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Abstract

Very recently, the first mathematical runtime analyses for
the NSGA-II, the most common multi-objective evolution-
ary algorithm, have been conducted. Continuing this re-
search direction, we prove that the NSGA-II optimizes the
OneJumpZeroJump benchmark asymptotically faster when
crossover is employed. Together with a parallel independent
work by Dang, Opris, Salehi, and Sudholt, this is the first
time such an advantage of crossover is proven for the NSGA-
II. Our arguments can be transferred to single-objective op-
timization. They then prove that crossover can speed up the
(µ + 1) genetic algorithm in a different way and more pro-
nounced than known before. Our experiments confirm the
added value of crossover and show that the observed advan-
tages are even larger than what our proofs can guarantee.

Introduction
The theory of randomized search heuristics (Auger and
Doerr 2011) has greatly improved our understanding of
heuristic search, in particular, via mathematical runtime
analyses. Due to the complicated nature of the stochastic
processes describing runs of these algorithms, mostly very
simple, often synthetic, heuristics could be analyzed so far.
Very recently, however, Zheng, Liu, and Doerr (2022) con-
ducted a runtime analysis for the NSGA-II (Deb et al. 2002),
the most common evolutionary multi-objective (EMO) al-
gorithm (47000 citations on Google scholar). This work was
quickly followed up in different directions (Zheng and Doerr
2022a; Bian and Qian 2022; Doerr and Qu 2022b; Zheng
and Doerr 2022b; Doerr and Wietheger 2022). The majority
of these studies regards a simplified version of the NSGA-II
that does not use crossover. Only in (Bian and Qian 2022) an
NSGA-II with crossover is analyzed, but the runtime guar-
antees shown there were not better than those shown before
for the mutation-only NSGA-II.

In this work, we conduct the (together with the paral-
lel work (Dang et al. 2023)) first mathematical runtime
analysis of the NSGA-II with crossover that proves runtime
guarantees asymptotically stronger than those known for
the NSGA-II without crossover. To this aim, we regard the
ONEJUMPZEROJUMP benchmark (Doerr and Zheng 2021),
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which is a bi-objective version of the classic JUMP bench-
mark intensively studied in the analysis of single-objective
search heuristics. The mutation-based NSGA-II with popu-
lation size N at least four times the size of the Pareto front
computes the Pareto front of this problem in expected time
(number of function evaluations) O(Nnk), where n is the
length of the bit-string representation and k is the jump size,
a difficulty parameter of the problem (Doerr and Qu 2022b).
The authors say that they believe this bound to be tight,
but prove a lower bound of Ω(nk) only. That work includes
preliminary experiments that show performance gains from
crossover, but without proving them or giving additional in-
sights on why they arise.

Our main result is that the NSGA-II using crossover
with a constant rate solves this problem in expected time
O(N2nk/Θ(k)k). This is faster than the previous bound and
the Ω(nk) lower bound when k ≥ c log(N)/ log log(N),
where c is a suitable constant. The key to proving this perfor-
mance advantage is a careful analysis of how the NSGA-II
arrives at having substantially different solutions with the
same objective value in its population. This appears to be an
advantage of the NSGA-II over algorithms previously ana-
lyzed mathematically such as the SEMO or global SEMO,
where for each objective value at most one solution is kept
in the population.

As a side result, we observe that our arguments for prov-
ing diversity in the population can also be used in single-
objective optimization. This way we show that the (µ + 1)
genetic algorithm (GA) – without additional diversity mech-
anisms or other adjustments favoring crossover – optimizes
the jump function with encoding length n and jump size k
in time O(µk+1nk/Θ(k)k). This result holds for all n,
2 ≤ k = o(

√
n), and 2 ≤ µ. For many parameter val-

ues, this compares favorably with the known Ω(nk) run-
time of the mutation-only analog of the (µ+ 1) GA, the so-
called (µ+ 1) EA. Different from the previous analyses of
the (µ+ 1) GA on JUMP in (Dang et al. 2018; Doerr et al.
2022), our result shows super-constant speed-ups already for
constant population sizes and our speed-ups increase with
the problem difficulty k.

Our experimental results confirm the advantages of
crossover for both the NSGA-II and the (µ+ 1) GA. The
advantages observed are even stronger than what our proofs
guarantee. We note that it is not uncommon that mathemat-
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ical runtime analyses cannot prove all advantages of an al-
gorithm visible in experiments. In return, they give proven
results and explanations on how the advantages arise.

Overall, our results give a strong mathematical justifica-
tion for using the NSGA-II with crossover as proposed in the
original work (Deb et al. 2002). Our new analysis methods
promise to be applicable also to other randomized search
heuristics using crossover, as demonstrated briefly on the
(µ+ 1) GA.

We note that a similar result appeared in the parallel inde-
pendent work (Dang et al. 2023). There a problem was con-
structed for which the mutation-based NSGA-II has an ex-
ponential runtime, but with crossover the runtime becomes
polynomial. From the main proof arguments, it appears un-
likely that this result has a single-objective analog.

