
TransPath: Learning Heuristics For Grid-Based Pathfinding via Transformers

Daniil Kirilenko1, Anton Andreychuk2, Aleksandr Panov1, 2, Konstantin Yakovlev1, 2

1 Federal Research Center for Computer Science and Control of Russian Academy of Sciences, Moscow, Russia
2 AIRI, Moscow, Russia

anedanman@gmail.com, andreychuk@airi.net, panov@airi.net, yakovlev@isa.ru

Abstract

Heuristic search algorithms, e.g. A*, are the commonly used
tools for pathfinding on grids, i.e. graphs of regular struc-
ture that are widely employed to represent environments in
robotics, video games, etc. Instance-independent heuristics
for grid graphs, e.g. Manhattan distance, do not take the ob-
stacles into account, and thus the search led by such heuristics
performs poorly in obstacle-rich environments. To this end,
we suggest learning the instance-dependent heuristic prox-
ies that are supposed to notably increase the efficiency of the
search. The first heuristic proxy we suggest to learn is the cor-
rection factor, i.e. the ratio between the instance-independent
cost-to-go estimate and the perfect one (computed offline at
the training phase). Unlike learning the absolute values of
the cost-to-go heuristic function, which was known before,
learning the correction factor utilizes the knowledge of the
instance-independent heuristic. The second heuristic proxy is
the path probability, which indicates how likely the grid cell
is lying on the shortest path. This heuristic can be employed
in the Focal Search framework as the secondary heuristic,
allowing us to preserve the guarantees on the bounded sub-
optimality of the solution. We learn both suggested heuristics
in a supervised fashion with the state-of-the-art neural net-
works containing attention blocks (transformers). We conduct
a thorough empirical evaluation on a comprehensive dataset
of planning tasks, showing that the suggested techniques i)
reduce the computational effort of the A* up to a factor of 4x
while producing the solutions, whose costs exceed those of
the optimal solutions by less than 0.3% on average; ii) outper-
form the competitors, which include the conventional tech-
niques from the heuristic search, i.e. weighted A*, as well as
the state-of-the-art learnable planners.
The project web-page is: https://airi-institute.github.io/
TransPath/.

Introduction
Path planning for a mobile agent in the static environment
is a fundamental problem in AI that is often framed as a
graph search problem. Within this approach, first, an agent’s
workspace is discretized to a graph. Second, a search algo-
rithm is invoked on this graph to find a path from start to
goal. Arguably, 2k-connected grids (Rivera et al. 2020) are
the most widely used graphs for path planning in a variety
of applications (robotics, video games, etc.).

Copyright © 2023, Association for the Advancement of Artificial

Map A*

Path probability map 
(PPM)

Focal search 
with PPM

S
G

Figure 1: The difference between A* and our approach. The
expanded nodes are shown in green, while the path is high-
lighted in red. Blue regions are predicted by the neural net-
work to contain path cells with high probability.

Path planning on a grid is commonly accomplished by
a heuristic search algorithm, e.g. A* (Hart, Nilsson, and
Raphael 1968) or one of its numerous modifications. Per-
formance of such algorithms is heavily dependent on the in-
put heuristic that comes in the form of a function that esti-
mates the cost of the path to the goal for each node of the
graph (cost-to-go heuristic). If the heuristic is perfect, i.e.,
for every node its value equals the cost of the shortest path,
a search algorithm explores only the nodes that lie on one of
the minimum-cost paths. However, such a perfect heuristic
is instance-dependent and cannot be encoded in the closed-
loop form. In practice, instance-independent heuristics, e.g.
Manhattan distance, are typically used for grid-based path
planning. These heuristics do not take obstacles into account

Intelligence (www.aaai.org). All rights reserved.

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

12436



and, consequently, perform poorly in obstacle-rich environ-
ments.

One of the recent and promising approaches to auto-
mated construction of the instance-dependent heuristics (and
for path planning in general) is utilizing machine learning,
specifically, deep learning (Speck et al. 2021; Janner et al.
2022). As grids can be viewed as the binary images, it is ap-
pealing to utilize the recent advances in convolutional neu-
ral networks (CNNs) (Ramachandran, Zoph, and Le 2017;
Tan and Le 2019) to extract the informative features from
the image representations of the pathfinding problems and
embed these features into the heuristic search algorithm.
For example, in (Takahashi et al. 2019) it was suggested to
learn perfect cost-to-go heuristic in a supervised fashion. In
a more recent study (Yonetani et al. 2021), a more involved
approach was introduced when a matrix-based A* was pro-
posed and used for learning. Consequently, the deep neural
network model was trained end-to-end. That paper did not
predict the conventional cost-to-go heuristic, but rather as-
signed the additional cost to each grid cell with the intuition
that unpromising nodes would be assigned a high cost by
the neural network. Thus, at the planning phase, the search
would avoid the cells with the high costs.

