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Abstract
While large pre-trained language models (PLM) have shown
their great skills at solving discriminative tasks, a significant
gap remains when compared with humans for explanation-
related tasks. Among them, explaining the reason why a state-
ment is wrong (e.g., against commonsense) is incredibly chal-
lenging. The major difficulty is finding the conflict point,
where the statement contradicts our real world. This paper
proposes NEON, a two-phrase, unsupervised explanation gen-
eration framework. NEON first generates corrected instantia-
tions of the statement (phase I), then uses them to prompt
large PLMs to find the conflict point and complete the expla-
nation (phase II). We conduct extensive experiments on two
standard explanation benchmarks, i.e., ComVE and e-SNLI.
According to both automatic and human evaluations, NEON
outperforms baselines, even for those with human-annotated
instantiations. In addition to explaining a negative prediction,
we further demonstrate that NEON remains effective when
generalizing to different scenarios. The resources of NEON
are available at: https://github.com/Shark-NLP/Neon.

1 Introduction
Nowadays, Explainable Natural Language Processing
(ExNLP) (Danilevsky et al. 2020) has received increasing
attention toward trustworthy NLP models. A valid explana-
tion can not only ensure that a model solves a problem using
the corresponding knowledge rather than exploiting super-
ficial cues or short-cuts (Niven and Kao 2019; Geva, Gold-
berg, and Berant 2019; Cui et al. 2021), but they can also be
used to improve model performance on downstream tasks
(Wei et al. 2022; Wang et al. 2022; Creswell, Shanahan, and
Higgins 2022).

In general, there are two main types of explanations in
the field of ExNLP: highlights and free-text explanations
(Wiegreffe and Marasovic 2021). Highlights (Lei, Barzilay,
and Jaakkola 2016) methods use subsets of the input to sup-
port model prediction, thus can not solve the majority of

* This work was done during her internship at Shanghai AI
Laboratory. E-mail: sjcheng20@fudan.edu.cn.

† Corresponding author. E-mail: wuzhiyong@pjlab.org.cn.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

I. Correct Instantiations Generation

John put a turkey into the fridge.
John put a peach into the fridge.

John put a bowl into the fridge.

John put a carrot into the fridge.
…

False Statement
John put an elephant into the fridge.

II. Explanation Generation

Given the facts: 1. John put a turkey into the fridge, 2. John put a peach into 
the fridge, 3. John put a bowl into the fridge, …
Explain the false statement based on its difference with the facts: John put 
an elephant into the fridge.
The explanation is: 

Conflict Point

An elephant is much bigger than a fridge.

Elephant

VOLUME

Fridge>

Turkey
Peach
Bowl
…
Carrot

< Fridge🤔Large PLMs

Figure 1: Our proposed two-phase framework NEON (cor-
rect instantiations generation and explanation generation)
explains a false statement in ComVE (Wang et al. 2020)
task. The conflict point module is implicitly induced inside
the large pre-trained language models.

tasks where input does not contain rationales. In this paper,
we focus on free-text explanation, which justifies model pre-
dictions using natural language. Despite being more flexible
and human-readable, free-text explanations pose great chal-
lenges (Lin et al. 2020; Rajani et al. 2019), as they require
models’ ability to accurately understand the logic behind the
problem and express them in natural language.

In this paper, we propose a model agnostic framework to
generate free-text explanations for false statements. Given a
false statement which is against commonsense, “John put an
elephant into the fridge”, the model is expected to generate
a convincing explanation “an elephant is much bigger than
a fridge” to state the reason why the former statement is in-
correct (ComVE; Wang et al. 2020). Explaining a false state-
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False Statement Explanation Conflict Point
John put an elephant into the fridge. An elephant is much bigger than a fridge. Volume

He drinks apple. Apple can not be drunk. Function

Jeff ran 100,000 miles today. No way can someone run 100,000 miles in a day. Speed

A giraffe is a person. A giraffe is an animal, not human. Property

Europe is in France. Europe is a continent but france is a country. Geography

Table 1: Examples and their exact conflict points to explain in ComVE task.

