
On the Effectiveness of Parameter-Efficient Fine-Tuning
Zihao Fu1, Haoran Yang2, Anthony Man-Cho So2,

Wai Lam2, Lidong Bing3, Nigel Collier1

1Language Technology Lab, University of Cambridge
2The Chinese University of Hong Kong

3DAMO Academy, Alibaba Group
{zf268,nhc30}@cam.ac.uk,

{hryang,manchoso,wlam}@se.cuhk.edu.hk, l.bing@alibaba-inc.com

Abstract

Fine-tuning pre-trained models has been ubiquitously proven
to be effective in a wide range of NLP tasks. However,
fine-tuning the whole model is parameter inefficient as
it always yields an entirely new model for each task.
Currently, many research works propose to only fine-tune
a small portion of the parameters while keeping most of
the parameters shared across different tasks. These methods
achieve surprisingly good performance and are shown to
be more stable than their corresponding fully fine-tuned
counterparts. However, such kind of methods is still not
well understood. Some natural questions arise: How does
the parameter sparsity lead to promising performance? Why
is the model more stable than the fully fine-tuned models?
How to choose the tunable parameters? In this paper, we first
categorize the existing methods into random approaches,
rule-based approaches, and projection-based approaches
based on how they choose which parameters to tune. Then,
we show that all of the methods are actually sparse fine-tuned
models and conduct a novel theoretical analysis of them. We
indicate that the sparsity is actually imposing a regularization
on the original model by controlling the upper bound of
the stability. Such stability leads to better generalization
capability which has been empirically observed in a lot of
recent research works. Despite the effectiveness of sparsity
grounded by our theory, it still remains an open problem of
how to choose the tunable parameters. Currently, the random
and rule-based methods do not utilize task-specific data
information while the projection-based approaches suffer
from the projection discontinuity problem. To better choose
the tunable parameters, we propose a novel Second-order
Approximation Method (SAM) which approximates the
original problem with an analytically solvable optimization
function. The tunable parameters are determined by directly
optimizing the approximation function. We conduct exten-
sive experiments on several tasks. The experimental results
show that our proposed SAM model outperforms many
strong baseline models and it also verifies our theoretical
analysis. The source code of this paper can be obtained from
https://github.com/fuzihaofzh/AnalyzeParameterEfficientFinetune

Introduction
Fine-tuning the model parameters for a specific task on a
pre-trained model (Peters et al. 2018; Kenton and Toutanova

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2019; Lan et al. 2020; Radford et al. 2018, 2019; Liu et al.
2019; Brown et al. 2020; Lewis et al. 2020; Raffel et al.
2020) has become one of the most promising techniques
for NLP in recent years. It achieves state-of-the-art perfor-
mance on most of the NLP tasks. However, as the param-
eter number grows exponentially to billions (Brown et al.
2020) or even trillions (Fedus, Zoph, and Shazeer 2021), it
becomes very inefficient to save the fully fine-tuned param-
eters (He et al. 2021a) for each downstream task. Many re-
cent research works propose a parameter-efficient (Houlsby
et al. 2019; Zaken, Ravfogel, and Goldberg 2021; He et al.
2021a) way to solve this problem by tuning only a small part
of the original parameters and storing the tuned parameters
for each task.

Apart from the efficiency of the parameter-efficient mod-
els, it has also been observed in many recent research works
that the parameter-efficient methods achieve surprisingly
good performance. These models are more stable (He et al.
2021b; Lee, Cho, and Kang 2019; Houlsby et al. 2019; Za-
ken, Ravfogel, and Goldberg 2021; Sung, Nair, and Raffel
2021; Liu et al. 2021; Ding et al. 2022) and even achieve
better overall scores than the fully fine-tuned models (Lee,
Cho, and Kang 2019; Houlsby et al. 2019; Zaken, Ravfogel,
and Goldberg 2021; Sung, Nair, and Raffel 2021; Liu et al.
2021; Xu et al. 2021; Guo, Rush, and Kim 2021; He et al.
2021a; Ding et al. 2022) on some tasks. Currently, it remains
unclear why the parameter-efficient models can improve the
stability and performance in many prevalent works. In this
paper, we first categorize the existing methods into three
categories (i.e. random approaches, rule-based approaches,
and projection-based approaches) depending on how they
choose the tunable parameters. Then, we define the gener-
alized sparse fine-tuned model and illustrate that most of
the existing parameter-efficient models are actually a sparse
fine-tuned model. Afterwards, we introduce the widely used
pointwise hypothesis stability of the sparse fine-tuned model
and show theoretically that the sparsity actually controls the
upper bound of the stability. Based on the stability analysis,
we further give a theoretical analysis of the generalization
bound for the sparse fine-tuned model.

Though promising results have been achieved by exist-
ing parameter-efficient models, it still remains a challeng-
ing problem to select suitable parameters as it is an NP-
hard problem. Currently, the random (Lee, Cho, and Kang

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

12799

2019) and rule-based (Zaken, Ravfogel, and Goldberg 2021;
Han, Mao, and Dally 2015; Houlsby et al. 2019; Pfeiffer
et al. 2020) approaches propose to optimize fixed param-
eters. These methods are straightforward and easy to im-
plement but they do not utilize task-specific data informa-
tion. To solve this problem, the projection-based approaches
(Mallya, Davis, and Lazebnik 2018; Guo, Rush, and Kim
2021; Xu et al. 2021) propose to calculate a score for each
parameter based on the data and project the scores onto
the parameter selection mask’s feasible region (an L0 ball).
However, as the feasible region is non-convex, we will show
that such projection suffers from the projection discontinuity
problem which makes the parameter selection quite unsta-
ble. To solve these problems, we propose a novel Second-
order Approximation Method (SAM) to approximate the
NP-hard optimization target function with an analytically
solvable function. Then, we directly choose the parameters
based on the optimal value and optimize the parameters ac-
cordingly. We conduct extensive experiments to validate our
theoretical analysis and our proposed SAM model.

Our contributions can be summarized as follows: 1) We
propose a new categorization scheme for existing parameter-
efficient methods and generalize most of these methods with
a unified view called the sparse fine-tuned model. 2) We con-
duct a theoretical analysis of the parameter-efficient models’
stability and generalization. 3) We propose a novel SAM
model to choose the suitable parameters to optimize. 4) We
conduct extensive experiments to verify our theoretical anal-
ysis and the SAM model.

Unified View of Parameter Efficient
Fine-tuning

In this section, we first define the unified sparse fine-tuned
model which is simpler and easier for theoretical analysis.
Then, we give a unified form of the optimization target. Af-
terwards, similar to previous works (Ding et al. 2022; He
et al. 2021a; Mao et al. 2021), we categorize these mod-
els into three categories based on how the parameters are
chosen. Finally, we show that all the models are sparse fine-
tuned model.