In this work, we follow the described paradigm and fur-
ther examine the ways of how heuristic search can benefit
from state-of-the-art deep learning techniques in the context
of the grid-based path planning. The distinguishable features
of our work are as follows. We consider 8-connected grids
with non-uniform costs (i.e., diagonal moves cost more than
the cardinal ones), unlike the previous works that considered
unit cost domains. We suggest learning the novel heuristic
proxies for the problem at hand. Instead of learning to pre-
dict the values of the perfect cost-to-go heuristic, we sug-
gest learning the correction factor of the heuristic function,
which is the ratio between the instance-independent heuris-
tic and the perfect heuristic. Thus, a correction factor em-
beds information about both of these heuristics. Our empir-
ical evaluation confirms that learning the correction factor
leads to a notably better performance than learning the ab-
solute values of the conventional cost-to-go heuristic.

We also suggest learning the path probability map, which
assigns to each grid cell the probability of belonging to the
shortest path. This can be used as a secondary heuristic in the
bounded sub-optimal search algorithm: Focal Search (Pearl
and Kim 1982). Thus, we are able to preserve the theoreti-
cal guarantees on a sub-optimality bound of the constructed
solution while speeding up the search, as our experiments
show.

To learn the correction factor and path probabilities, we
utilize supervised deep learning. In doing so, We employ a
neural network model, that is a combination of the convo-
lutional encoder-decoder with the attention blocks (Vaswani
et al. 2017) (the so-called transformers). Such a combina-
tion allows the neural network to capture and “reason about”
both the local features of a given map (corners of obstacles,
passages etc.) and the relations between them, e.g. “there is
a passage between the two regions of interest”.

To evaluate the suggested techniques, a comprehensive
dataset of the challenging planning tasks has been created

that extends the dataset previously used in closely related
works (Yonetani et al. 2021). We compare our approach with
those of the competitors that include both the deep learning
techniques and the traditional ones, and demonstrate its su-
periority in terms of the computational effort and solution
cost. Overall, we have been able to reduce the computational
effort compared to A* up to a factor of 4x while producing
the solutions, which costs exceed the costs of the optimal
solutions by less than 0.3% on average.

Related Work
Utilizing machine learning for graph search in general and
grid-based pathfinding, in particular, has been getting in-
creased attention recently. In (Pogančić et al. 2020) an ap-
proach was presented that allows one to combine a learnable
module with a non-learnable (classic) solver of a combinato-
rial problem and train the pipeline end-to-end. The approach
was evaluated on several problems including pathfinding on
the grids, represented as images, where the transition costs
are not known apriori. In (Li, Chen, and Koltun 2018), a
learning-based approach for solving certain NP-hard prob-
lems was presented that exploited a graph convolutional net-
work to estimate the likelihood of whether a certain vertex
of the graph is a part of the optimal solution. In (Pándy
et al. 2022), a framework was proposed that suggests imita-
tion learning-based heuristic search paradigm with a learn-
able explored graph memory. In brief, it learns a repre-
sentation that captures the structure of the so far explored
graph, so that it can then better select what node to explore
next. Such an approach can be viewed as solving a sequen-
tial decision-making problem. Similar approaches were in-
troduced in (Tamar et al. 2016; Bhardwaj, Choudhury, and
Scherer 2017; Panov, Yakovlev, and Suvorov 2018). Special
care to the properties of the learned heuristics, i.e. admissi-
bility, is given in (Li et al. 2022). Additionally, this work in-
troduces a version of A* search (Hart, Nilsson, and Raphael
1968) that leverages parallel execution on graphical pro-
cessing units (GPUs) that are widespread in machine learn-
ing computations. Analogous batch-handling techniques for
heuristic search were considered in (Greco et al. 2022).

The papers that are especially relevant to this one
are (Soboleva and Yakovlev 2019; Takahashi et al. 2019; Yo-
netani et al. 2021) as they all suggest specific machine learn-
ing techniques tailored to grid-based pathfinidng. In the for-
mer a generative adversarial (neural) network is proposed to
generate the solutions of the pathfinding instances. In (Taka-
hashi et al. 2019) a convolutional neural network is used to
predict the values of the cost-to-go heuristic. In (Yonetani
et al. 2021) Neural A* is introduced, which is a combination
of the encoder-decoder predictor and a differentiable mod-
ule that imitates A* search on grids. The predictor is a neu-
ral network, which estimates the transition costs on the grid
with the intuition that transitions to unpromising parts of the
map should cost more. The presence of the differentiable A*
module allows training the pipeline end-to-end. Neural A*
was empirically shown to consistently outperform a range of
competitors for grid-based pathfinding. In this work, we use
Neural A* as a baseline to compare with.