ment is generally considered to be more challenging (Wang
et al. 2019), but it is the key to preventing models from mak-
ing mistakes and improving their performances (Hoffmann
and Magazzeni 2019; Lipton 1990).1

Recent studies (Jon et al. 2020; Konar et al. 2020) gener-
ally adopt sequence-to-sequence or language model genera-
tion approaches. The sequence-to-sequence (seq2seq) meth-
ods (Jon et al. 2020; Wan and Huang 2020) use the false
statement as the source sequence to generate reason as the
target sequence. As for the LM approaches (Konar et al.
2020; Fadel, Al-Ayyoub, and Cambria 2020), they manu-
ally design prompts for auto-regressive language models to
generate explanations. We argue that both methods neglect
that the key to solving such problems is to find the conflict
point as shown in Table 1, where the false statement con-
tradicts the commonsense knowledge. For instance, the con-
flict point of “John put an elephant into the fridge” is the
relative volume between “elephant” and “fridge”.

Finding the exact conflict point can be rather difficult,
even for large PLMs. On the one hand, manually con-
structing a dataset with conflict points for training is labor-
intensive and difficult to scale (Wang et al. 2020). On the
other hand, exact triples of conflict points are rare in the
external knowledge graph due to their tacitness and diver-
sity. (Wan and Huang 2020; Konar et al. 2020). Considering
the limitations of these direct methods mentioned above, we
try to provide guided hints as prompts to implicitly elicit
PLMs to reason the conflict point, inspired by the line of
work about the chain of thought (Wei et al. 2022; Creswell,
Shanahan, and Higgins 2022; Wang et al. 2022). To produce
guided hints, we automatically generate a bunch of correct
instantiations based on the false statement. Then, the con-
flict points can be implicitly induced from the difference be-
tween the commonality of our generated instantiations and
the false statement. For example, given the false statement
“John put an elephant into the fridge”, we firstly generate
a set of correct instantiations {“John put a turkey into the
fridge”, “John put a peach into the fridge”, · · · } and their
underlying commonality is that their volumes are all smaller
than the fridge. Combining these instantiations and the false
statement, their difference can help PLMs better implicitly
reason that the conflict point is the relative volume where an
elephant is much bigger than a fridge.

In this paper, we propose NEON, a two-phase frame-

1It is worth noting that we also explore explaining correct state-
ments in Section 4.5 to demonstrate the generality of our method.

work for unsupervised explanation generation via correct
instantiations as shown in Figure 1. In the first phase, given
the false statement, we attempt both in-context and unsu-
pervised learning to generate correct instantiations automat-
ically. In the second phase, combining both generated in-
stantiations and the false statement, the PLMs can implicitly
induce the conflict point better to generate explanations. To
purely detect the ability of implicit induction in off-the-shelf
PLMs, we explore the model performance in the unsuper-
vised setting rather than the traditional supervised setup. We
conduct extensive experiments on two standard explanation
benchmarks, ComVE (Wang et al. 2020) and e-SNLI (Cam-
buru et al. 2018). Experimental results prove the effective-
ness of our method on both automatic and manual evalua-
tions. Furthermore, we also conduct analysis experiments to
demonstrate that the main idea of NEON can generally be
extended to accommodate other explanation tasks.

The contributions of our work are as follows:

• We propose a novel method based on the importance of
conflict points to solve the false statement explanation
problem. To the best of our knowledge, we are the first to
introduce the concept of the conflict point in the task.

• We propose a two-phase framework named NEON to
elicit the large PLMs to induce through instantiations to
unsupervised explanation generation.

• We present analyses of our generated instantiations and
demonstrate the generality of NEON.