Sparse Fine-tuned Model
We first give the definition of sparse fine-tuned model as
well as a unified optimization target. The equivalent model
is also defined to help understand the models with modified
structures.
Definition 1 (p-Sparse Fine-tuned Model). Given a pre-
trained modelM0 with parameters θ0, if a fine-tuned model
M with parameters θ has the same structure as M0 such
that ‖θ− θ0‖0 ≤ p dim(θ), p ∈ (0, 1), we say the modelM
is a p-sparse fine-tuned model with the sparsity p.

Many previous works propose different methods of select-
ing proper parameters to fine-tune. We unify these methods
by denoting M as a mask matrix on the parameters and the
parameter θ can be denoted as θ = θ0 + M∆θ, where ∆θ
is the difference vector. For a fixed sparsity coefficient p,
the sparse fine-tuned model is trying to solve the following
problem:

Pretrained
Weights

B = 0

x

h

Pretrained
Weights

Adapter

x

h

Feedforward
down-project

Nonlinearity

A = 0

(a) (b)

Figure 1: Equivalent model for Adapter (a) and LoRA (b).

min
∆θ,M

L(θ0 +M∆θ)

s.t. ‖M‖0 =bmpc; Mij = 0, ∀i 6= j; Mii ∈ {0, 1},
(1)

where b·c is the floor function, m = dim(θ) is the param-
eter number, M ∈ {0, 1}m×m is the parameter mask matrix
with the diagonal equal to 0 or 1 while other elements are
equal to 0 and L is the loss function. We will show that most
of the existing methods are sparse fine-tuned models. How-
ever, in Definition 1, we assume that the fine-tuned model
M has the same structure asM0. This assumption hinders
us from analyzing many models that alter the structure in-
cluding Adapter (Houlsby et al. 2019; Pfeiffer et al. 2020;
Rücklé et al. 2021; He et al. 2021b), LoRA (Hu et al. 2022),
and etc. We define the notion of equivalent model to solve
this problem.
Definition 2 (Equivalent Model). Given a pre-trained model
M0 with parameters θ0, we say that a model M̃0 with
parameters θ̃0 is an equivalent model for model M0 if
∀x,M0(x) = M̃0(x).

Here, we do not require that the equivalent model shares
the same structure as the original model. As a result, for
models fine-tuned with additional structures (e.g. Adapter
and LoRA), we can still get a sparse fine-tuned model with
respect to an equivalent model M̃0 instead of the origi-
nal pre-trained model M0. Therefore, our analysis for the
sparse fine-tuned model is also applicable to them.

Parameter Efficient Fine-tuning as Sparse
Fine-tuned Model
Unfortunately, Problem (1) is NP-Hard due to the noncon-
vexity of the feasible region of the matrix M . Many existing
methods propose to solve this problem by first estimating
M and then optimizing other parameters. Based on different
strategies for choosing M , the methods can be divided into
three categories, namely, random approaches, rule-based ap-
proaches, and projection-based approaches. We first give
a general introduction of the prevalent parameter efficient
fine-tuning methods in each category and then show that
all of these methods are actually a sparse fine-tuned model.
Then, in next section, we can prove our theory only based
on properties in Definition 1 without refering to any specific
model’s property.

Random Approaches Random approaches include Ran-
dom and Mixout models. These models randomly choose

12800

the parameters to be tuned. Such selection does not depend
on the task-specific data information. Specifically, Random
model is very straightforward by randomly selecting the pa-
rameters with respect to a given sparsity ratio and then train-
ing the selected parameters. Therefore, according to Defini-
tion 1, it is a sparse fine-tuned model. Mixout (Lee, Cho,
and Kang 2019) proposes to directly reset a portion of the
fine-tuned model’s parameters to the pre-trained parameters
with respect to a ratio. Therefore, according to Definition 1,
it is a sparse fine-tuned model.

Rule-Based Approaches The rule-based approaches in-
clude BitFit, MagPruning, Adapter, and LoRA. This kind of
methods directly uses a pre-defined rule to fix the parameters
to be tuned. It can be viewed as incorporating prior knowl-
edge to recognize important features and can thus alleviate
the problem of random approaches. However, the selection
rules are still irrelevant to the specific data. Specifically, Bit-
Fit (Zaken, Ravfogel, and Goldberg 2021) only fine-tunes
the bias-terms and achieves considerably good performance.
Therefore, according to Definition 1, it is a sparse fine-tuned
model with pre-defined tuning weights. MagPruning (Han,
Mao, and Dally 2015; Han et al. 2015; Lee et al. 2021; Lagu-
nas et al. 2021) follows the idea that large weights are more
important in the model. It ranks the weights by the absolute
value and tunes the parameters with high absolute values.
Therefore, according to Definition 1, it is a sparse fine-tuned
model. Adapter (Houlsby et al. 2019; Pfeiffer et al. 2020;
Rücklé et al. 2021; He et al. 2021b; Karimi Mahabadi, Hen-
derson, and Ruder 2021; Mahabadi et al. 2021) proposes to
add an adapter layer inside the transformer layer. Therefore,
the model structure is different from the original model. To
make it easier to analyze, Adapter can be viewed as fine-
tuning an equivalent model shown in Fig. 1 (a) which ini-
tializes the matrix A as an all-zero matrix. The equivalent
model has the same output as the original pre-trained model
for arbitrary input while the structure is the same as the
Adapter model. Therefore, fine-tuning the adapter model can
be viewed as fine-tuning partial parameters of the equivalent
model with the same structure. According to Definition 1, it
is a sparse fine-tuned model with respect to the equivalent
model. LoRA (Hu et al. 2022; Karimi Mahabadi, Hender-
son, and Ruder 2021; Panahi, Saeedi, and Arodz 2021) pro-
poses to add a new vector calculated by recovering an hidden
vector from a lower dimension space. The model is illus-
trated in Fig. 1 (b). It is interesting to notice that the original
initialization makes the LoRA model already an equivalent
model for the original pre-trained model as the matrix B is
set to 0. Therefore, according to Definition 1, fine-tuning a
LoRA model can also be viewed as fine-tuning partial pa-
rameters of the equivalent model with the same structure.