12437



Background
Pathfinding Problem
Consider a grid, Gr, composed of the blocked and free cells
and two distinct free grid cells, start and goal. Being at any
free cell, an agent is allowed to move to one of its cardinally-
or diagonally-adjacent neighboring cells, provided the latter
is free. The cardinal moves incur the cost of 1, while the di-
agonal ones incur the cost of

√
2. This setting can be referred

to as the 8-connected grid with non-uniform costs.
A path, π(start, goal), is a sequence of the adjacent cells,

starting with start and ending with goal: π = (c0 =
start, c1, c2, . . . , cn = goal). A path is valid iff all the cells
forming this path are free. The cost of the valid path is the
sum of costs associated with the transitions between the cells
comprising the path: cost(π) =

∑i=n−1
i=0 cost(ci, ci+1).

Denote a set of all valid paths connecting start and goal
as Π. The least cost (shortest) path from start to goal is
π∗ ∈ Π, s.t. ∀π ∈ Π : cost(π∗) ≤ cost(π).

The pathfinding problem is a tuple (Gr, start, goal),
which asks to find a valid path from start to goal on Gr.
The shortest path is said to be the optimal solution. Given a
positive real number, w > 1, the bounded sub-optimal so-
lution is a valid path whose cost exceeds that of the shortest
path by no more than a factor of w: cost(πw) ≤ w·cost(π∗).

In this work, we are specifically interested in obtaining
i) valid paths; ii) bounded sub-optimal paths. The problem
of obtaining optimal solutions is beyond the scope of this
paper.

A* Search
A* is a heuristic search algorithm with strong theoretical
guarantees that is widely used to solve the pathfinding prob-
lems stated above. A* incrementally builds a search tree of
nodes, where each node corresponds to a grid cell and bears
the additional search-related data. This data includes the g-
value of the node, which is the cost of the path to the node
from the root of the tree. h-value of the node is the heuristic
estimate of the cost of the path from the current node to the
goal one. The sum of g- and h-values is called the f -value
of the node.

Nodes are generated and added to the A* search tree via
the iterative expansions. To expand a node means to generate
all of its valid successors, i.e., the successors that correspond
to the valid moves on a grid, to compute their g-values (as
the sum of the g-value of the expanded node plus the transi-
tion cost), and to add certain successors to the tree. A succes-
sor is added to the tree only if it is not yet present in the tree
or, alternatively, if the same node (i.e. the one corresponding
to the same grid cell) exists, but its g-value is greater than the
newly computed one.

A* performs expansions in the systematic fashion (start-
ing with the start node). It maintains a list of nodes that
have been generated but not yet expanded. This list is typi-
cally referred to as OPEN , while the list of the expanded
nodes is designated as CLOSED. At each iteration, a node
with the minimal f -value is chosen from OPEN for the
expansion. A* stops when the goal node is extracted from

OPEN . At this point, the sought path can be reconstructed
using the backpointers in the search tree.

The performance of the algorithm, i.e. the number of the
iterations before termination and the guarantees on the cost
of the found path, is largely dependent on the used heuristic.

Heuristics The heuristic is called perfect, denoted as h∗, if
for every node, its value equals the true cost-to-go: h∗(n) =
cost(π∗(n, goal)). The heuristic is called admissible if it
never overestimates the true cost-to-go: h(n) ≤ h∗(n). The
heuristic is said to be consistent or monotone if ∀n, n′ :
h(n) ≤ h(n′) + cost(π∗(n, n′)).

A range of consistent and admissible instance-
independent heuristics are known for the 8-connected
grids, e.g. Chebyshev distance, Euclidean distance, or
Octile distance. They all can be efficiently computed in
the closed-loop form for any grid cell. Without the loss of
generality, in this work, we assume that the Octile distance
is used as the heuristic function.

It is known that A* with an admissible heuristic is guaran-
teed to find the optimal solution. Moreover, if the heuristic is
consistent (as is in our case) it is not possible to find a better
path to any of the expanded nodes, which infers that no node
can be expanded more than once. Still, the number of such
expansions can be significantly large as depicted in Fig. 1.
The reason is that the Octile distance, being an instance-
independent heuristic, is unaware of the blocked cells and
drives the search toward the obstacle via the low f -values of
the nodes residing in its vicinity.

Weighted A* and Focal Search
Weighted A* One of the widespread ways to trade off
optimality for the computational efficiency in grid-based
pathfinding is to employ a weighted heuristic, i.e. to order
nodes in OPEN not by their g + h values, but rather by
g + w · h values, where w ≥ 1. Such a modification of A*,
typically referred to as WA* (Weighted A*), is known to
provide bounded sup-optimal solutions w.r.t. w.

Focal Search Focal Search (FS) (Pearl and Kim 1982) is
another technique tailored to lower the number of search
iterations while providing the bound on the optimally of
the resultant solution. In FS, an additional list of nodes is
maintained called FOCAL. It is formed of the nodes re-
siding in OPEN , whose f -values do not exceed the min-
imum f -value in OPEN , fmin, by a factor of w (given
the sub-optimality bound). FOCAL is ordered in accor-
dance with the secondary heuristic, hFOCAL, which does
not have to be consistent or even admissible. The node to be
expanded is chosen from FOCAL in accordance with the
ordering imposed by hFOCAL (and removed from OPEN
as well). In case OPEN is updated as a result of the expan-
sion, FOCAL is modified accordingly. The stop criterion is
the same as in A*. FS is guaranteed to obtain bounded sup-
optimal solutions. Indeed, the number of search iterations
and, thus, the computational efficiency of FS is strongly de-
pendent on hFOCAL.