2 Methodology

2.1 Problem Formulation

Our target problem is to generate a reason to explain why
the false statement does not make sense or is inconsis-
tent. Given the original false statement with n tokens x =
{x1, x2, · · · , xn}, we automatically generate a set of cor-
rect instantiations H = {h1,h2, · · · ,hl} with a common-
ality. Each instantiation h = {h1, h2, · · · , hk} with k to-
kens is a constrained text generating conditioned on the orig-
inal false statement x. According to both the false state-
ment x and our generated correct instantiations H, the pre-
trained language model G needs to implicitly reason the
conflict point and give a rational explanation with m tokens
y = {y1, y2, · · · , ym}.
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Phase I: Correct Instantiations Generation
Task: Based on the incorrect statement, generate the cor-
rect statement.
/* Example 1 */
Incorrect statement: He drinks apple.
Correct statement: He drinks milk.
/* Test data */
Incorrect statement: John put an elephant into the fridge.
Correct statement:

Phase II: Unsupervised Explanation Generation
Given the facts: 1. John put a turkey into the fridge, 2.
John put a peach into the fridge, 3. John put a bowl into
the fridge,
Explain the following statement based on its difference
with the facts: John put an elephant into the fridge.
The explanation is:

Table 2: The prompt instances of in-context learning in our
two phases: presented are the incorrect statements and the
correct statements (bold). We use 16 examples per prompt
in the first phase.

2.2 Correct Instantiations Generation

In the first phase, we attempt two different means to gen-
erate correct instantiations H conditioned on the false state-
ments x to prove the flexibility of our framework NEON.
One adopts in-context learning with larger language models
under the few-shot setting, the other one is based on tradi-
tional constrained text generation in an unsupervised way.

In-context Learning Considering the large number of
parameters in PLMs, in-context learning uses a series of
demonstrations of a specific task as prompts to induce model
generation, while the parameters of large PLMs are fixed
(Brown et al. 2020; Radford et al. 2019). Besides the advan-
tage of no extra need to train or finetune, in-context learning
can also reduce the reliance on large amounts of annotated
data. Therefore, due to the great performance of in-context
learning with large PLMs in the recent studies (Wiegreffe
et al. 2021), we attempt to use in-context learning to gener-
ate correct instantiations H automatically given the original
false statement xori.

Following Wiegreffe et al. (2021), we apply the in-context
learning under few-shot setups to generate our correct in-
stantiations. We specifically design a prompt followed by the
false statement that the model needs to correct. To construct
the prompt, we first randomly sample 200 instances ([correct
statement, incorrect statement] in the ComVE task and [en-
tailment statement, contradiction statement] in the e-SNLI
task) from the training dataset. Then we randomly select K
instances and concatenate them to construct our prompt as
shown at the top of Table 2. Finally, we feed the model with
both constructed prompt and our test data to infer the com-
pletion which can be regarded as our generated correct in-
stantiations.

Constrained Text Generation Despite its simplicity, in-
context learning often requires human annotations, which
is not always available. In this section, we explore the
challenging setting where instantiations are generated in a
fully unsupervised manner. As a preliminary study, we ap-
ply the widely used constrained text generation framework
CGMH (Miao et al. 2019).

Firstly, we adopt perplexity (PPL) computed by the
masked language models to detect the conflicting position.
Given the false statement x = {x1, x2, · · · , xn}, we com-
pute the relative perplexity score of the original statement to
its masking sentence which replaces xi with [MASK]. Then
we normalize scores and sample the edited position based on
this distribution. If the i-th token is unlikely to exist in the
position, the perplexity score Si

PPL is larger, which indicates
the token should be edited with a higher priority.

Si
PPL =

PPL(x)
PPL(x\{xi})

(1)

Given the sampled positions, we need to determine each
position’s action. Our token-level actions mainly include
three types following Chen et al. (2022): insert, delete and
replace. As for the acceptance rate to each generated sen-
tence x′ with edited action, our considering property is flu-
ency which is important to guarantee in generative tasks. We
measure this fluency score via computing likelihood based
on the auto-regression language models, e.g., GPT-2 (Rad-
ford et al. 2019).

