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Abstract

Collaborative Communication platforms (e.g., Slack) sup-
port multi-party conversations which contain a large number
of messages on shared channels. Multiple conversations in-
termingle within these messages. The task of conversation
disentanglement is to cluster these intermingled messages
into conversations. Existing approaches are trained using loss
functions that optimize only local decisions, i.e. predicting
reply-to links for each message and thereby creating clusters
of conversations. In this work, we propose an end-to-end re-
inforcement learning (RL) approach that directly optimizes a
global metric. We observe that using existing global metrics
such as variation of information and adjusted rand index as a
reward for the RL agent deteriorates its performance. This be-
haviour is because these metrics completely ignore the reply-
to links between messages (local decisions) during reward
computation. Therefore, we propose a novel thread-level re-
ward function that captures the global metric without ignor-
ing the local decisions. Through experiments on the Ubuntu
IRC dataset, we demonstrate that the proposed RL model im-
proves the performance on both link-level and conversation-
level metrics.

Introduction
In recent times, particularly during the global pandemic,
there has been an unprecedented proliferation of online com-
munication, on both professional and personal fronts, via
online collaboration platforms (Slack), forum discussions
(Stackoverflow) and social media (WhatsApp). These com-
munication platforms allow multiple participants to engage
in concurrent conversations on shared channels. As a result,
it can be quite hard for a reader to understand the context of
an on-going chat. The task of conversation disentanglement
aims at addressing this issue by identifying separate conver-
sations from a stream of messages. For example, consider
a stream of 7 messages in Figure 1. The goal of conversa-
tion disentanglement is to identify the 2 conversations (high-
lighted by red and blue color) along with the reply-to links
(indicated by arrows) between the messages in each conver-
sation. Disentangled conversations are readily consumable
by downstream tasks, such as response prediction (Kumar,

*This work was done while Ajay Gupta was at IBM Research.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: An example of a stream of messages. The two con-
versations in them are color coded and the reply-to links are
illustrated using arrows.

Agarwal, and Joshi 2019; Pandey, Raghu, and Joshi 2020;
Tao et al. 2021), dialog act classification(Kumar et al. 2018),
question answering(Verma et al. 2019), etc.

Existing approaches (Ma, Zhang, and Zhao 2022; Yu and
Joty 2020; Kummerfeld et al. 2018; Pappadopulo et al. 2021;
Li et al. 2020) for conversation disentanglement follow a
two-step strategy: (1) for each message predict a parent mes-
sage to which it is connected by the reply-to link, and (2)
infer conversation trees (or clusters) guided by the predicted
links from step (1). Existing approaches are trained to op-
timize the local decisions (i.e., reply-to link prediction) in-
dependent of each other and then use global (conversation-
level) metrics, such as Adjusted Rand Index (ARI) and Vari-
ation of information (VI), for evaluation. While it is desir-
able to optimize the model on global metrics, it is quite
challenging to directly optimize the model in an end-to-end
manner because global metrics cannot be computed until all
local decisions are finalized.

To address the aforementioned limitation, we propose an
end-to-end Reinforcement Learning (RL) based approach
that directly optimizes based on a global metric. Our RL
policy generates a distribution over all possible reply-to link
combinations for all messages in the input message stream.
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The reward is computed by taking into account the reply-
to link predictions of all messages, thereby enabling the
policy to directly optimize using a global metric. Existing
conversation-level metrics for conversation disentanglement
represents a conversation tree as a bag of messages. Such
representation is devoid of the local link information be-
tween messages, therefore using them as input to a reward
function explicitly suggests the RL agent to ignore the reply-
to linkages during reward computation. To overcome this
limitation, we define a novel reward function at the conver-
sation thread-level. This reward function is calculated us-
ing the proposed Thread Level FBCubed (TL-FBC) metric,
which captures both link-level and conversation-level infor-
mation between messages, thereby providing better signals
to the RL agent.

We evaluate the proposed RL based approach on the
widely used Ubuntu IRC dataset (Kummerfeld et al. 2018).
We find that our RL based approach that uses our novel TL-
FBC metric as reward is significantly better than baselines
on both link-level and conversation-level metrics. Overall,
our contributions in this paper are:
1. We propose a novel RL based approach1 for learning the

task of conversation disentanglement which can directly
optimize global metrics.