Fig. 2 shows the pseudocode of a generic heuristic search
algorithm. Different colors correspond to different variants
of the algorithm as explained in the caption.

12438



Algorithm 1: A generic search algorithm.

Input: Grid Gr, start node, goal node,
heuristic function h, sub-optimality
factor w, hFOCAL – secondary heuristic
for Focal Search

Output: path π
1 g(start) := 0; ∀n ̸= start g(n) := ∞
2 OPEN := {start}; CLOSED := ∅
3 while OPEN ̸= ∅ do
4 n := GetBestNode(OPEN , FOCAL,

hFOCAL)
5 remove n from OPENand FOCAL
6 insert n into CLOSED
7 if fmin has changed then
8 update FOCAL

9 if n is goal then
10 return ReconstructPath(n)

11 for each n’ in GetSuccessors(Gr,n) do
12 if g(n′) > g(n) + cost(n, n′) then
13 g(n′) := g(n) + cost(n, n′)
14 f(n′) := g(n′)+w·h(n′)/w(n′)
15 update or insert n′ in OPEN
16 if f(n′) ≤ w · fmin then
17 update or insert n′ in FOCAL

18 return path not found

Figure 2: A generic search algorithm. A* executes black
parts only. WA* is shown in black and red, Focal Search
in black and purple, our variant of WA* in black and blue.

Method
Recall that we are interested in two variants of the pathfind-
ing problem. The first variant asks to find a valid path on a
grid, without specifying any constraints on the cost of the
path, VP-PROBLEM. The second variant assumes that a sub-
optimality bound, w ≥ 1, is specified and the task is to find
a path whose cost does not exceed the cost of the optimal
path by more than a factor of w, BSP-PROBLEM.

The solvers that we suggest for both problems share their
structure. Each of them is composed of the two building
blocks. First, a deep neural network is used to process the
input grid and to predict the values of the heuristic function
that will be used later. Second, a heuristic search algorithm
is invoked that utilizes the heuristic data from the neural net-
work. The neural network used for VP-PROBLEM and BSP-
PROBLEM has the same architecture; however, in each case,
the output heuristic is different. The heuristic search algo-
rithm is also different. For solving VP-PROBLEM, we utilize
WA*, while for BSP-PROBLEM, Focal Search (FS) is used.

Heuristics Learned
The first type of the heuristic is the correction factor (cf ),
which is defined as the ratio of the value of the avail-
able instance-independent heuristicto the value of the per-
fect heuristic: cf(n) = h(n)/h∗(n). We suggest plugging
the predicted cf -values into the WA* algorithm as shown in
Fig. 2 (black + blue code fragments). I.e., the f -value of a

node is computed as f(n) = g(n) + h(n)/cf(n). This can
be thought of as running WA* that uses individual weights
for the search nodes. As there is no theoretical bound on the
error of predicting cf -values, the resultant search algorithm
provides no guarantees on the resultant cost.

In general, predicting cf -values may seem similar to pre-
dicting the values of the perfect cost-to-go heuristic as was
proposed in (Takahashi et al. 2019). However, there exists a
crucial difference, which is twofold. First, when learning the
cost-to-go heuristic, an additional technical step is needed
that transfers the range of the heuristic to the range typi-
cally employed in deep learning, e.g. [0, 1]. Meanwhile, the
range of the introduced correction factor is [0, 1] by design;
thus, no auxiliary transformations are required. Second, the
correction factor encompasses more heuristic data, as it
is a combination of both instance-dependent and instance-
independent heuristics. As confirmed by our experiments,
learning cf -values instead of h∗-values leads to a notable
boost in the performance.

The second suggested heuristic is tailored to serve as
the secondary heuristic for the FS, hFOCAL, which is em-
ployed to solve the BSP-PROBLEM. Intuitively, we want
from hFOCAL to distinguish the nodes that are likely to
yield rapid progress toward the goal. To this end, we suggest
assigning (and learning to predict) a value to each grid cell
that tells us how likely it is that this cell lies on the shortest
path between start and goal. We call this value a path prob-
ability, pp-value, and, by design, its range is within [0, 1].
Learning to correctly predict pp − values may be thought
of as attempting to learn to solve the pathfinding queries di-
rectly. I.e., if we were able to obtain such predictions for
where pp-values of 1 were assigned to the cells lying on the
shortest path, while the other cells were assigned pp-values
of 0, then we would not need to run the search algorithm at
all. However, in practice, this is not realistic, and thus, we
use the predicted pp-values as hFOCAL values in the FS.