Projection-Based Approaches To utilize the task-specific
data to help select the model’s tunable parameters, many
researchers propose projection-based approaches including
the DiffPruning, ChildPruning, and etc. These methods pro-
pose to choose the optimal parameter mask M and op-
timize the parameters θ alternately to solve Problem (1).
Specifically, they first relax M as a continuous variable
to get an optimized value and then project the optimized

1

1 x1

x2
M1

M2
M̂1

M̂2

Figure 2: Projection discontinuity problem.

value onto the feasible region which can be denoted as
M̂ = ΠΩ(M) = arg minM̂∈Ω ‖M̂ − M‖, where Ω =
{M |‖M‖0 = bmpc;Mij = 0, ∀i 6= j;Mii ∈ {0, 1}} and
ΠΩ denotes the projection operator onto the feasible region
Ω which is an L0 ball. Specifically, DiffPruning (Mallya,
Davis, and Lazebnik 2018; Sanh, Wolf, and Rush 2020;
Guo, Rush, and Kim 2021; Lagunas et al. 2021) proposes to
model the parameter selection mask as a Bernoulli random
variable and optimize the variable with a reparametrization
method. It then projects the mask onto M ’s feasible region
Ω and do the optimization alternately. Therefore, according
to Definition 1, it is also a sparse fine-tuned model. Child-
Pruning (Xu et al. 2021; Mostafa and Wang 2019) proposes
to iteratively train the full model parameters and then calcu-
lates the projected mask to find the child network. Therefore,
it also agrees with the sparse fine-tuned model’s definition.

Projection Discontinuity Problem. Though projection-
based methods can utilize task-specific data information,
such kind of methods suffers from the projection disconti-
nuity problem. Specifically, the feasible region Ω (the L0

ball) of M is non-convex. Therefore, it does not have the
non-expansion property which is generally guaranteed for
projection onto a closed convex set. As a result, a small
perturbation on M can lead to a totally different projec-
tion. For example, as illustrated in Fig. 2, suppose that
p = 0.5 and M1 = diag{0.99, 1},M2 = diag{1, 0.99}.
Though M1 ≈ M2, we have ΠΩ(M1) = diag{0, 1} while
ΠΩ(M2) = diag{1, 0}, which is quite different. Conse-
quently, the projection is very sensitive to the parameters up-
dating noise. As a result, it is hard to keep consistent with the
previous parameters selection which leads to a big change
for the parameters selection. Such inconsistency will impair
the overall performance.

Theoretical Analysis of the Sparse Fine-tuned
Model

Suppose that we have a pre-trained modelM0 with param-
eters θ0, we fine-tune the sparse fine-tuned modelM by up-
dating only bpmc parameters. We will first show that spar-
sity implies a regularization of the original model. Then, we
prove that if a model is a sparse fine-tuned model, the model
stability can benefit from the sparsity. Next, we give a theo-
retical analysis of the model generalization error bound and
show that sparsity contributes to reducing the generalization
error. It should be noted that in the proofs, we only use prop-
erties from Definition 1. Therefore, our theory is applicable

12801

to all model categories (random approaches, rule-based ap-
proaches, and projection-based approaches) that agrees with
Definition 1.

Sparse Fine-tuned Model as a Regularizer
As analyzed in section , most of the models choose the pa-
rameter mask M with different approaches and optimize the
parameters θ accordingly. Here, we treat the matrix M as a
given parameter and denote θ = θ0+M∆θ. The sparse fine-
tuned optimization in Problem (1) can be reformulated as:

min
θ
L(θ)

s.t. ‖(I −M)(θ − θ0)‖2 = 0,
(2)

where M = diag{M11, · · · ,Mmm} is a diagonal matrix
with Mii ∈ {0, 1}. By Lagrangian duality, solving Problem
(2) is equivalent to solving the following problem:

L̄ = min
θ

max
λ
L(θ) + λ‖(I −M)(θ − θ0)‖2. (3)

Then, we derive a new regularized problem with the fol-
lowing proposition.
Proposition 1. Optimizing Problem (2) implies to optimizing the
upper bound L̄ of the following regularized problem:

LR = min
θ
L(θ) + ‖(I −M)(θ − θ0)‖2 ≤ L̄. (4)

The proof can be found in Appendix (Fu et al. 2022). It
can be concluded that optimizing Problem (2) is the same
as optimizing the upper bound of the original loss function
L(θ) with a regularization term ‖(I−M)(θ−θ0)‖2. We will
show later that such regularization contributes to the stability
of the sparse fine-tuned model.

Stability Analysis
Stability has been studied in a lot of previous research
works (Bousquet and Elisseeff 2002; Shalev-Shwartz et al.
2010; Shalev-Shwartz and Ben-David 2014; Hardt, Recht,
and Singer 2016; Kuzborskij and Lampert 2018; Charles
and Papailiopoulos 2018; Fu et al. 2021) in many differ-
ent forms. We focus on one of the commonly used notions,
namely, the Pointwise Hypothesis Stability (PHS) which
focuses on analyzing the change of model output after a
training sample is removed. Following (Charles and Pa-
pailiopoulos 2018), we denote the original training data as
S = {z1, · · · , zn} and the dataset without one sample as
Si = S\zi = {z1, · · · , zi−1, zi+1, · · · , zn}, where zi is the
ith training sample. We also define i ∼ U(n) as a sampling
procedure from a uniform distribution with n samples.A(S)
is defined as model parameters obtained by running algo-
rithm A on data S.

Definition 3 (Pointwise Hypothesis Stability, (Bousquet and
Elisseeff 2002)). We say that a learning algorithm A has
pointwise hypothesis stability ε with respect to a loss func-
tion `, if

ES,i∼U(n)[|`(A(Si), zi)− `(A(S), zi)|] ≤ ε. (5)

Here, `(θ, zi) is the single sample loss for zi when the
model parameter is θ. We assume that A(Si) is close to
A(S). As A(S) is the optimal solution, the Hessian matrix
at A(S) is a positive-semidefinite matrix. We can derive our
bound for PHS in the following theorem.
Theorem 1 (Stability). If the loss function ` is ρ−Lipschitz,
A(Si) is close to A(S), the Hessian matrix ∇2L(A(S)) at
A(S) is positive-semidefinite with a singular value decompo-
sition U diag(Λ)U−1, Λ = {Λ1, · · · ,Λm} and Λmin =
min{Λ1, · · · ,Λm}, then the expectation of the loss EM LR has
a pointwise hypothesis stability as:

ES,i∼U(n)[|`(A(Si), zi)−`(A(S), zi)|] ≤
2ρ2

(Λmin + 2(1− p))n.