SFluency =
n∏

i=1

PLM(hi|h<i) (2)

2.3 Unsupervised Explanation Generation
As demonstrated in recent studies (Zhong et al. 2022), PLMs
can capture subtle yet critical differences between different
groups of sentences. This inspires us that capturing the dif-
ferences between the false statement x and our generated in-
stantiations H can help PLMs induce conflict points. There-
fore, in the second phase, given both the false statement x
and our generated instantiations H, we implicitly induce the
large PLMs to generate the free-text explanation y in the
zero-shot setting.

Zero-shot Learning We adopt a similar prompt construc-
tion strategy as discussed in the correct instantiations gener-
ation phase. However, unlike the template of few-shot learn-
ing in instruction style, our template of zero-shot learning is
more fluency like a complete sentence, following previous
studies (Sanh et al. 2021). In particular, we directly design a
natural language description according to different tasks in-
stead of sampled exemplars from training datasets as shown
at the bottom of Table 2. Considering the variance due to dif-
ferent descriptions, more analysis on the design of prompt-
ing can be found in Section 4.2 and 4.4. Finally, based on
our constructed prompt, the PLMs generate the completion
as our generated explanation.
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Row Method ComVE e-SNLI
BLEU ROUGE BERTScore S-BERT BLEU ROUGE BERTScore S-BERT

1 Random 1.47 17.81 46.21 42.54 4.94 24.23 50.73 43.05
2 Retrieval-BM25 1.51 17.23 45.18 38.68 4.29 23.31 49.80 42.09
3 Retrieval-SBERT 1.69 18.55 46.64 45.47 4.64 24.45 51.16 48.22
4 Original 1.88 20.21 48.68 51.82 4.71 25.38 50.92 46.39
5 Human-annotated 2.48 21.25 49.66 55.21 5.57 25.62 51.96 49.19
6 Top-1 2.42 21.42 49.86 55.03 6.03 25.87 51.97 48.51
7 NEON w/ CGMH 3.37 20.10 48.92 49.50 4.67 26.04 51.04 48.42
8 NEON w/ In-context 3.39 22.50 51.50 54.52 6.20 27.28 53.87 51.69

Table 3: The automatic evaluation results of ComVE and e-SNLI tasks.

3 Experiments
3.1 Experimental Setups
Datasets Our experiments are conducted on the two im-
portant explanation benchmarks, ComVE (Wang et al. 2020)
and e-SNLI (Camburu et al. 2018). The ComVE task
asks annotators to create 11,997 instances in the format
of {cn, sn, rn1

, rn2
, rn3

}, where cn and sn are the correct
and incorrect statement, respectively. {r1, r2, r3} are three
reference reasons to explain the incorrect statement. Then
they divide all these annotated instances into train/dev/test
datasets with 10,000/997/1,000 instances. As for the e-SNLI
task, the cn and sn can be seen as entailment and contra-
diction statements, respectively. Filtering the odd instances
with only entailment or contradiction statement, our ob-
tained train/dev/test is 5,189/3,280/2,640.

Models In our main experiments, We all adopt the large
pre-trained language model OPT-175B (Zhang et al. 2022).
To ensure the generalization of our framework, we also con-
duct experiments on other PLMs varying from small model
scale to large. More details can be found in Section 4.3.

Implementation Details In the first phase, to fix the max-
length of the context window (nctx = 2048), we set the
number of examples as K = 16. Moreover, the max length
of generated instantiations is 25 for ComVE and 40 for e-
SNLI. As for constrained text generation, we adopt GPT-
2-large and RoBERTa-large. In the second phase, the max
length of generated explanations is 30 for both tasks. The
hyper-parameter of Top-p is 0.9, and the temperature is 0 for
all generation models. We repeat the same experiment three
times and report the average accuracy for all experiments.
Our experiments are conducted with 8 A100 GPUs.