2. We propose a novel reward function at a conversation
thread-level which captures both link-level
and conversation-level information between messages.

3. Experiments on the widely used Ubuntu IRC dataset
show that our proposed RL based approach performs
significantly better than baselines on both link-level and
conversation-level metrics.

Related Work
This section gives a brief overview of the prior works in con-
versation disentanglement and of the RL approaches used
in the similar problem settings. Conversation disentangle-
ment has been a challenging task for a long time, researchers
are working on this problem for decades. This task was ear-
lier known as conversation management (Traum, Robinson,
and Stephan 2004), thread detection (Shen et al. 2006), and
thread extraction (Adams and Martel 2010).

Conversation disentanglement research started with us-
ing handcrafted features (Elsner and Charniak 2008; Mehri
and Carenini 2017; Jiang et al. 2018) as input to a simple
statistical classifier for reply-to link prediction. (Mehri and
Carenini 2017) used features from pre-training LSTM on
messages to get better representations. (Jiang et al. 2018)
used hierarchical Siamese CNN to model similarity be-
tween messages in the same conversation. (Kummerfeld
et al. 2018) provided a large annotated Ubuntu IRC dataset,
which fast-tracked the development of conversation disen-
tanglement approaches. It used glove (Pennington, Socher,
and Manning 2014) embeddings and handcrafted features,
such as the time difference between messages, speaker id,
mention id, etc., to train a naive ensemble of feed-forward
classifier. (Pappadopulo et al. 2021) uses DAG-LSTM (Tai,

1https://github.com/karan121bhukar/RL-ConvDisentanglement

Socher, and Manning 2015) for the systematic inclusion of
structured information, such as user turn and mentions, in
the learned representation of the conversation context that
captures reply-to relation between messages. Similarly (Yu
and Joty 2020) uses pointer networks (Vinyals, Fortunato,
and Jaitly 2015) to model reply-to link between messages.
After the massive success of representations learned from
PrLM(Pre-trained Language Models), such as BERT (De-
vlin et al. 2019), on multiple downstream tasks, the recent
works (Zhu et al. 2020; Li et al. 2020; Ma, Zhang, and Zhao
2022) in disentanglement uses BERT to get context based
message embeddings for features representation. (Liu, Shi,
and Zhu 2021) explored RL in an unsupervised setting for
conversation disentanglement, whereas ours is the first work
to explore RL in a supervised setting for conversation disen-
tanglement.

Previous works (Elsner and Charniak 2008; Kummerfeld
et al. 2018; Yu and Joty 2020; Pappadopulo et al. 2021; Ma,
Zhang, and Zhao 2022) treat the task of conversation dis-
entanglement as a two step process, (1) linking step: links
messages to parent messages by capturing the reply-to link
structure. (2) Clustering step: where messages are grouped
together based on the links created between the messages to
construct conversation tree. Therefore, current approaches
try to optimize the local linking decisions and fail to cap-
ture global conversation-level information (e.g., interaction
between messages and parents of messages) during training,
leading to sub-optimal conversation trees. This work pro-
poses a thread-level metric for reward calculation that opti-
mizes the policy network directly on the global level.

RL has been an elegant way to capture global level in-
formation and has shown promising results for similar prob-
lem settings, such as co-reference resolution (Fei et al. 2019;
Clark and Manning 2016; Yin et al. 2018), relation extrac-
tion (Zeng et al. 2018; Qin, Xu, and Wang 2018), and entity
extraction (Xiao et al. 2020). Inspired by the success of these
works, this is the first work that uses RL to model the task
of conversation disentanglement.

Methodology
In this section, we formally define the task of conversation
disentanglement followed by a description of our proposed
Reinforcement Learning based approach.

