBpedia (2016-04), with 4,000 training and
1,000 testing questions. 72.64% questions of LC are com-
plex questions, which means the corresponding SPARQL
queries have more than one triple patterns.

Baselines
We compare QDTQA with the following three systems on
CWQ. (1) (Qin et al. 2021) gradually shrinks knowledge
base to a desired query graph. (2) (Huang, Kim, and Zou
2021) directly generate SPARQL query without simplifica-
tion. (3) CBR-KBQA (Das et al. 2021) generates logical
forms by retrieving relevant cases.

EDGQA +Clue-Decipher is compared with: (1)
EDGQA (Hu et al. 2021) generates sub-queries node-by-
node following a decomposition, and then composes the fi-
nal query. (2) NSQA (Kapanipathi et al. 2021) adopts AMR
to get shallow semantic parsing of questions. (3) (Liang et al.
2021) propose a BERT-based decoder to extract triple pat-
terns. (4) STaG-QA (Ravishankar et al. 2022) separates the
semantic parsing process from knowledge base interaction
and achieves notable performance on multiple KBs.

QA results of baselines are from their original paper.

Metrics
We follow the metrics considered in baseline methods. For
CWQ, we use Average F1 (Avg. F1) and Accuracy (Acc).
For LC, we use Precision (P), Recall (R) and Macro F1 (F1).

Result and Analysis on QDTQA
Main Results The result of QDTQA on CWQ is summer-
ized in Table 5. QDTQA significantly outperforms previous
methods. To verify the effectiveness of question decompo-
sition in QDTQA, we remove QDT from the input. Result
shows that, without QDT, QDTQA drops 1.3% on average
F1, which illustrates that our decomposition can improve the
performance of downstream KBQA task. We also evaluate
the performance of a model, replacing tree-based decompo-
sition with sequence-based decomposition, with an average
F1 decrease of 0.8%. It demonstrates that tree-based decom-
position can provide richer information and is important for
the representation of complex questions.

The Effectiveness of Question Decomposition We fur-
ther analyze how QDT contributes to the result, from two
critical factors of KBQA, i.e., structure and relation linking.
We analyze all questions on the test set of CWQ. After using
QDT, additional 7.31% questions derive correct query struc-
tures. We believe that QDT can provide a structural guid-
ance to avoid invalid searching of noisy query structures.
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Method Avg. F1 Acc

(Qin et al. 2021) 0.462 -
(Huang, Kim, and Zou 2021) 0.682 -
T5-11B + Revise (Das et al. 2021) 0.582 0.556
CBR-KBQA (Das et al. 2021) 0.700 0.671

QDTQA 0.728 0.679
w/o QDT 0.715 0.666
w/o tree-based structure 0.720 0.670

w/ SplitQA 0.716 0.669
w/ DecompoRC 0.716 0.669
w/ HSP 0.717 0.669
w/ EDGQA 0.714 0.665

Table 5: QA performance of QDTQA on CWQ compared
with baselines. We also report the performance with differ-
ent decomposition methods.

Besides, relation linking can also benefit from question de-
composition. Since a decomposition, beforehand, separates
different semantic representations, which reduces the search
space and avoids the distraction of other relations. In fact,
10.53% questions get better relation linking results after the
incorporation of QDT.

The Impact of Different Decomposition Methods To
evaluate the impact of different decomposition methods
on QA system, we replace the decomposition result in
QDTQA with four other decomposition methods. Results in
Table 5 demonstrate that our decomposition consistently
outperforms other methods. Combining the results of the
previous experiments, it shows that our method is superior
to others on both decomposition and question answering.

Error Analysis We randomly sample 100 questions that
are incorrectly answered by QDTQA (F1 <1.0) and catego-
rize them into three types.

Question Decomposition (5%). We manually verify
whether a decomposition is acceptable under the same stan-
dard for annotation. For example, “What movies have been
written by [INQL] authors of [DES] monty python” is a
failed case.

Query Structure (44%). Even with a correct decompo-
sition structure, it is still possible for QDTQA to generate an
S-expression that does not match the golden one at the struc-
ture level. The reason lies on the fact that QDTQA utilizes
QDT as an implicit restriction rather than forcing the system
to strictly follow this structure.

Entity and Relation Linking (51%). Linking is still the
main obstacle for KBQA. There are 26% and 25% errors
caused by entity and relation linking, respectively.

Result on EDGQA +Clue-Decipher
To further verify that our decomposition method can en-
hance existing decomposition-based KBQA system, we con-
duct another experiment, incorporating our decomposition
result on a state-of-the-art decomposition-based KBQA sys-
tem, i.e., EDGQA (Hu et al. 2021). We adopt EDGQA as a

Method P R F1 ∆F1

NSQA 0.448 0.458 0.445 -
STaG-QA 0.745* 0.548 0.536 -
(Liang et al. 2021) 0.511 0.593 0.549 -

EDGQA 0.505 0.560 0.531 0
w/ SplitQA 0.496 0.576 0.533 + 0.002
w/ DecompRC 0.521 0.609 0.561 + 0.030
w/ HSP 0.433 0.507 0.467 - 0.064
w/ Clue-Decipher 0.548 0.635 0.588 + 0.056

Table 6: QA performance of baseline methods and
EDGQA +Clue-Decipher on LC. We also replace
Clue-Decipherwith other decomposition methods. * in-
dicates that when calculating P, STaG-QA defines the empty
answer to have P=1, different from others.

basic system for two reasons. Firstly, it is the state-of-the-
art decomposition-based system on a complex question an-
swering dataset (LC). Secondly, it is the only open-source
decomposition-based KBQA system in recent years.

Table 6 compares EDGQA +Clue-Decipher with
other methods on LC. Results show that our decomposition
significantly improves EDGQA by 11% on F1 and sets a
new state-of-the-art on LC, which demonstrates the utility of
our decomposition method. We also report the performance
of different decomposition methods on EDGQA in Table 6.
The baseline methods are the same as discussed in decom-
position evaluation. Clue-Decipher consistently outper-
forms other decomposition methods, which further verifies
the superiority of our decomposition method.

Conclusion
In this paper, we focus on how to make question decomposi-
tion an effective way to answer complex questions over KBs.
To summarize, we make the following contributions:

• We propose Question Decomposition Tree (QDT) to rep-
resent the decomposition structure of complex questions,
along with a dataset QDTrees with 6,607 QDTs. We
also present a linearized representation of QDT, making
it easier to be generated in a neural way.

• We propose Clue-Decipher to generate QDTs that
consistently surpass other methods from multiple as-
pects. It leverages the strong generation ability of NLG
models and ensures that the original question remains un-
changed.

• We design a QDT-based KBQA system called
QDTQA which achieves state-of-the-art performance on
CWQ. Besides, we demonstrate that our decomposition
can further enhance an existing system on LC by 11%.

In the future, an interesting topic is to automatically
generate decomposition annotations from existing pairs of
questions and SPARQLs. Besides, QDT can be extended
to model other linguistic phenomena, such as disjunction,
which is worth exploring.
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