Learning Supervision
An evident approach to learning the suggested heuristics is
to create a rich dataset of pathfinding instances with the an-
notated ground-truth cf - and pp-values and to train the neu-
ral network to minimize the error between its predictions and
the ground-truth values. Using the techniques introduced
in (Pogančić et al. 2020; Yonetani et al. 2021), one might
consider another option of learning, i.e. including the search
algorithm in the learning pipeline and to back-propagating
the search error through it. This option is especially useful
when it is hard or impossible to create ground-truth sam-
ples (like in planning on images when the cost of the tran-
sition is unknown). We have experimented with both types
of learning and found that for our setting, the first option is
preferable for the following reasons. First, there is no prob-
lem to create ground-truth samples for cf - and pp-values
(technical details on this will follow shortly). Second, learn-
ing without differentiable planner is much faster (up to 4x in
our setup). Third and not least of all, our experiments have
shown that learning the suggested model with the supervi-
sion from the ground-truth values leads to a consistently bet-
ter performance.

12439



Conv2D ResNet
Block Downsample

× 3 times

Transformer 
Block

× 4 
times

+ Positional 
Embeddings

ResNet
BlockUpsample

× 3 times

Conv2D

input map
(H, W, 2)

output PPM
(H, W, 1)

(H/8, W/8, 64)

+ Positional 
Embeddings

GroupNorm

Swish 
activation

Conv2D

× 2 
times

LayerNorm

Multi-Head 
SelfAttention

LayerNorm

Feed-Forward 
Layer

× 2 
timesa) c)b)

(H, W, 64)

Encoder

Decoder

Figure 3: Overview of the neural network architecture. a) Design of the whole model. CNN encoder is used to produce local
features which are further fed into the transformer blocks to catch the long-range dependencies between the features. The
resulting representation is passed through the CNN decoder to produce output values. b) Architecture of the ResNet block. c)
Architecture of the Transformer block.

To create ground-truth cf -values, we utilized uninformed
search that starts backwards from the goal and computes
true distances to it from any cell (which are straightfor-
wardly converted to the cf -values). Creating the ground-
truth samples of pp-values (we refer to such samples as
path probability maps, or PPMs) is more involved. Recall
that in PPMs, we need to have values of 1 for the cells ly-
ing on the shortest path while all other cells should have
smaller values. However, numerous shortest paths on 8-
connected grids might exist, which differ only in the order
of the cardinal/diagonal moves. To break the symmetry we
ran Theta* (Nash et al. 2007), an any-angle search algorithm
that can be thought of as A* with online path smoothing.
Theta* paths are formed of the way points (cells) located at
the corners of the obstacles and cells that lie on the straight-
line segments connecting the way points. In the resultant
PPM, we assigned the values of 1 for such paths. For all
other cells, we computed the value that tells us how close
the cost of the path through cell n to the one of Theta* is:
cost(π(s, g)/(cost(π(s, n)+cost(π(n, g)). If this value was
greater than or equal to 0.95, we used it as the pp-value; if
not, the pp-value was set to 0. As a result, we obtained PPMs
that contain paths from start to goal and narrow tunnels
(with lower pp-values) around them (see Fig. 1).

Neural Network Architecture
The neural network for learning cf -values and pp-values has
the same architecture; however, the input is slightly differ-
ent. For pp-values, the input contains the grid (as binary im-
age) and the start-goal matrix of the same dimensions, which
contains the values of 1 only for start and goal, while all
other pixels are zeroes. For cf -values, this matrix contains
only one non-zero element: the goal one.

The architecture has three main blocks (see Fig. 3): a
convolutional encoder, a spatial transformer, and a convolu-

tional decoder. The convolutional encoder utilizes the well-
known ResNet blocks (He et al. 2016) and is aimed at ex-
tracting the local features of the pathfidning instance such
as corners of the obstacles, narrow passages etc. The trans-
former leverages the mechanism of self-attention (Vaswani
et al. 2017) to establish the global relations between these
features (how important is one feature w.r.t. the other). An
example may be how important it is that there is a narrow
passage in between start and goal. Transformers were orig-
inally suggested for text sequences that lack 2D structure.
However, in the considered case, this structure is impor-
tant. To this end, we utilize the positional embedding tech-
nique from Visual Transformers (Dosovitskiy et al. 2021;
Han et al. 2022). This technique re-arranges 2D feature maps
into vectors (before the transformer block) and vice versa
(afterward), while preserving the spatial structure. Finally,
the transformed feature maps are processed by the convolu-
tional decoder, which provides the final output.