Task Definition
Let m = {m1,m2, · · · ,mM} be a set of M messages
sent by a group of people on a shared channel. Each mes-
sage mi belongs to one of the K (K ≤ M) conversations
C = {C1, C2, · · · , CK}, where each conversation Ck is rep-
resented as a tree with messages as nodes and reply-to links
as edges. The goal of the task is to disentangle the set of
messages M into K conversations with the reply-to links.
Here the number of conversations K is unknown.

RL Based Approach
This section describes our proposed RL approach for the
task of conversation disentanglement. We first describe the
policy which is constructed using Structural BERT, the
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Figure 2: This is the basic framework of our policy gradient method for one action sequence. Policy samples a predicted parent
for a message by generating probability over all possible candidate parents. Reward function gives score based on the predicted
cluster and red dotted line indicated the gradients based on obtained reward to update parameters of policy

state-of-the-art approach that optimizes only the reply-to
link (local) predictions. We then describe the REINFORCE
based training algorithm that directly optimizes global met-
rics (such as ARI or VI) in an end-to-end manner. The over-
all framework is illustrated in Figure 2.

Given a set of messages m = {m1,m2, · · · ,mM}, we
predict a set of parent messages a = {a1, a2, · · · , aM},
where ai ∈ m and message mi is a reply to the message
ai. 2 The policy πθ(a|m) outputs a probability distribution
over all possible combination of the reply-to link structure,
denoted by A. During inference, the conversations can be
identified from a set of messages m by (1) identifying the
most likely reply-to link structure â ∼ argmaxa∈Aπθ(a|m),
and (2) constructing conversation trees by following the pre-
dicted reply-to links. Once all the parents a are identified,
the reward R(a, C) is computed by comparing the predicted
conversations to the ground truth conversations. Any global
metric can be used as a reward function.

Policy Network: We express the probability of parent
messages a given the messages m as follows:

πθ(a|m) =
M∏
i=1

pθ(ai|mi) (1)

where pθ(ai|mi) denotes the distribution over the messages
in m being the parent of the message mi. Following Kum-
merfeld et al. (2018), we restrict the candidate parents space
to a subset of messages in m. Specifically, we use a fixed
window size of w previous messages as candidate parents
for mi, represented as W(mi).

2If mi is the first message in the conversation then the reply-to
is a self link (i.e., mi is the parent of mi).

We use Structural BERT, the state-of-the-art approach,
that optimizes the link predictions, to compute pθ(ai|mi). It
generates a pairwise representation for each message and a
candidate parent pair (mi, mj), where mj ∈ W(mi). These
pairwise representations are concatenated and fed to a clas-
sifier (Li et al. 2020) to predict a distribution over w candi-
date parents. The pairwise representation is a combination
of a context-aware and a structure-aware representations.
The context-aware representation is computed by passing
the concatenation of the message and the candidate parent
message through BERT and using the [CLS] token output.
The structure representation is constructed by using a multi
headed self attention for encoding correlations between mes-
sages from the same speaker and a r-GCN(Schlichtkrull
et al. 2018) to encode the relation of references between
speakers. The two representations are then combined using
a Syn-LSTM (Xu et al. 2021).

Training: The policy network πθ(a|m) is trained by max-
imizing the expected reward OER as follows:

OER = Ea∼πθ(a|m)R(a, C) (2)
We use REINFORCE to estimate the gradients of the ex-
pected reward by sampling N sets of parents as follows:

∇θOER ≈ 1

N

N∑
n=1

∇θlogπθ(an|m)[R(an, C)− b] (3)

=
1

N

N∑
n=1

M∑
i=1

∇θlogpθ(ani |mi)[R(an, C)− b]

(4)

where the baseline reward b =
∑

n∈N R(an,C)
N is used to re-

duce the variance in the calculation of approximated gra-
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Figure 3: Example contains 2 prediction and a ground truth for 7 messages. ARI, VI rewards for prediction-1 and prediction-2
are 100 for both of them, which is incorrect because both predictions do not match the ground truth. Rewards calculated using
micro TL-FBC for prediction-1 and prediction-2 are 93.36 and 87.5, respectively.

dients. Following (Fei et al. 2019), entropy regularization
term is added to encourage exploration. In our experiments,
the entropy regularization parameter is set to 0.1. Estimating
the gradients using Equation 4 ensures (1) each local deci-
sion (reply-to link prediction) is guided by the reward that
optimizes the global-level metric, and (2) any neural model
for conversation disentanglement that optimizes only local
decisions can be easily plugged into our RL framework.