(6)

The proof can be found in Appendix (Fu et al. 2022). It
can be observed from Theorem 1 that as the sparsity param-
eter p decreases, the upper bound also decreases. Therefore,
sparse models imply better stability which explains most of
the empirical results observed in many recent works (He
et al. 2021b; Lee, Cho, and Kang 2019; Houlsby et al. 2019;
Zaken, Ravfogel, and Goldberg 2021; Sung, Nair, and Raf-
fel 2021; Liu et al. 2021; Ding et al. 2022). It should also
be noted that if p is small enough, the upper bound will not
change significantly as p continues to decrease. This is be-
cause in this case, the denominator is dominated by Λmin
which is related to the landscape of the function. Empiri-
cally, if the sparsity is too small, the landscape will heavily
depend on how the parameters are chosen and thus the sta-
bility is impaired.

Generalization Analysis
With the bound for the stability, we can then get the gener-
alization error bound for the sparse fine-tuned model.
Theorem 2 (Generalization). We denote the generalization er-
ror as R(A, S) = Ez `(A(S), z) and the empirical error as
R̂(A, S) = 1

n

∑n
i=1 `(A(S), z). Then, for some constant C, we

have with probability 1− δ,

R(A, S) ≤ R̂(A, S) +

√
C2 + 24Cρ2

Λmin+2(1−p)

2nδ
. (7)

The proof can be found in Appendix (Fu et al. 2022). This
result shows that the generalization error upper bound be-
comes smaller as the fine-tuned parameters become sparser.
Intuitively, if a model is stable, a perturbation makes less ef-
fect on the model and the model is less likely to overfit. It
should be noted that the generalization error bound is de-
termined by both the empirical error R̂(A, S) and sparsity.
Therefore, as the mask becomes sparser, even though the
second term decreases, the training error R̂(A, S) will pos-
sibly increase when the tunable parameters are not enough
to fit the data. Consequently, as the sparsity decreases, the
generalization error will first decrease and then increase. We
will further examine this conjecture in experiments.

Second-order Approximation Method
In Section , we theoretically prove the effectiveness of spar-
sity in fine-tuning. However, it still remains a problem of

12802

how to choose the tunable parameters. As discussed in Sec-
tion , the random and the rule-based approaches are robust to
noise perturbation as the tunable parameters are fixed during
training. However, these methods tune the same parameters
on all kinds of tasks without utilizing the information from
the task-specific data. On the other hand, the projection-
based approaches solve this problem by getting full utiliza-
tion of the data information but they suffer from the projec-
tion discontinuity problem. The noise in the parameter may
change the selection of the parameters frequently, thus mak-
ing the optimization procedure unstable.

To solve the problems, we propose a novel Second-order
Approximation Method (SAM), namely, utilizing the data
information to help decide the parameter mask while avoid-
ing the projection discontinuity problem. Instead of choos-
ing the parameters randomly or simply by some rules, we
propose a novel second-order approximation of Problem
(1) to make the optimization target analytically solvable.
Then, we directly get the optimal solution for the param-
eter mask M and fix the mask to train the other parame-
ters θ. Specifically, as indicated by Radiya-Dixit and Wang
(2020), the fine-tuned parameters are close to the pre-trained
parameters. We can approximate the loss function with its
second-order Taylor expansion as L(θ0 +M∆θ) ≈ L(θ0)+
∇L(θ0)TM∆θ + 1

2 (M∆θ)THM∆θ. Unfortunately, the
Hessian matrix H is expensive to compute especially for
a large neural model. To solve this problem, we adopt the
widely used technique (Bishop and Nasrabadi 2006; Xu,
Roosta, and Mahoney 2020; Yao et al. 2021) of approxi-
mating the Hessian matrix with a diagonal matrix denoted
as H = diag{h1, h2, · · · , hn}. We also assume that H is
positive semidefinite as the pre-trained weights is close to
the global minimizer (Radiya-Dixit and Wang 2020) in each
downstream task. Then, Problem (1) can be reformulated as:

min
∆θ
L(θ0)+∇L(θ0)TM∆θ +

1

2
(M∆θ)THM∆θ

s.t. ‖M‖0 = bmpc; Mij = 0, ∀i 6= j; Mii ∈ {0, 1}.
(8)

With the above setup, we can get the optimal parameter
mask M for Problem (8) based on the following theorem:

Theorem 3. If M̂ii = 1(
∑m
j=1 1(|∇L(θ0)2i

hi
| > |∇L(θ0)2j

hj
|) ≥

m − bmpc), where ∇L(θ0)i is the ith element of the gradient
vector∇L(θ0), then

inf
∆θ
L(θ0 + M̂∆θ) ≤ inf

∆θ,‖M‖0=bmpc;
Mij=0,∀i6=j;Mii∈{0,1}

L(θ0 +M∆θ). (9)

The proof can be found in Appendix (Fu et al. 2022). It
can be observed that selecting features according to Theo-
rem 3 achieves the minimal value of the approximation in
Problem (8). The remaining problem is how to calculate the
diagonal of the Hessian matrix. Unfortunately, calculating
the diagonal Hessian is as complex as calculating the whole
Hessian. To solve this problem, instead of minimizing the
target function in Problem 8, we propose to optimize its up-
per bound

min
∆θ
L(θ0)+∇L(θ0)TM∆θ +

1

2
(M∆θ)TDM∆θ

s.t. ‖M‖0 = bmpc; Mij = 0, ∀i 6= j; Mii ∈ {0, 1}.
(10)

where D = diag{|λmax|, |λmax|, · · · , |λmax|} and λmax
is the maximal eigenvalue of H . This can be directly cal-
culated from the Rayleigh quotient that ∀x 6= 0, xTHx ≤
xTxλmax ≤ xTx|λmax| = xTDx. Therefore, the SAM
algorithm is quite straightforward based on Theorem 3. We
first get the gradient∇L(θ0)i for the ith parameter θi. Then,
we calculate |∇L(θ0)2

i | and take the top bmpc parameters to
optimize. We will not change the selected parameters during
the optimization procedure.