Training and Evaluation
Dataset
We have adopted the TMP (Tiled Motion Planning) dataset
that was used in (Yonetani et al. 2021) for empirical eval-
uation. This dataset is a modification of the MP dataset
used in (Bhardwaj, Choudhury, and Scherer 2017). The lat-
ter consists of maps with various challenging topologies,
such as bugtraps, gaps, etc. Each map in the TMP dataset
is composed of the four MP maps. In total, 4, 000 maps of
size 64 × 64 were present in TMP. We further increased
the size of the dataset to 64, 000 maps via the augmen-
tation by mirroring and rotating each of the four parts of
the TMP maps. Examples are shown in Fig. 4. For each
map, we generated 10 problem instances. The goal was cho-
sen randomly, the start was chosen randomly out of the
1/3 of the reachable nodes that have the highest cost of

12440



A* WA* A* + HL WA* + CF predicted PPMFS + PPM (w=2) GBFS + PPMNeuralA*

Figure 4: Several examples of the pathfinding results. The expanded nodes are shown in green, and the path in red. The last
column shows the predicted PPMs.

the path from the goal. Overall, we generated 640, 000 in-
stances. They were divided in the proportion of 8:1:1 for
train, validation, and test subsets in such a way that all aug-
mented versions of the same map were presented only in
one of the subsets. Similarly to (Takahashi et al. 2019),
we have excluded from the test part of the dataset the in-
stances that are extremely easy to solve, formally, the ones
that have hardness less than 1.05. Here hardness is defined
as cost(π∗(start, goal))/h(start), where h is the conven-
tional cost-to-go heuristic. The closer this value is to 1.0, the
easier the instance is, meaning that there is almost no need to
bypass the obstacles and the path resembles a straight line.

Planners
We denote the planners1 proposed in this work as WA*+CF
(Weighted A* with the correction factor), FS+PPM (Focal
Search with Path Probability Map). We also evaluated a
combination of the Greedy Best First Search with PPM, de-
noted as GBPS+PPM. This planner greedily selects nodes
by their pp-values (preferring the ones with the smaller f -
values to break ties) and, thus, does not guarantee bounded
supoptimality of the solution.

The baselines that we compare against include both stan-
dard heuristic search algorithms, A* and WA*, as well
as the learnable ones. The latter are represented by the
two planners. The first one is Neural A* (Yonetani et al.
2021), the state-of-the-art planner that was shown to no-
tably outperform a range of competitors including the ap-
proaches presented in (Bhardwaj, Choudhury, and Scherer
2017; Pogančić et al. 2020) The second is the planner from
(Takahashi et al. 2019), which predicts the perfect cost-to-go
heuristic and use it in A*. We denote it as A*+HL.

We used the official code of Neural A* and modified it
to handle non-uniform move costs. Moreover, we employed
our neural network model in Neural A* to provide a fairer
comparison (the performance of Neural A* with the origi-
nal neural network was significantly worse). Similarly, we
used our neural network for predicting cost-to-go heuristic
in A*+HL. For bounded sub-optimal planners, i.e. WA* and

1The source code of our planners is publicly available at https:
//www.github.com/AIRI-Institute/TransPath

Optimal Found Cost Expansions
Ratio (%) ↑ Ratio (%) ↓ Ratio (%) ↓

A* 100 100 100
WA* 40.66 103.52 ±4.85 44.43 ±25.92

Neural A* 29.82 104.90 ±6.56 52.30 ±30.47
A*+HL 79.11 100.27 ±0.62 80.50 ±74.40

WA*+CF 85.40 100.25 ±1.13 36.98 ±21.18
FS+PPM 82.97 100.24 ±0.74 26.36 ±21.08

GBFS+PPM 83.02 100.25 ±0.90 23.60 ±18.34

Table 1: Experimental results. Values before ± indicate the
average, while after ± – the standard deviation.

FS+PPM, we set the sub-optimality factor as w = 2, as this
value provided the best trade-off between path length and
computation time for WA*.

Training Setup
To train the neural networks predicting cf -values, pp-values
and cost-to-go estimates (for A*+HL), we use the same
setup. We train each model using Adam optimizer (Kingma
and Ba 2014) for 35 epochs with a batch size of 512
and OneCycleLR learning rate scheduler (Smith and Topin
2018) at a maximum learning rate of 4 × 10−4. We use L2

loss for cf -values, pp-values and L1 loss for the cost-to-go
estimates following (Takahashi et al. 2019). It took us 3.5
hours to train each model on NVIDIA A100 80GB GPU.

We trained Neural A* on our training data with the same
training setup as in the original work. It took us 16 hours to
learn the model on our hardware, four times more compared
to cf -/pp-values. This is expected, as Neural A* is trained
with the differentiable A* in the loop.

Results
We were primarily interested in the following performance
metrics: Expansions Ratio – the ratio of the number of ex-
pansions performed by the planner to the number of A* ex-
pansions; Cost Ratio – the same ratio but for the solution
cost; and Optimal Found Ratio – the ratio of instances opti-
mally solved by the planner.