Reward Function: We first describe why using existing
conversation-level metrics (VI or ARI) as a reward confuses
the RL agent, as these metrics lead to a huge space of spuri-
ous actions that fetch highest rewards for incorrect actions.
We then describe our novel reward function that helps over-
come this problem by drastically reducing the space of spu-
rious actions.

Figure 3 describes the issue of using a conversation-level
metric as a reward function. The ground truth consists of
two conversation trees with 7 messages. And, there are two
possible conversation predictions, each containing two con-
versation trees. Conversation-level metrics such as ARI and
VI ignore the reply-to link between the messages within
a conversation when computing the metrics. For example,
in Figure 3, ARI and VI achieve a perfect score for both
the predictions w.r.t the ground truth. Using such a reward
metric for our RL setting results in a lot of spurious ac-
tions that gets the highest reward even with incorrect reply-
to link predictions. These metrics confuse the RL agent by
sending incorrect signals. To overcome this issue, we pro-
pose a thread-level metric as the reward function which
captures both the conversation-level and the link-level in-
formation. Our thread-level metric views messages as clus-
ters of conversation threads rather than clusters of conversa-
tion trees. For example, the ground truth has four conver-
sation threads ({m1,m2,m4}, {m1,m3}, {m5,m6}, and

{m5,m7}) and two conversation trees (C1 and C2). Met-
rics defined on top of clusters of threads is sensitive to both
the global structure and the local link predictions. Construct-
ing clusters of threads results in overlapping clusters (i.e., a
single message being a part of multiple threads). For exam-
ple, m1 in ground truth belongs to 2 threads, {m1,m2,m4}
and {m1,m3}. Existing conversation-level clustering met-
rics such as ARI and VI cannot be directly applied to over-
lapping clusters(Aroche-Villarruel et al. 2014). So, we use
FBcubed (Amigó et al. 2009), a modified version of Bcubed
family of metrics(Bagga and Baldwin 1998) suitable for
comparing overlapping clusters. The FBcubed metric de-
fined in the original paper is a macro averaged measure. As
we use this to compare clusters at a thread-level, we refer
to this metric as macro Thread-Level FBcubed (macro TL-
FBC).

For the conversation disentanglement task, incorrect reply-
to link prediction for a message higher in the conversation
tree is much worse than incorrect link prediction for a leaf
node. This is because an incorrect upper level link predic-
tion moves the whole sub-tree below it (including itself) to a
different cluster; thereby degrading the overall scores for all
the involved conversation threads.

To overcome this problem, we propose a micro-averaged
version of FBcubed, referred to as micro Thread-Level
FBcubed (micro TL-FBC). It assigns weights to message
links proportional to the number of threads it belongs to.
Let Tp and Tgt denote the sets of threads in the predicted
and ground truth clusters. We represent the subset of pre-
dicted threads and subset of ground truth threads which con-
tain messages mi and mj as Tp(mi,mj) and Tgt(mi,mj)
respectively. We compute micro TL-FBC:
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micro TL-FBC =
2
(

1
M

∑M
i=1 Pr(mi)

)(
1
M

∑M
i=1 Re(mi)

)
(

1
M

∑M
i=1 Pr(mi)

)
+

(
1
M

∑M
i=1 Re(mi)

)
(5)

Pr(mi) =

∑
mj∈ψ(mi)

min(|Tp(mi,mj)|, |Tgt(mi,mj)|∑
mj∈ψ(mi)

|Tp(mi,mj)|
(6)

Re(mi) =

∑
mj∈ϕ(mi)

min(|Tp(mi,mj)|, |Tgt(mi,mj)|∑
mj∈ϕ(mi)

|Tgt(mi,mj)|
(7)

where ψ(mi) and ϕ(mi) are the set of messages that share
at least one conversation thread with mi in Tp and Tgt re-
spectively.