Baselines We compare our framework with the follow-
ing baselines. (1) Original: the model only feeds with the
false (contradiction) statement to generate its rational expla-
nation. (2) Random: We feed a randomly sampled human-
annotated correct (entailment) statement and the false state-
ment into the model. (3) Retrieval: we adopt both BM25
(Robertson, Zaragoza et al. 2009) and Sentence-BERT
(SBERT) (Reimers and Gurevych 2019) to retrieve the five
nearest statements from the Open Mind Common Sense
(OMCS) corpus (Singh et al. 2002), then give them and the
false statement into the model. (4) Human-annotated: we

offer both the false statement and its corresponding human-
annotated correct statement to the model. It is worth not-
ing that the human-annotated statement can be regarded as
the upper bound of our generated single instantiation. (5)
Top-1: the model generates explanations based on the false
statement and our Top-1 generated correct instantiation. To
ensure fairness, we keep the templates of all these baselines
(except for the original baseline) the same as ours.

3.2 Evaluation Metrics
Automatic Evaluation Metrics Considering that the of-
ficial automatic evaluation metric BLEU (Papineni et al.
2002) is too harsh to evaluate the quality of explanations
(Zhao et al. 2019; Konar et al. 2020; Fadel, Al-Ayyoub, and
Cambria 2020), we further involve a set of common evalua-
tion metrics as supplementary following Becker, Liang, and
Frank (2021). In detail, we measure diverse aspects, includ-
ing token overlap using BLEU and ROUGE (Lin 2004), se-
mantic similarity using both BERTScore (Zhang et al. 2019)
and S-BERT (Reimers and Gurevych 2019).

Manual Evaluation Metrics Due to the limitation of ex-
isting automatic metrics in the open-ended text generation
community (Zhang et al. 2019; Novikova et al. 2017), we
further conduct manual evaluations to compensate following
Wiegreffe et al. (2021). Firstly, we randomly select 100 sam-
ples from the test set. We then evaluate generated explana-
tions through head-to-head comparisons. In order to directly
reflect the impact of our instantiations, three annotators are
asked to choose the better explanation between the original
baseline and NEON. To ensure fairness, we shuffle all the
generated explanations to be unordered. We specifically de-
sign two aspects: one is the preferred explanation from the
comprehensive consideration, and the other one needs to ex-
press the conflict points explicitly.

3.3 Results
Automatic Evaluation Table 3 shows the automatic eval-
uation results of NEON and baselines. To illustrate the ef-
fectiveness of introducing instantiations, we first compare
the Original baseline against others (Row 5-8). As we can
see, incorporating instantiations in explanation generation
consistently improves model performance over the baseline
without instantiations. Given the necessity of instantiations,
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Dataset Preferred Explanation (%)
κ

Original Tie NEON

ComVE 20.33 42.67 37.00 0.47
e-SNLI 18.67 41.67 39.67 0.39

Conflict Point (%)
ComVE 19.33 46.00 34.67 0.45
e-SNLI 15.67 53.67 30.67 0.36

Table 4: Head-to-head human evaluation for 100 explana-
tions generated by the original baseline and NEON. Results
are shown as % preferences with Fleiss Kappa κ.

we further investigate how the quality of instantiations af-
fects performance. We observe significant performance de-
terioration when equipping the model with instantiations
that come from random knowledge (Row 1) or strong re-
trieval models (Row 2-3). This indicates that introducing
irrelevant or inaccurate information would hurt model per-
formance. The above comparison also verifies the effective-
ness of our instantiation generation method, which is fur-
ther supported by the comparable performance between the
Top-1 and Human-annotated baseline. Finally, by compar-
ing NEON with Top-1 and Human-annotated, we find that
ensemble multiple instantiations that share a commonality
significantly outperforms baselines on almost all metrics in
both tasks. We hypothesize that ensembling similar instan-
tiations can help the model better locate the conflict points.
This hypothesis is later supported by manual evaluation and
nuanced analysis of instantiations (Section 4.1). Despite the
excellent performance of NEON under the in-context setting,
we find it barely outperforms the Original baseline when
editing is performed in a fully unsupervised manner (Row
7). The reason could be that we use relatively small PLMs
in CGMH due to computation constraints, whereas we use
OPT-175B for in-context editing. We leave it as future work
to investigate how to apply CGMH on huge PLMs for in-
stantiation generation. Given the performance gap, all later
analyses will be based on NEON w/ In-context.