Experiments
Experimental Setup
Following most previous works (Lee, Cho, and Kang 2019;
Dodge et al. 2020; Xu et al. 2021), we use the original
development set as the test set to report the scores as the
original test sets are only available via the leaderboard with
a limited submission number. Different from many previ-
ous works that train models without validation, we split
the original training set by randomly sampling 10% as the
new development set while using the remaining 90% sam-
ples to train the model. Instead of training the model for
fixed epoch number, we use the new development set to
do an early stop training by setting the tolerance for all
models to 40. We build our models with the jiant1 frame-
work and test our models on several GLUE (Wang et al.
2018) and SuperGLUE (Wang et al. 2019) tasks. Follow-
ing the setting of Lee, Cho, and Kang (2019); Xu et al.
(2021), we choose several tasks including Corpus of Lin-
guistic Acceptability (CoLA) (Warstadt, Singh, and Bow-
man 2019), Semantic Textual Similarity Benchmark (STS-
B) (Cer et al. 2017), Microsoft Research Paraphrase Corpus
(MRPC) (Dolan and Brockett 2005), Recognizing Textual
Entailment (RTE) (Dagan, Glickman, and Magnini 2005;
Bentivogli et al. 2009), Commitment Bank (CB) (De Marn-
effe, Simons, and Tonhauser 2019), Choice of Plausible Al-
ternatives (COPA) (Roemmele, Bejan, and Gordon 2011),
and Winograd Schema Challenge (WSC) (Levesque, Davis,
and Morgenstern 2012). We compare our model with many
strong baseline models including Random, Mixout, BitFit,
MagPruning, Adapter, LoRA, DiffPruning, and ChildPrun-
ing. The details of these models have been extensively dis-
cussed in Section and we adopt the same evaluation meth-
ods as Wang et al. (2018, 2019) to evaluate the models.
We run each experiment 10 times with different random
seeds and report the scores with corresponding standard
deviations. As many previous experiments are conducted
under different settings, we re-implement all the baseline
models with the jiant framework to give a fair comparison.
For the Adapter and LoRA model, we incorporate Adapter-
Hub 2 (Pfeiffer et al. 2020) and loralib 3 into jiant. Fol-
lowing the setting of Guo, Rush, and Kim (2021), we set
1 https://jiant.info/ 2 https://adapterhub.ml/
3 https://github.com/microsoft/LoRA

12803

CoLA STS-B MRPC RTE CB COPA WSC AVG
FullTuning 58.36±1.74 89.80±0.52 89.55±0.81 76.03±2.14 88.93±2.37 67.70±4.41 53.10±6.18 74.78±2.60
Random 58.35±1.05 89.81±0.11 88.73±0.80 72.71±3.23 90.54±3.39 68.80±2.64 52.88±5.97 74.55±2.46
MixOut 58.66±1.96 90.15±0.17 88.69±0.60 77.55±1.64 86.51±4.13 71.30±4.84 52.98±6.78 75.12±2.88
Bitfit 56.67±1.45 90.12±0.14 87.35±0.58 72.74±2.47 86.96±3.20 71.20±3.79 55.10±5.39 74.31±2.43
MagPruning 56.57±2.47 90.30±0.14 88.09±0.79 73.53±1.84 81.25±3.50 71.50±2.46 55.67±2.73 73.85±1.99
Adapter 62.11±1.22 90.05±0.13 89.29±0.60 76.93±2.05 87.32±4.62 69.50±2.54 57.02±5.27 76.03±2.35
LoRA 60.88±1.48 87.19±0.51 89.53±0.62 76.97±1.92 84.64±3.76 69.70±2.83 56.84±4.52 75.11±2.24
DiffPruning 58.53±1.49 89.59±0.34 78.79±6.09 69.93±7.87 86.25±2.65 72.10±2.91 53.37±3.60 72.65±3.57
ChildPruning 60.00±1.29 89.97±1.51 87.19±3.86 75.76±4.38 86.61±3.22 69.40±4.00 55.59±3.81 74.93±3.15
SAM 60.89±0.96 90.59±0.14 88.84±0.49 76.79±1.72 88.93±1.75 74.30±2.45 59.52±3.08 77.12±1.51

Table 1: Main experiment. We run each experiment 10 times with different random seeds and report means and standard
deviations. We mark the best, second, and third results with bold, underline, and dash underline marks. Due to the space limit,
we attach the training time analysis and the significance test in Appendix and of Fu et al. (2022).

0.0 0.1 0.2
Sparsity

60

70

80

90

Te
st

 M
ea

n

0.0 0.1 0.2
Sparsity

0

1

2

3

4

5

Te
st

 S
td

0.0 0.1 0.2
Sparsity

60

70

80

90

100
Tr

ai
n

M
ea

n

0.0 0.1 0.2
Sparsity

0

5

10

15

20

Tr
ai

n
St

d

CoLA
MRPC
RTE
STS-B
CB
COPA
WSC

(a)

1 2 3 4 5 6 7 8 9 10
Stability

1
2
3
4
5
6
7
8
9

10

O
ve

ra
ll

pe
rf

or
m

an
ce

(b)

Figure 3: Stability performance. (a) Effectiveness of sparsity. (b) Relation between stability and overall Performance.

0 1000 2000 3000 4000 5000
Training step

10 5

10 4

10 3

10 2

10 1

100

Lo
ss

Figure 4: Projection discontinuity problem.

the sparsity to 0.005 for all models for a fair comparison.
In SAM, we calculate ∇L(θ0)i by accumulating the gradi-
ent for a few burn-in steps as we cannot load all the train-
ing data into memory, the burn-in steps are chosen from
{500, 600, 700, 800, 900, 1000, 2000} on the development
set as a hyper-parameter (Fu et al. 2022). We fine-tune the
models based on RoBERTa-base (Liu et al. 2019) provided
by transformers4 toolkit (Wolf et al. 2020) and we run the
models on NVIDIA TITAN RTX GPU with 24GB memory.

Experimental Results
Main Experiment. The main experimental results are il-
lustrated in Table 1. We can draw the following conclu-
sions based on the results: (1) Most of the parameter-
efficient models achieve better performance than the Full-
Tuning model which is also consistent with the observations
in many previous works. This observation supports our the-

4 https://huggingface.co/docs/transformers/model doc/roberta

oretical analysis in Theorem 2 that the parameter-efficient
model has better generalization capability. (2) Most of the
parameter-efficient models are more stable than the Full-
Tuning model. This observation is also consistent with many
empirical results in previous works and it also supports our
theoretical stability analysis in Theorem 1. (3) It is inter-
esting to note that even the Random model outperforms the
FullTuning model. It shows that sparsity itself contributes to
improving the performance. (4) Our proposed SAM model
outperforms several baseline models in several tasks and
it ranks in the top 3 of most tasks. This observation val-
idates the effectiveness of our parameter selecting method
discussed in Theorem 3. Due to the space limit, we attach
the training time analysis and the significance test in Ap-
pendix and of Fu et al. (2022).

Projection Discontinuity Problem. To give an intu-
itive illustration of the projection discontinuity problem in
projection-based approaches, we plot the training curve of
the DiffPruning method on the CB task. As illustrated in
Fig. 4, we adjust the mask every 600 training steps. It can
be observed from the figure that each time we change the
mask, the training error will go back to almost the same
value as its initial loss. This result shows that changing the
mask severely affects the training procedure due to the pro-
jection discontinuity problem.