micro TL-FBC only gets a perfect score, when all the
links are predicted correctly. Moreover, at the same time,
it also provides the right signal to the RL agent by indicat-
ing how close the action is to the global structure. In Fig-
ure 3, Prediction-1 has no conversation-level errors and 1
link-level error (m7). Prediction-2 has no conversation-level
errors and 2 link-level errors (m4 and m7). Our proposed
thread-level metric, micro TL-FBC, gives a score of 93.36
and 87.50 for Prediction-1 and Prediction-2 respectively.
This demonstrate two advantages: (1) if the prediction does
not have the exact links as in ground truth, its does not get a
perfect score, and (2) the score clearly indicates which struc-
ture is closer to the ground truth, thereby providing correct
signals to the RL agent.

Experimental Setup
Dataset
We use Ubuntu IRC (Internet Relay Chat) (Kummerfeld
et al. 2018), the most widely used conversation disentangle-
ment dataset, for our experiments. Out of a total of 220,463
messages spread across 6201 conversations, the number of
manually annotated messages are 77,563 – 74,963 from the
#Ubuntu IRC channel and 2,600 messages from the #Linux
IRC channel). Table 1 presents some statistics of the dataset.

Train Dev Test
# Messages 220,463 12,500 15,000
# Conversations 6201 526 370

Table 1: Statistics of Ubuntu IRC dataset

Evaluation Metrics
Since the conversation disentanglement models first predict
links between messages (link prediction) and then use these
link information to infer clusters of conversations, we eval-
uate them using two types of metrics: link-level metrics and
conversation-level metrics.

Link-level metrics capture the ability of a model to pre-
dict the individual reply-to links between messages. We use
precision (P), recall (R) and F1 scores as link-level metrics.
Conversation-level metrics capture the ability of a model
to extract conversation trees from an entangled message
stream. To evaluate performance on a conversation-level, we
use the following metrics from the previous works (Kum-
merfeld et al. 2018; Ma, Zhang, and Zhao 2022; Yu and Joty
2020): scaled-Variation of Information (VI) (Meilă 2007),
Adjusted Rand AIndex (ARI) (Hubert and Arabie 1985),
precision (P), recall (R) and F1 score.

Baselines
We compare our approach with the following baselines:

1. Elsner (Elsner and Charniak 2008): it uses a graph theo-
retic model with feature set consisting of discourse struc-
tures, time gaps between messgaes, and message con-
tents.

2. Lowe (Lowe et al. 2017): A rule based model guided by
time between messages.

3. FeedForward (Kummerfeld et al. 2018): A feed forward
network that takes input of hand crafted features such as
time difference between messages and users mentioned
in a message along word embedding from pre-trained
GloVe (Pennington, Socher, and Manning 2014) model.

4. Ptr-Net (Yu and Joty 2020): It captures the textual simi-
larity between messages using a pointer network. Input is
the similarity value along with the hand crafted features

5. BERT (Li et al. 2020): It uses a pre-trained BERT model
to build a binary classifier that predicts if a pair of mes-
sages have a reply-to link or not.

6. DialBERT (Li et al. 2020): Similar to BERT, except
BERT is first fine-tuned on a Ubuntu corpus.

7. DAG-LSTM (Pappadopulo et al. 2021): This work uses
DAG-structured LSTM to incorporate structured infor-
mation such as user turns and mentions into the conver-
sation context representation.

8. Structural BERT3 (Ma, Zhang, and Zhao 2022):This
work incorporates structural features such as speaker
identity and mention identity in addition to existing fea-
tures from Feed Forward model.

9. Adapted Hierarchical BERT (Li et al. 2022): It com-
bines the local and global semantics in the context range
by encoding each message-pair using BERT and aggre-
gating the chronological context data into the output of
BERT using a Bi-LSTM.