Table 1 shows the average values and standard error of
these indicators for the test dataset, while Fig. 4 highlights

12441



FS+PPM (w = 4) w/ Trans w/o Trans
Optimal Found Ratio (%) 85.22 61.74
Average Cost Ratio (%) 100.31 ± 1.58 101.12 ± 2.19

Average Expansions Ratio (%) 16.06 ± 11.57 19.65 ± 17.03
MSE ×10−3 3.2 5.3

Table 2: Ablation study results. Values before ± indicate the
average, while after ± – the standard deviation.

several test instances with the solutions obtained by the eval-
uated algorithms and the nodes they expand. Clearly, all the
learning-based planners are able to generalize to the un-
seen instances solving them near-optimally while reducing
the search effort. In terms of Cost Ratio, the best results
were demonstrated by FS+PPM, while the other our planner,
WA*+CF, turned out to outperform the competitors in terms
of number of the instances solved optimally. The number
of reduced expansions varied significantly for all algorithms
(see the third column after the ± sign), and, evidently, in cer-
tain cases one of the learnable planners, i.e. A*+HL, man-
aged to expand more nodes than A*. Still, the techniques
suggested in this work, in particular, predicting pp-values
in combination with FS and GBFS, managed to reduce the
number of the expansions significantly (up to four times ap-
proximately) in numerous cases, as the average value of the
Expansions Ratio tells us.

Runtime breakdown We measured the runtime of the
compared methods, though it is heavily dependent on the im-
plementation and the hardware. E.g. Neural A* is fully im-
plemented in Python, while our planners feature both Python
for neural networks’ machinery and C++ for the search.
Thus, it is not correct to directly compare their runtimes. To
this end, we do not report the runtime of Neural A*. As for
the other methods (implemented solely by us), the break-
down of their runtimes are as follows. The prediction step
for the batch size of 64 and the native torch float32 type
required 9.5ms on Tesla A100 GPU (and 40ms on GTX
1660S). The average CPU time required for further solving
this batch of 64 tasks: A* – 155ms, WA* – 77ms, WA*+CF
– 60ms, A*+HL – 96ms, FS+PPM – 37ms, GBFS+PPM –
31ms.

Evaluation on Out-of-the-Distribution Dataset
We additionally evaluated all the considered planners on a
range of maps that differ significantly in topology and size
from the maps of TMP dataset (without any additional train-
ing). For extra details and results of this experiment, see the
arXiv version of the paper2. Overall, the results are simi-
lar to the ones reported above: our methods outperform the
competitors.

Ablation Study
To demonstrate the importance of using the Transformer
block in the neural network, we created a version of the lat-
ter that omits this block and is composed only of the con-
volutional layers (CNN model). We trained this neural net-
work similarly to the baseline model. To compare them, we

2https://arxiv.org/abs/2212.11730

CNN model Transformer

Pa
th

 p
ro

ba
bi

lit
y 

m
ap

Se
ar

ch
 re

su
lts

Figure 5: An example showing the difference between the
CNN (only) model and the one with the Transformer block.

selected tasks with the hardness exceeding 1.5 as we hy-
pothesize that utilizing transformer is especially useful for
non-trivial instances. Quantitative results are presented in
Table 2, while qualitative results are given in Fig. 5 (for the
sake of space we demonstrate the results for FS+PPM only,
as the results for WA*+CF are similar).

Clearly, the usage of Tansformer block notably increases
the performance across all of the considered metrics, as Ta-
ble 2 tells us. The last row reports the mean squared error
(MSE) between the predictions of the neural network and
the ground-truth values.

As Fig. 5 shows, transformer allows us to capture the
long-range dependencies between the regions of interest on
the map and, consequently, to form a complex and accu-
rate PPM, which aids the search algorithm substantially. The
PPM of the CNN model is, however, fragmented, and, as
a result, a less natural-looking path is produced while the
number of expansions is higher.

Conclusion
In this work, we have explored how state-of-the-art deep
learning techniques may aid heuristic search planners in
solving grid-based pathfinding problems. We have suggested
utilizing a deep neural network composed of both convolu-
tional and attention layers to predict several novel heuristics
that can be used in combination with Weighed A* and Focal
Search. We have shown empirically that the suggested plan-
ners were able to successfully solve challenging problems
(unseen at the training phase) and outperform the competi-
tors that include both traditional heuristic search techniques
as well as the state-of-the-art learnable approaches.

The avenues for future research include, but are not lim-
ited to, planning in 3D, planning with kinodynamic con-
straints (including sample-based planning), etc.

12442



Acknowledgments
We would like to thank anonymous reviewers for their
thoughtful comments that contributed to improving the pa-
per. We would also like to thank Natalia Soboleva, Alexei
Artemov, and Vasilii Davydov for their involvement in the
preliminary studies on the topic of the paper.