Relation between Stability and Overall Performance.
Theorem 2 shows that stability implies better generalization.
To further validate this, we illustrate how the stability ranks
and the overall performance ranks are correlated in the main
experiment. As shown in Fig. 3 (b), the x-axis is the sta-
bility rank in each main experiment while the y-axis is the

12804

CoLA STS-B MRPC RTE CB COPA WSC AVG
FullTuning 60.74±1.89 90.11±0.26 88.74±1.08 75.37±1.93 84.29±4.21 69.60±2.94 54.81±7.51 74.81±2.83
Random 56.00±1.84 89.79±0.20 88.57±0.72 73.00±2.01 89.29±4.92 70.30±2.69 56.87±4.29 74.83±2.38
MixOut 60.37±1.33 90.11±0.13 88.50±0.78 74.51±1.28 83.75±3.14 69.40±4.80 57.88±6.15 74.93±2.52
Bitfit 55.26±0.78 89.98±0.15 86.87±1.27 71.36±1.71 91.29±2.27 71.80±3.92 55.29±9.90 74.55±2.86
MagPruning 56.45±1.80 90.26±0.11 87.35±0.85 72.24±2.14 84.46±3.58 69.20±3.54 59.71±3.88 74.24±2.27
Adapter 60.05±1.88 89.92±0.19 88.79±0.80 74.55±1.80 86.61±4.97 68.80±2.40 55.63±7.53 74.91±2.79
LoRA 61.46±1.27 86.73±0.38 88.28±1.06 76.46±1.34 88.69±5.32 67.75±2.49 58.85±4.27 75.46±2.30
DiffPruning 58.36±1.45 89.52±0.27 77.46±5.31 70.76±9.01 85.18±2.65 70.40±3.07 55.38±4.30 72.44±3.72
ChildPruning 59.40±2.30 89.33±3.23 88.43±0.80 75.11±2.87 85.71±4.07 70.30±4.54 54.04±7.24 74.62±3.58
SAM 59.52±1.12 90.45±0.12 88.79±0.69 75.74±1.27 86.79±4.39 74.00±2.79 59.52±3.32 76.40±1.96

Table 2: Data perturbation stability. The setting is the same as the main experiments except that we run the experiments on
different sampled datasets. Due to the space limit, we attach the significance test in Appendix of Fu et al. (2022).

corresponding overall performance rank. For each vertical
line of a specific stability rank, the dot indicates the over-
all performance mean rank value while the line length in-
dicates the standard deviation. It can be observed from the
figure that the two ranks are positively correlated indicating
that stabler models usually have better generalization capa-
bility. To further show the relationship between the stability
and the overall performance, we calculate Spearman’s rank
correlation coefficient (Spearman 1904) for the two ranks.
It can be denoted as ρ = cov(R(S),R(V))

σR(S)σR(V)
, where R(S) and

R(V) are the rank variables, cov(R(S), R(V)) is the co-
variance of R(S) and R(V) while σR(V) is the standard de-
viation of the rank variable V . We have ρ = 0.4356 with
p-value= 0.000014 < 0.05 indicating that the correlation
between the two rank variables is significant.

Effectiveness of Sparsity. To further verify our theoret-
ical analysis in Theorem 1 and Theorem 2, we conduct a
new experiment to show how the overall performance and
the stability change as we change the sparsity. We change
the sparsity of the SAM model in {0.0002, 0.0005, 0.001,
0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2} and plot the rela-
tionship between sparsity and the mean/standard deviation
in both the test set and training set. The results are shown
in Fig. 3 (a). It can be concluded from the results that (1) as
the sparsity ratio decreases, the mean and the standard de-
viation of most tasks also decrease which means the models
become more stable with better generalization. This obser-
vation is consistent with our bound in Theorem 1 and Theo-
rem 2. (2) If the sparsity ratio drops below a certain thresh-
old, the models become quite unstable and the performance
also sees a sharp drop. This is because the empirical error in-
creases drastically which can be observed in the Train Mean
and Train Std scores in Fig. 3 (a). At the same time, un-
der such circumstances, decreasing the sparsity ratio cannot
further lower the bound effectively. Therefore, such obser-
vation is also consistent with our discussion in Theorem 1
and Theorem 2.

Data Perturbation Stability. In the main experiment, we
use different random seeds. However, it is unknown whether
the performance is still stable if we have a perturbation on
the dataset. We conduct a new experiment to verify the data
perturbation stability by training the model on 10 different
training sets. Each of them is made by randomly removing

10% training samples from our original training set. The re-
sults are shown in Table 2. It can be observed from the re-
sults that the data perturbation stability performance is sim-
ilar to the main experiment and our proposed SAM model
still has the best data perturbation stability as well as the
overall performance among all the models.

Related Works
Fine-tuning on a pre-trained model (Peters et al. 2018; De-
vlin et al. 2019; Lan et al. 2020; Radford et al. 2018, 2019;
Brown et al. 2020; Dong et al. 2019; Liu et al. 2022) has
shown to be very promising in recent years. However, fine-
tuning the full model yields a large model with the same
size for each task and many works indicate that fine-tuning
the full model is unstable (Devlin et al. 2019; Lee, Cho,
and Kang 2019; Zhu et al. 2020; Dodge et al. 2020; Mos-
bach, Andriushchenko, and Klakow 2020; Zhao et al. 2021;
Fu, So, and Collier 2023). To solve this problem, many
researchers propose the parameter-efficient methods which
only fine-tune a small part of the pre-trained parameters.
These methods are found to be more stable than fine-tuning
the full model (He et al. 2021b; Lee, Cho, and Kang 2019;
Houlsby et al. 2019; Zaken, Ravfogel, and Goldberg 2021;
Sung, Nair, and Raffel 2021; Liu et al. 2021). Currently,
there is still no previous work providing a theoretical analy-
sis for the stability of the parameter-efficient models.

Conclusions
In this paper, we propose to understand the effectiveness
of the parameter-efficient fine-tuning models. Depending on
how the tunable parameters are chosen, we first categorize
most of the models into three categories, namely, random ap-
proaches, rule-based approaches, and projection-based ap-
proaches. Then, we show that all models in the three cate-
gories are sparse fine-tuned models and we give a theoreti-
cal analysis of the stability and the generalization error. We
further show that the random approaches and the rule-based
methods do not utilize the task data information while the
projection-based approaches suffer from the projection dis-
continuity problem. We propose a novel SAM model to alle-
viate both problems and we conduct extensive experiments
to show the correctness of our theoretical analysis and the
effectiveness of our proposed models.