Training Details
We implement our RL based approach using Py-Torch
(Paszke et al. 2019). AdamW (Loshchilov and Hutter 2017)
is used as the optimizer. The set of hyper-parameters that
give best results with learning rate and input sequence length

3We report the best numbers that we could reproduce
using the code available at https://github.com/xbmxb/
StructureCharacterization4DD. We incorporated all the sug-
gestions communicated by the authors over email exchanges.
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Model Conversation-Level Link-Level Self-Link
VI ARI P R F1 P R F1 F1

Elsner (Elsner and Charniak 2008) 82.1 - 12.1 21.5 15.5 - - - -
Lowe (Lowe et al. 2017) 80.6 - 10.8 7.6 8.9 - - - -
FeedForward (Kummerfeld et al. 2018) 91.5 - 36.3 39.7 38.0 74.9 72.2 73.5 -
BERT (Li et al. 2020) 90.8 62.9 29.3 36.6 32.5 - - - -
DialBERT (Li et al. 2020) 92.6 69.6 42.3 46.2 44.1 - - - -
Ptr-Net (Yu and Joty 2020) 94.2 80.1 44.9 44.2 44.5 74.5 71.7 73.1 91.5
DAG-LSTM (Pappadopulo et al. 2021) - - 42.4 41.7 42.0 75.2 72.7 73.9 90.2
Structural BERT (Ma, Zhang, and Zhao 2022) 93.0 68.4 46.7 47.6 47.1 75.3 75.5 75.4 90.1
Adapted Hierarchical BERT (Li et al. 2022) 93.9 76.3 43.3 50.1 46.5 - - - -

Our RL Model 96.2 78.5 51.5 52.3 51.9 83.3 83.3 83.3 92.3

Table 2: Comparing state-of-the-art models with the proposed RL method on the Ubuntu IRC Dataset

set to 5e-6 and 128 respectively. We set the the number of
trajectories N and the candidate parents window size w to
10 and 50 respectively.

Experiments
Our experiments answer the following questions:

1. How does the performance of the proposed RL approach
compare to baseline models?

2. How does the novel thread-level metric compare to exist-
ing conversation-level metrics when used as a reward?

3. Is the micro TL-FBC better than its macro variant?

Performance Study
Table 2 reports the performance of our RL based approach
and the baselines on various link-level and conversation-
level metrics. As expected, our model outperforms all base-
lines on majority of conversation-level metrics. For instance,
when compared to the link prediction model used in our pol-
icy (i.e., Structural BERT), our RL approach achieves an
improvement of 10.2% (46.7 to 51.5), 9.8% (47.6 to 52.3),
10.1% (47.1 to 51.9), 3.4% (93 to 96.2), and 14.7% (68.4 to
78.48) on P , R, F1, V I and ARI respectively.

Our RL model greatly outperforms existing models on
all three link-level metrics. It achieves a massive improve-
ment of approximately 10% over the previous best perform-
ing model. Accuracy of a specific type of links called self-
links are crucial for conversation-level metrics. Self links are
the reply-to links from messages that point to themselves. A
message with self-link indicates that it is the first message
of a conversation. Self-link prediction has a cascading effect
on the conversation-level metrics, as a wrong self-link pre-
diction results in two conversations being merged together
as one conversation, which degrades the conversation-level
metrics considerably (Yu and Joty 2020). It can be seen from
Table 2 that our RL based approach achieves a two point
improvement in self-link prediction compared to Structural
BERT, and it can be an aiding factor for the improve-
ment in the conversation-level performance. Consistent im-
provements in both link-level and conversation-level met-
rics should be attributed to our thread level reward function

micro TL-FBC. By using thread-level clusters rather than
conversation-level clusters, we provide positive feedback to
the agent even when there is a partial match between the
predicted conversation tree and the ground truth. Thus, op-
timizing using the scores obtained from thread-level metrics
moves the policy in the direction which has the potential
to improve conversation-level performance. Our thread-level
metric (micro TL-FBC) can only achieve a perfect score
when all the links in the conversation tree are predicted cor-
rectly. This ensures that there are no spurious actions possi-
ble which can achieve the same reward as the correct action.
Such a reward prevents the RL agent from getting confused
leading to improvement in link-level performance.