Manual Evaluation As shown in Table 4, for both
ComVE and e-SNLI tasks, NEON outperforms the original
baseline with respect to preferred explanation and conflict
point. The proportional distribution of the preferred expla-
nation is similar to the conflict point, which supports our
claim that it is important to find the conflict point to gener-
ate good explanations. In the conflict point aspect, the fact
that NEON beat the original baseline reflects the contribution
of our generated instantiations. It is worth noticing that there
still remains a significant proportion of ties (40%). We be-
lieve a better method of finding conflict points can contribute
to closing this gap.

4 Analysis
4.1 Quality of Generated Instantiations
Automatic Evaluation To check the correctness of gener-
ated instantiations, we fine-tune RoBERTa-Large (Liu et al.

Dataset Acc. Gram. Fact. Diver. Common.

ComVE 72.80 2.97 2.66 2.63 2.56
e-SNLI 81.67 2.88 2.72 2.89 2.66

Table 5: The manual evaluation results of our generated in-
stantiations. (i. Acceptability; ii. Grammaticality; iii. Factu-
ality; iv. Diversity; v. Commonality)

Method BLEU ROUGE BERTScore S-BERT

Top-1 2.47 20.77 49.13 54.25
Top-1* 2.20 21.39 49.63 54.98

NEON 3.39 21.65 49.09 53.11
NEON* 3.51 22.32 49.54 54.53

Table 6: The comparison of our methods before (marked *)
and after filtering the low-quality instantiations.

2019) on both training datasets as binary classifiers. It
achieves the accuracy of 88.97 and 84.25 on the ComVE
and e-SNLI, respectively. We use these fine-tuned RoBERTa
models to evaluate the quality of our generated instanti-
ations. Because the performance of in-context learning is
much better than CGMH in our first phase. We conduct ex-
periments mainly on in-context learning in our analyses.

Manual Evaluation Following previous studies (Wiegr-
effe et al. 2021), we assume that the desired instantiations
need to meet the requirements at least in terms of both sur-
face and explanation levels. Therefore, we further conduct
manual evaluations in five primary criteria: i. Acceptability -
Generated instantiations are acceptable in overall judgment;
ii. Grammaticality - Generated instantiations should be at
least fluent with no grammatical mistakes; iii. Factuality -
Generated instantiations should be factually correct; iv. Di-
versity - We expect to generate more diverse instantiations;
v. Commonality - Generated instantiations are expected to
have a commonality to help large PLMs infer the conflict
point. We randomly select 100 samples from the test set
and their corresponding generated instantiations. Then, af-
ter shuffling all selected samples, three annotators are asked
to choose acceptable/unacceptable for the acceptability met-
ric and use a 3-point Likert-scale rating to evaluate sampled
data for the other four aspects.

Results We evaluate the quality of the automatically gen-
erated and human-generated instantiations, they reached the
accuracy of 70.28/89.60 and 92.30/97.84, respectively. Note
that in-context learning only uses a few exemplars in the
prompts. As shown in Table 5, the human acceptance of
the generated instantiations is 72.80/81.67, consistent with
the results of the automatic evaluation discussed above. As
for the surface-level criteria, the score of grammaticality is
pretty high, while the score of factuality is relatively worse.
The results of the diversity and commonality metrics are
over 2.5 points, indicating that the instantiations have a high
diversity while sharing a common underlying property well.

Furthermore, we filter the low-quality instantiations de-
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# BLEU ROUGE BERTScore S-BERT
1 2.42 21.03 49.22 52.70
2 2.61 21.14 49.22 52.56
3 3.32 21.32 49.46 51.79
4 3.29 22.26 50.97 54.74
5 3.39 22.50 51.50 54.52
6 3.01 21.49 49.11 49.06
7 3.48 21.57 49.45 49.66
8 3.28 21.27 49.66 49.94
9 3.16 21.70 49.91 48.73
10 3.39 21.21 49.94 49.47

Table 7: Model performance with the different number of
ensemble instantiations in the ComVE task.