Previous Works
Since this work conducts a mathematical runtime analysis
of a classic, crossover-based EMO algorithm, let us briefly
describe the state of the art in runtime analysis with respect
to EMO algorithms and crossover.

Mathematical runtime analyses have a long history in the
field of heuristic search, cf. (Sasaki and Hajek 1988; Bäck
1993; Gutjahr 2008; Neumann and Witt 2015; Lissovoi and
Oliveto 2018; Lissovoi, Oliveto, and Warwicker 2019) or the
textbooks (Neumann and Witt 2010; Auger and Doerr 2011;
Jansen 2013; Doerr and Neumann 2020). While often re-
stricted to simple algorithms and problems, the mathemati-
cal nature of these works has led to many deep insights that
could not have been obtained with empirical methods.

The mathematical runtime analysis of EMO algorithms
was started in (Laumanns et al. 2002; Giel 2003; Thierens
2003). As in the theory of single-objective heuristics, these
and most subsequent works analyzed simple synthetic al-
gorithms. At the last AAAI conference, the first runtime
analysis of the NSGA-II algorithm (Deb et al. 2002),
the most common EMO algorithm in practice, was pre-
sented (Zheng, Liu, and Doerr 2022). It proved that the
NSGA-II with suitable population size can find the Pareto
front of the ONEMINMAX and LOTZ benchmarks in the
same asymptotic runtimes that were shown previously for
the SEMO and GSEMO synthetic algorithms. This result
is remarkable in that the NSGA-II has much more com-
plex population dynamics than the (G)SEMO. In particular,
it can lose desirable solutions due to the complex selection
mechanism building on non-dominated sorting and crowd-
ing distance (and this was proven to happen consistently
when the population size is equal to the size of the Pareto
front (Zheng, Liu, and Doerr 2022)).

Zheng and Doerr (2022a) proved that the NSGA-II with a
smaller population size can still compute good approxima-
tions of the Pareto front. For this, however, a mild modifica-
tion of the selection mechanism, proposed earlier (Kukko-
nen and Deb 2006), was needed. Doerr and Qu (2022b)
conducted the first mathematical runtime analysis of the
NSGA-II on a problem with multimodal objectives. Again,
the NSGA-II was found to be as effective as the (G)SEMO
algorithms when the population size was chosen suitably.

The three works just discussed consider the NSGA-II as
proposed in the original work (Deb et al. 2002) except that
they do not employ crossover. The only runtime analysis of
the NSGA-II with crossover (prior to this work and the par-
allel work (Dang et al. 2023)) was conducted by Bian and
Qian (2022), namely on the COCZ, ONEMINMAX, and
LOTZ benchmarks. The runtime guarantees shown there
agree with the ones of Zheng, Liu, and Doerr (2022), so no
advantage of crossover was shown. Bian and Qian (2022)
also proposed a novel selection mechanism that gives con-
siderable speed-ups.

The question of whether crossover, that is, generating new
solutions from two existing ones, is useful or not, is as old
as the area of genetic algorithms. Despite its importance, we
are still far from having a satisfying answer. It is clear that at
all times, the vast majority of evolutionary algorithms used
in practice employ crossover. A solid scientific proof for the
usefulness of crossover, however, is still missing.

As an example of one of many unsuccessful attempts
to explain the power of crossover, we cite the building-
block hypothesis (BBH) (Holland 1975), which states that
crossover is effective because it allows combining small
profitable segments of different solutions. While very con-
vincing on the intuitive level, a simple experimental analysis
on a synthetic problem perfectly fulfilling the assumptions
of the BBH raised some doubts. In (Mitchell, Forrest, and
Holland 1992), a simple randomized hill-climber was found
to solve the proposed Royal-Road problem around ten times
faster than a comparably simple genetic algorithm using
crossover.

Theoretical approaches have been used as well to demon-
strate the usefulness of crossover, but again mostly with lim-
ited success. The works closest to ours in single-objective
optimization regard the JUMP benchmark, which looks like
an ideal example for exploiting crossover. Surprisingly, it
was much harder than expected to show that crossover
is profitable here. The early analyses (Jansen and We-
gener 2002; Kötzing, Sudholt, and Theile 2011) managed
to show an advantage from crossover only with an unre-
alistically small crossover probability. Dang et al. (2018)
for the first time showed that a standard (µ+ 1) GA with
standard parameters optimizes jump functions faster with
crossover than without. Other examples proving advantages
of crossover include (Sudholt 2005; Lehre and Yao 2011;
Doerr, Happ, and Klein 2012; Doerr, Doerr, and Ebel 2015;
Dang et al. 2016; Sutton 2021; Antipov, Doerr, and Karavaev
2022), but they appear specific to a particular problem or a
particular algorithm.