RewardFunction Conversation-Level Link-Level
VI ARI F1 F1

Structural BERT 93.0 68.4 47.1 75.4

ARI 94.1 74.3 45.6 72.7
VI 93.6 73.6 44.3 71.6

micro TL-FBC 96.2 78.5 51.9 83.3

Table 3: Performance of the RL based approach when
trained with conversation-level (ARI and VI) and the pro-
posed thread-level (micro TL-FBC) reward functions.

Conversation-Level Vs Thread-Level Rewards
We perform an ablation to study the effect of different re-
ward functions on our RL model. From the results in Table3,
we see that the conversation-level reward functions such as
ARI or VI only improves the metric that is being optimized
when compared with its non-RL variant (Structural BERT).
However, the link-level F1 drops considerably. For example,
when ARI is used as a reward function, performance on the
ARI improves from 68.4 to 74.3, an improvement of 5.9 ab-
solute points. But the link-level F1 drops from 75.4 to 72.7.
Similar behavior is observed for when VI is used as the re-
ward. The main reason for such a behaviour by ARI or VI is
because they represent conversations as a bag of nodes and
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Figure 4: Number of message at different levels of the con-
versation trees in the Ubuntu IRC dataset.

fail to take into account the link-level information between
messages. When micro TL-FBC is used as a reward func-
tion, it improves both link-level and conversation-level met-
rics. By comparing conversation threads instead of conversa-
tion trees, micro TL-FBC optimizes both the conversation-
level and link-level metrics jointly, resulting in improve-
ments across metrics.

Reward Function Conversation-Level Link-Level

VI ARI F1 F1

macro TL-FBC 96.04 77.05 51.00 82.96
micro TL-FBC 96.23 78.47 51.86 83.34

Table 4: Performance of the RL approach when using macro
TL-FBC and micro TL-FBC as reward function.

Micro vs Macro TL-FBC Rewards
In this sub-section, we compare the macro version of TL-
FBC (macro TL-FBC) reward with the proposed micro ver-
sion of TL-FBC reward (micro TL-FBC). Results in Table 4
shows that the micro TL-FBC reward achieves slightly better
performance that the macro TL-FBC. The interesting trend
to note is that the improvement, even though marginal, is
consistent across both conversation-level and link-level met-
rics.

Both the macro and the micro variants of TL-FBC com-
pute rewards at a thread-level. The only difference between
them is how they weigh the link in the conversation tree
during training. Macro assigns equal weights to all links,
while micro assigns weights proportional to the number of
threads associated with source message. Micro favours mes-
sage links at higher level in the conversation tree (e.g., a
message at the root node) compared to the ones at the lower
level in the conversation tree (e.g., a message at the leaf
node). Figure 4 shows a histogram of number of messages
at each level of the conversation tree in the ground truth.

Figure 5: Link-level F1 scores at different levels of the con-
versation trees.

It clearly shows that most of the links are in upper levels.
Based on these, we expected that micro version will lead
to higher improvements in link predictions at the upper lev-
els as compared to link prediction at lower levels. Figure 5
shows the link-level F1 scores at different levels of predicted
conversation tress for both the micro TL-FBC and the macro
TL-FBC rewards. Contrary to our aforementioned expecta-
tion, it shows that micro TL-FBC has higher F1-scores at
all levels, and more so at the lower levels. Inaccurately pre-
dicting a reply-to link at higher levels have more damaging
effects in comparison to predicting a wrong reply-to link of
a message at the lower levels. This is because an incorrect
link prediction for a message at an upper level connects af-
fects the whole sub-tree below it (including itself), thereby
degrading the overall conversation-level scores for both con-
versation trees. Thus correct prediction of reply-to links at
the higher levels automatically percolates and improves the
predictions at the lower levels.

Conclusion
This paper presents an end-to-end reinforcement learning
approach for the task of conversation disentanglement which
directly optimizes a global metric. We propose a novel
thread-level reward function which by representing a con-
versation as a bag of threads captures both the conversation-
level and link-level information. We also propose a micro
variant of thread-level FBcubed metric which improves over
the macro variant by assigning higher weights to message
links at upper levels in the conversation tree. Experiments
on the Ubuntu IRC dataset shows that our proposed RL
based approach outperforms the existing baselines on both
conversation-level and link-level metrics.
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