termined by the automatic metric to probe the correlation
between the quality and model performance. Taking the
ComVE task as an example, we first generate 10 instanti-
ations per data for 1,000 test data and filter low-quality in-
stantiations. We then obtain 987 and 773 samples with Top-1
and ensemble (five) high-quality instantiations, respectively.
Finally, we compare the model performance before and af-
ter filtering. The results are shown in Table 6. As for the
Top-1 instantiation, the results before and after filtering are
comparable which supports the similar situation between
our Human-annotated and Top-1 baselines reported in Ta-
ble 3. Our ensemble method shows a general improvement
in model performance after filtering. Combining the above
phenomena, we believe that the ensemble method is more
stringent about the quality of generated instantiations due to
asking for commonality among them.

4.2 Effects on Instantiations Number
Despite the fact that the PLMs can implicitly induce the
conflict points through instantiations, it still remains a ques-
tion of whether more generated instantiations lead to better
performance. Therefore, we detect the model performance
with the different numbers of generated instantiations vary-
ing from 1 to 10. The results are shown in Table 7.2 When
the number of instantiations increases from 1 to 5, the model
performance exhibits an upward trend. This phenomenon in-
dicates that the increasing diversity of generated instantia-
tions decreases the possibility of other misleading conflict
points. However, as the number of instantiations increases
from 6 to 10, the model performance plateaus. We conjec-
ture there are two-fold reasons. One is that sufficient diver-
sity and more noise will limit the improvement of model
performances when the number reaches a certain level. The
other one is that prompts containing overlong and unoriginal
sequences will damage the performance.

4.3 Effects on Model Size
In this section, we detect the model performance to gener-
ate explanations with increasing model scales. As shown

2To keep the templates consistent, we separate each instance by
an ordinal number, including only one instantiation.

Figure 2: Model performance of increasing model scales in
the ComVE task.

in Figure 2, the experimental results are similar in most
of these models, except for the smallest model GPT2-M.
This phenomenon indicates that only offering an extra in-
stantiation will be regarded as noise to hurt model perfor-
mances when the model parameter is relatively small. How-
ever, NEON with ensemble instantiations obviously beat all
baselines with different model scales, reflecting its robust-
ness. Moreover, as the scale of model parameters increases,
the performance gap between NEON and the baselines be-
comes larger. This trend shows that the implicit induction
through instantiations of large PLMs is an emerging ability
with increasing model scales, which is consistent with pre-
vious studies (Wei et al. 2022; Wang et al. 2022).

4.4 Robustness of Prompting
According to previous studies (Zhao et al. 2021; Lu et al.
2021), the model performances are sensitive to templates.
Therefore, we further evaluate the robustness of NEON fol-
lowing Wei et al. (2022). Another two annotators B and C
are asked to write the templates independently. Furthermore,
we ask annotator A to write an instruction-style template
that is more concise, following Cobbe et al. (2021). Results
shown in Figure 3 indicate that though there exists a vari-
ance among different annotated templates, all our prompts
still outperform the original baseline. However, the instruc-
tion style prompt is significantly worse than the natural lan-
guage description style in the zero-shot setting, due to the
lack of instruction style signals in the pre-training corpus.

4.5 Demonstration of Generality
In this section, we adapt NEON to generate explanations for
correct statements. Taking the e-SNLI task as an example,
given the entailment statement cn, there are three ground-
truth explanations {r′1, r′2, r′3}. We directly use the gener-
ated correct instantiations in the first phase as guided hints.
We find that their commonality with the entailment state-
ment can help PLMs to explain as shown in Table 8. No-
tably, the Top-1 baseline is slightly worse than the original
baseline. This phenomenon suggests that a single instantia-
tion no longer provides valid information like the contrast
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Figure 3: Independently-written for the robustness of NEON.

Method BLEU ROUGE BERTScore S-BERT

Original 8.11 29.73 52.66 53.18
Top-1 9.22 28.64 52.64 50.81
NEON 11.18 31.69 55.30 56.33

Table 8: Model performance of generating explanations for
correct statements in the e-SNLI task.

in false statements during the explanation of correct state-
ments. However, NEON still significantly outperforms base-
lines, which demonstrates the effectiveness and generality.