References
Bhardwaj, M.; Choudhury, S.; and Scherer, S. 2017. Learn-
ing heuristic search via imitation. In Proceedings of The 1st
Conference on Robot Learning (CoRL 2017), 271–280.
Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn,
D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.;
Heigold, G.; Gelly, S.; Uszkoreit, J.; and Houlsby, N. 2021.
An Image is Worth 16x16 Words: Transformers for Im-
age Recognition at Scale. In Proceedings of The 9th In-
ternational Conference on Learning Representations (ICLR
2021).
Greco, M.; Toro, J.; Hernández-Ulloa, C.; and Baier, J. A.
2022. K-Focal Search for Slow Learned Heuristics. In Pro-
ceedings of The 15th International Symposium on Combina-
torial Search (SoCS 2015), 279–281.
Han, K.; Wang, Y.; Chen, H.; Chen, X.; Guo, J.; Liu, Z.;
Tang, Y.; Xiao, A.; Xu, C.; Xu, Y.; Yang, Z.; Zhang, Y.; and
Tao, D. 2022. A Survey on Vision Transformer. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 1–1.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE transactions on Systems Science and Cybernet-
ics, 4(2): 100–107.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep Residual
Learning for Image Recognition. In Proceedings of The 29th
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR 2016), 770–778.
Janner, M.; Du, Y.; Tenenbaum, J.; and Levine, S. 2022.
Planning with Diffusion for Flexible Behavior Synthesis. In
Proceedings of The 39th International Conference on Ma-
chine Learning (ICML 2022), 9902–9915.
Kingma, D. P.; and Ba, J. 2014. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980.
Li, T.; Chen, R.; Mavrin, B.; Sturtevant, N. R.; Nadav, D.;
and Felner, A. 2022. Optimal Search with Neural Networks:
Challenges and Approaches. In Proceedings of The 15th
International Symposium on Combinatorial Search (SoCS
2015), 109–117.
Li, Z.; Chen, Q.; and Koltun, V. 2018. Combinatorial Op-
timization with Graph Convolutional Networks and Guided
Tree Search. Proceedings of The 32nd Conference on Neu-
ral Information Processing System (NeurIPS 2018).
Nash, A.; Daniel, K.; Koenig, S.; and Felner, A. 2007.
Theta*: Any-Angle Path Planning on Grids. In Proceed-
ings of The 22nd AAAI Conference on Artificial Intelligence
(AAAI 2007), 1177–1183.
Pándy, M.; Qiu, W.; Corso, G.; Veličković, P.; Ying, Z.;
Leskovec, J.; and Lio, P. 2022. Learning Graph Search
Heuristics. In Proceedings of The 1st Learning on Graphs
Conference (LoG 2022), 10:1–10:13.

Panov, A. I.; Yakovlev, K. S.; and Suvorov, R. 2018. Grid
path planning with deep reinforcement learning: Preliminary
results. Procedia computer science, 123: 347–353.
Pearl, J.; and Kim, J. H. 1982. Studies in semi-admissible
heuristics. IEEE transactions on pattern analysis and ma-
chine intelligence, (4): 392–399.
Pogančić, M. V.; Paulus, A.; Musil, V.; Martius, G.; and Ro-
linek, M. 2020. Differentiation of blackbox combinatorial
solvers. In Proceedings of The 8th International Conference
on Learning Representations (ICLR 2020).
Ramachandran, P.; Zoph, B.; and Le, Q. V. 2017. Searching
for activation functions. arXiv preprint arXiv:1710.05941.
Rivera, N.; Hernández, C.; Hormazábal, N.; and Baier, J. A.
2020. The 2ˆ k Neighborhoods for Grid Path Planning. Jour-
nal of Artificial Intelligence Research, 67: 81–113.
Smith, L. N.; and Topin, N. 2018. Super-Convergence: Very
Fast Training of Residual Networks Using Large Learning
Rates. arXiv preprint arXiv:1708.07120.
Soboleva, N.; and Yakovlev, K. 2019. GAN Path Finder:
Preliminary Results. In Proceedings of the 42nd German
Conference on AI (KI 2019), 316–324.
Speck, D.; Biedenkapp, A.; Hutter, F.; Mattmüller, R.; and
Lindauer, M. 2021. Learning Heuristic Selection with Dy-
namic Algorithm Configuration. In Proceedings of The
31st International Conference on Automated Planning and
Scheduling (ICAPS 2021), 597–605.
Takahashi, T.; Sun, H.; Tian, D.; and Wang, Y. 2019. Learn-
ing heuristic functions for mobile robot path planning using
deep neural networks. In Proceedings of The 29th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS 2019), 764–772.
Tamar, A.; Wu, Y.; Thomas, G.; Levine, S.; and Abbeel, P.
2016. Value iteration networks. In Proceedings of The 30th
International Conference on Neural Information Processing
Systems (NeurIPS 2016), 2154–2162.
Tan, M.; and Le, Q. 2019. Efficientnet: Rethinking model
scaling for convolutional neural networks. In Proceedings
of The 36th International conference on machine learning
(ICML 2019), 6105–6114.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. At-
tention is all you need. In Proceedings of the 31st Confer-
ence on Neural Information Processing Systems (NeurIPS
2017).
Yonetani, R.; Taniai, T.; Barekatain, M.; Nishimura, M.; and
Kanezaki, A. 2021. Path Planning Using Neural A* Search.
In Proceedings of The 38th International Conference on Ma-
chine Learning (ICML 2021), 12029–12039.

12443