12805

Acknowledgments
The authors gratefully acknowledge the support of the fund-
ing from UKRI under project code ES/T012277/1.

References
Bentivogli, L.; Clark, P.; Dagan, I.; and Giampiccolo, D.
2009. The Fifth PASCAL Recognizing Textual Entailment
Challenge. In TAC.
Bishop, C. M.; and Nasrabadi, N. M. 2006. Pattern recogni-
tion and machine learning, volume 4. Springer.
Bousquet, O.; and Elisseeff, A. 2002. Stability and general-
ization. JMLR.
Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J. D.;
Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell,
A.; et al. 2020. Language models are few-shot learners.
NeurIPS.
Cer, D.; Diab, M.; Agirre, E.; Lopez-Gazpio, I.; and Specia,
L. 2017. Semeval-2017 task 1: Semantic textual similarity-
multilingual and cross-lingual focused evaluation. arXiv
preprint arXiv:1708.00055.
Charles, Z.; and Papailiopoulos, D. 2018. Stability and gen-
eralization of learning algorithms that converge to global op-
tima. In ICML.
Dagan, I.; Glickman, O.; and Magnini, B. 2005. The pas-
cal recognising textual entailment challenge. In Machine
Learning Challenges Workshop. Springer.
De Marneffe, M.-C.; Simons, M.; and Tonhauser, J. 2019.
The commitmentbank: Investigating projection in naturally
occurring discourse. In proceedings of Sinn und Bedeutung.
Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2019.
BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. In Proceedings of NAACL-HLT.
Ding, N.; Qin, Y.; Yang, G.; Wei, F.; Yang, Z.; Su, Y.; Hu,
S.; Chen, Y.; Chan, C.-M.; Chen, W.; et al. 2022. Delta
Tuning: A Comprehensive Study of Parameter Efficient
Methods for Pre-trained Language Models. arXiv preprint
arXiv:2203.06904.
Dodge, J.; Ilharco, G.; Schwartz, R.; Farhadi, A.; Hajishirzi,
H.; and Smith, N. A. 2020. Fine-Tuning Pretrained Lan-
guage Models: Weight Initializations, Data Orders, and
Early Stopping. arXiv preprint arXiv:2002.06305.
Dolan, B.; and Brockett, C. 2005. Automatically construct-
ing a corpus of sentential paraphrases. In IWP.
Dong, L.; Yang, N.; Wang, W.; Wei, F.; Liu, X.; Wang, Y.;
Gao, J.; Zhou, M.; and Hon, H.-W. 2019. Unified language
model pre-training for natural language understanding and
generation. NeurIPS.
Elisseeff, A.; Evgeniou, T.; Pontil, M.; and Kaelbing, L. P.
2005. Stability of Randomized Learning Algorithms. JMLR.
Fedus, W.; Zoph, B.; and Shazeer, N. 2021. Switch trans-
formers: Scaling to trillion parameter models with simple
and efficient sparsity. arXiv preprint arXiv:2101.03961.
Fu, Z.; Lam, W.; So, A. M.-C.; and Shi, B. 2021. A theoret-
ical analysis of the repetition problem in text generation. In
AAAI.

Fu, Z.; So, A. M.-C.; and Collier, N. 2023. A Stability Anal-
ysis of Fine-Tuning a Pre-Trained Model. arXiv preprint
arXiv:2301.09820.
Fu, Z.; Yang, H.; So, A. M.-C.; Lam, W.; Bing, L.; and Col-
lier, N. 2022. On the Effectiveness of Parameter-Efficient
Fine-Tuning. arXiv preprint arXiv:2211.15583. (Full ver-
sion with Appendix on arXiv).
Guo, D.; Rush, A. M.; and Kim, Y. 2021. Parameter-
Efficient Transfer Learning with Diff Pruning. In ACL.
Han, S.; Mao, H.; and Dally, W. J. 2015. Deep com-
pression: Compressing deep neural networks with pruning,
trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149.
Han, S.; Pool, J.; Tran, J.; and Dally, W. 2015. Learning
both weights and connections for efficient neural network.
NeurIPS.
Hardt, M.; Recht, B.; and Singer, Y. 2016. Train faster, gen-
eralize better: Stability of stochastic gradient descent. In
ICML.
He, J.; Zhou, C.; Ma, X.; Berg-Kirkpatrick, T.; and Neu-
big, G. 2021a. Towards a unified view of parameter-efficient
transfer learning. arXiv preprint arXiv:2110.04366.
He, R.; Liu, L.; Ye, H.; Tan, Q.; Ding, B.; Cheng, L.; Low, J.;
Bing, L.; and Si, L. 2021b. On the Effectiveness of Adapter-
based Tuning for Pretrained Language Model Adaptation. In
ACL.
Houlsby, N.; Giurgiu, A.; Jastrzebski, S.; Morrone, B.;
De Laroussilhe, Q.; Gesmundo, A.; Attariyan, M.; and
Gelly, S. 2019. Parameter-efficient transfer learning for
NLP. In ICML.
Hu, E. J.; yelong shen; Wallis, P.; Allen-Zhu, Z.; Li, Y.;
Wang, S.; Wang, L.; and Chen, W. 2022. LoRA: Low-Rank
Adaptation of Large Language Models. In ICLR.
Karimi Mahabadi, R.; Henderson, J.; and Ruder, S. 2021.
Compacter: Efficient Low-Rank Hypercomplex Adapter
Layers. NeurIPS.
Kenton, J. D. M.-W. C.; and Toutanova, L. K. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding. In Proceedings of NAACL-HLT.
Kuzborskij, I.; and Lampert, C. 2018. Data-dependent sta-
bility of stochastic gradient descent. In ICML.
Lagunas, F.; Charlaix, E.; Sanh, V.; and Rush, A. M. 2021.
Block Pruning For Faster Transformers. In EMNLP.
Lan, Z.; Chen, M.; Goodman, S.; Gimpel, K.; Sharma, P.;
and Soricut, R. 2020. ALBERT: A Lite BERT for Self-
supervised Learning of Language Representations. In ICLR.
Lee, C.; Cho, K.; and Kang, W. 2019. Mixout: Effective
Regularization to Finetune Large-scale Pretrained Language
Models. In ICLR.
Lee, J.; Park, S.; Mo, S.; Ahn, S.; and Shin, J. 2021. Layer-
adaptive Sparsity for the Magnitude-based Pruning. In
ICLR.
Levesque, H.; Davis, E.; and Morgenstern, L. 2012. The
winograd schema challenge. In KR.