4.6 Case Study
Finally, we present some generated examples of two phases
as shown in Table 9. In the first phase, the quality of our gen-
erated instantiations is comparable to ground-truth instanti-
ations. Especially, the keywords of “safety”, “shelter” and
“peace” meet the needs of both diversity and commonality.
As for the second phase, NEON and other baselines yield
fluent explanations. However, the original baseline does not
give a correct definition of home, and the Human-annotated
baseline pays much attention to the keyword “security” so
that its generated explanation is irrelevant. Overall, NEON
products a better explanation thanks to the commonality in-
duced from the generated instantiations in the first phase.

5 Related Work
Natural Language Explanations To improve the trans-
parency and reliability of large deep learning language mod-
els, a promising approach is to ask models to generate natu-
ral language free-form explanations. This explanation tech-
nique is first introduced in computer vision applications
(Park et al. 2018; Hendricks et al. 2016). Then it broadcasts
into diverse domains of natural language processing. For in-
stance, Camburu et al. (2018) annotate natural language ex-
planations of the entailment relations in the Stanford Natural
Language Inference dataset. Rajani et al. (2019); Wang et al.
(2020); Aggarwal et al. (2021) extends this idea into com-
monsense explanations. To solve these explanation tasks,
traditional methods (Jon et al. 2020; Konar et al. 2020) usu-
ally finetune generation models with explicit human super-
vision. Wan and Huang (2020); Konar et al. (2020) exploit
external knowledge graph to fill in the needed background in
the explanation. Most relevant to our study is the contrastive

Phase I: Correct Instantiations Generation

False Statement: A home is a place for violence.
NEON: 1. A home is a place for safety. 2. A home is a place
for love. 3. A home is where you live. 4. A home is a place for
shelter. 5. A home is a place of peace.
Ground-truth: A home gives a person a sense of security.

Phase II: Unsupervised Explanation Generation

Original: That’s the wrong definition of home. A place isn’t a
home, you are home.
Human-annotated: People commit suicide and violence when
there is no security.
NEON: A home is a place for peace, then it is not a place for
violence.
Ground-truth: Safety and Security place is our home.

Table 9: Case study of the ComVE task.

explanation (Paranjape et al. 2021; Ross, Marasović, and Pe-
ters 2020), which gives a contrastive explanation to answer
“Why P rather than Q”. However, they often focus on only
one fact. In contrast, we notice that ensemble instantiations
with a commonality can help find the exact conflict point.

In-context Learning After the fine-tuning paradigm of
large PLMs, in-context learning has been attractive due to
its simple operation and strong interaction. More important,
it does not have to update the model parameters anymore.
Brown et al. (2020) propose that large PLMs can complete a
generation given a few demonstrations as prompts. Recently,
more studies have paid attention to generating rationales
through in-context learning to help language model perfor-
mance. Wei et al. (2022) adopt “chain-of-thought” reasoning
prompt to induce large PLMs reason step-by-step. Similarly,
Wang et al. (2022) explore that ensemble rationales can sig-
nificantly improve the model performance. Zelikman, Wu,
and Goodman (2022) propose a bootstrapping strategy to
improve the quality of rationale examples.

6 Conclusion and Future Work

In this paper, we propose a two-phase framework NEON to
help large PLMs generate explanations by implicitly identi-
fying conflict points in the statement. In the first phase, we
generate a bunch of correct instantiations with a commonal-
ity based on the false statement. In the second phase, given
both generated correct instantiations and the false state-
ment, we adopt prompts to generate explanations according
to their differences. Experiments in the unsupervised set-
ting show that our proposed framework significantly outper-
forms baselines in both automatic and human evaluations.
Furthermore, our analysis shows the effectiveness, robust-
ness, and generality of NEON. We regard NEON as a first
attempt towards using methods based on conflict points,
which we argue is an important factor in solving the ex-
planation tasks. Future work could focus on incorporating
conflict points into the textual representations, e.g. through
contrastive learning.
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