12806

Lewis, M.; Liu, Y.; Goyal, N.; Ghazvininejad, M.; Mo-
hamed, A.; Levy, O.; Stoyanov, V.; and Zettlemoyer, L.
2020. BART: Denoising Sequence-to-Sequence Pre-training
for Natural Language Generation, Translation, and Compre-
hension. In ACL.
Liu, H.; Tam, D.; Muqeeth, M.; Mohta, J.; Huang, T.;
Bansal, M.; and Raffel, C. 2022. Few-Shot Parameter-
Efficient Fine-Tuning is Better and Cheaper than In-Context
Learning.
Liu, X.; Ji, K.; Fu, Y.; Du, Z.; Yang, Z.; and Tang, J. 2021.
P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-
tuning Universally Across Scales and Tasks. arXiv preprint
arXiv:2110.07602.
Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.;
Levy, O.; Lewis, M.; Zettlemoyer, L.; and Stoyanov, V.
2019. RoBERTa: A Robustly Optimized BERT Pretraining
Approach. arXiv preprint arXiv:1907.11692.
Mahabadi, R. K.; Ruder, S.; Dehghani, M.; and Hender-
son, J. 2021. Parameter-efficient Multi-task Fine-tuning for
Transformers via Shared Hypernetworks. In ACL.
Mallya, A.; Davis, D.; and Lazebnik, S. 2018. Piggyback:
Adapting a single network to multiple tasks by learning to
mask weights. In ECCV.
Mao, Y.; Mathias, L.; Hou, R.; Almahairi, A.; Ma, H.; Han,
J.; Yih, W.-t.; and Khabsa, M. 2021. Unipelt: A unified
framework for parameter-efficient language model tuning.
arXiv preprint arXiv:2110.07577.
Mosbach, M.; Andriushchenko, M.; and Klakow, D. 2020.
On the Stability of Fine-tuning BERT: Misconceptions, Ex-
planations, and Strong Baselines. In ICLR.
Mostafa, H.; and Wang, X. 2019. Parameter efficient
training of deep convolutional neural networks by dynamic
sparse reparameterization. In ICML.
Panahi, A.; Saeedi, S.; and Arodz, T. 2021. Shapeshifter: a
Parameter-efficient Transformer using Factorized Reshaped
Matrices. NeurIPS.
Peters, M. E.; Neumann, M.; Iyyer, M.; Gardner, M.; Clark,
C.; Lee, K.; and Zettlemoyer, L. 2018. Deep Contextualized
Word Representations. In NAACL.
Pfeiffer, J.; Rücklé, A.; Poth, C.; Kamath, A.; Vulić, I.;
Ruder, S.; Cho, K.; and Gurevych, I. 2020. AdapterHub:
A Framework for Adapting Transformers. In EMNLP.
Radford, A.; Narasimhan, K.; Salimans, T.; and Sutskever,
I. 2018. Improving language understanding by generative
pre-training. OpenAI blog.
Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.;
Sutskever, I.; et al. 2019. Language models are unsupervised
multitask learners. OpenAI blog.
Radiya-Dixit, E.; and Wang, X. 2020. How fine can fine-
tuning be? learning efficient language models. In AISTATS.
Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.;
Matena, M.; Zhou, Y.; Li, W.; and Liu, P. J. 2020. Exploring
the Limits of Transfer Learning with a Unified Text-to-Text
Transformer. JMLR.

Roemmele, M.; Bejan, C. A.; and Gordon, A. S. 2011.
Choice of Plausible Alternatives: An Evaluation of Com-
monsense Causal Reasoning. In AAAI spring symposium.
Rücklé, A.; Geigle, G.; Glockner, M.; Beck, T.; Pfeiffer, J.;
Reimers, N.; and Gurevych, I. 2021. AdapterDrop: On the
Efficiency of Adapters in Transformers. In EMNLP.
Sanh, V.; Wolf, T.; and Rush, A. 2020. Movement pruning:
Adaptive sparsity by fine-tuning. NeurIPS.
Shalev-Shwartz, S.; and Ben-David, S. 2014. Understanding
machine learning: From theory to algorithms. Cambridge
university press.
Shalev-Shwartz, S.; Shamir, O.; Srebro, N.; and Sridharan,
K. 2010. Learnability, stability and uniform convergence.
JMLR.
Spearman, C. 1904. The proof and measurement of associa-
tion between two things. The American journal of psychol-
ogy, 15(1).
Sung, Y.-L.; Nair, V.; and Raffel, C. A. 2021. Training Neu-
ral Networks with Fixed Sparse Masks. NeurIPS.
Wang, A.; Pruksachatkun, Y.; Nangia, N.; Singh, A.;
Michael, J.; Hill, F.; Levy, O.; and Bowman, S. 2019. Su-
perglue: A stickier benchmark for general-purpose language
understanding systems. NeurIPS.
Wang, A.; Singh, A.; Michael, J.; Hill, F.; Levy, O.; and
Bowman, S. 2018. GLUE: A Multi-Task Benchmark and
Analysis Platform for Natural Language Understanding. In
EMNLP Workshop BlackboxNLP.
Warstadt, A.; Singh, A.; and Bowman, S. R. 2019. Neural
network acceptability judgments. TACL, 7.
Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.;
Moi, A.; and et. al. 2020. Transformers: State-of-the-Art
Natural Language Processing. In EMNLP.
Xu, P.; Roosta, F.; and Mahoney, M. W. 2020. Newton-type
methods for non-convex optimization under inexact hessian
information. Mathematical Programming, 184(1).
Xu, R.; Luo, F.; Zhang, Z.; Tan, C.; Chang, B.; Huang, S.;
and Huang, F. 2021. Raise a Child in Large Language
Model: Towards Effective and Generalizable Fine-tuning. In
EMNLP.
Yao, Z.; Gholami, A.; Shen, S.; Mustafa, M.; Keutzer, K.;
and Mahoney, M. 2021. ADAHESSIAN: An Adaptive Sec-
ond Order Optimizer for Machine Learning. In AAAI.
Zaken, E. B.; Ravfogel, S.; and Goldberg, Y. 2021. Bitfit:
Simple parameter-efficient fine-tuning for transformer-
based masked language-models. arXiv preprint
arXiv:2106.10199.
Zhao, Z.; Wallace, E.; Feng, S.; Klein, D.; and Singh, S.
2021. Calibrate before use: Improving few-shot perfor-
mance of language models. In ICML.
Zhu, C.; Cheng, Y.; Gan, Z.; Sun, S.; Goldstein, T.; and Liu,
J. 2020. FreeLB: Enhanced Adversarial Training for Natural
Language Understanding. In ICLR.

12807