In multi-objective optimization, so far only three mathe-
matical runtime analyses showing an advantage of crossover
exist. Neumann and Theile (2010) proved that crossover is
useful when solving multi-criteria versions of the all-pairs-
shortest-path (APSP) problem. This work follows the ideas
of the corresponding single-objective result (Doerr, Happ,
and Klein 2012). Both are somewhat problem-specific in the
sense that the formulation of the APSP problem automati-
cally leads to a very strong diversity mechanism, from which
crossover substantially profits in both works.
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Qian, Yu, and Zhou (2013) showed a substantial advan-
tage from crossover, among others, for the classic COCZ
problem. For this, however, a novel initialization is used
which, for this problem, results in the initial and all subse-
quent populations containing both the all-ones and the all-
zeroes string. It is clear that this strong diversity greatly
helps crossover to become effective.

Both these works regard the SEMO and GSEMO algo-
rithms, two synthetic algorithms proposed for theoretical
analyses (Laumanns et al. 2002; Giel 2003). Given this and
the particularities of the results, the diversity mechanism im-
plicit in the APSP problem and the particular initialization in
Qian, Yu, and Zhou (2013), it is not clear to what extent the
insight that crossover is beneficial can be expected to gener-
alize to the broader EMO field.

The third work showing an advantage of crossover in
EMO optimization is (Huang et al. 2019). Since it discusses
a decomposition-based algorithm, it is very far from our
work and we do not detail it further.

Preliminaries
The NSGA-II Algorithm
In the interest of brevity, we only give a brief overview of
the algorithm here and refer to (Deb et al. 2002) for a more
detailed description. The NSGA-II uses two metrics to com-
pletely order any population, which are rank and crowd-
ing distance. The ranks are defined recursively based on
the dominance relation. All non-dominated individuals have
rank 1. Then, given that the individuals of ranks 1, . . . , k are
defined, the individuals of rank k+1 are those not dominated
except by individuals of rank k or smaller. This defines a par-
tition of the population into sets F1, F2,. . . such that Fi con-
tains all individuals with rank i. Individuals with lower ranks
are preferred. The crowding distance, denoted by cDis(x)
for an individual x, is used to compare individuals of the
same rank. To compute the crowding distances of individu-
als of rank i with respect to a given objective function fj ,
we first sort the individuals in ascending order according to
their fj objective values. The first and last individuals in the
sorted list have infinite crowding distance. For the other in-
dividuals, their crowding distance is the difference between
the objective values of their left and right neighbors in the
sorted list, normalized by the difference between the mini-
mum and maximum values. The final crowding distance of
an individual is the sum of its crowding distances with re-
spect to each objective function. Among individuals of the
same rank, the ones with higher crowding distances are pre-
ferred.

The algorithm starts with a random initialization of a par-
ent population of size N . At each iteration, N children are
generated from the parent population via a variation opera-
tor, and N best individuals among the combined parent and
children population survive to the next generation based on
their ranks and, as a tie-breaker, the crowding distance (re-
maining ties are broken randomly). In each iteration, the crit-
ical rank i∗ is the rank such that if we take all individuals of
ranks smaller than i∗, the total number of individuals will
be less than or equal to N , but if we also take all individu-

als of rank i∗, the total number of individuals will be over
N . Thus, all individuals of rank smaller than i∗ survive to
the next generation, and for individuals of rank i∗, we take
the individuals with the highest crowding distance, breaking
ties randomly, so that in total exactly N individuals are kept.
In practice, the algorithm is run until some stopping crite-
rion is met. In our mathematical analysis, we are interested
in how long it takes until the full Pareto front is covered by
the population if the algorithm is not stopped earlier. For that
reason, we do not specify a termination criterion.

To create the offspring, the algorithm selects N/2 pairs of
individuals from the parent population (possibly with repe-
tition). For each pair, with probability 0.9, we generate two
intermediate offspring via a 2-offspring uniform crossover
(that is, for each position independently, with probability
0.5, the first child inherits the bit from the first parent, and
otherwise from the second parent; the bits from the two par-
ents that are not inherited by the first child make up the sec-
ond child). Bit-wise mutation is then performed on these two
intermediate offspring (that is, each bit is flipped indepen-
dently with probability 1

n ). With the remaining 0.1 probabil-
ity, this mutation is performed directly on the two parents.

Different methods can be employed to select the parents
that are used to create the offspring population (that is, the
aforementioned N/2 pairs). i) Fair selection: Each individ-
ual appears exactly once in a pair, apart from this, the pair-
ing is random. ii) Uniform selection: Each pair consists of
two random individuals. iii) N independent binary tourna-
ments: for N times, uniformly at random sample 2 different
parents and conduct a binary tournament between the two,
i.e., select the one with the lower rank, breaking ties by se-
lecting the one with the larger crowding distance, breaking
remaining ties randomly; form N/2 pairs from the winners
randomly. iv) Two-permutation tournament scheme: Gener-
ate two random permutations π1 and π2 of Pt and conduct
a binary tournament between πj(2i − 1) and πj(2i) for all
i ∈ [1..N/2] and j ∈ {1, 2}; form a pair from the two win-
ners in each interval of length 4 in a permutation.

The (µ+ 1) Genetic Algorithm

The (µ+ 1) GA maintains a population of µ individuals
which are randomly initialized at the beginning of a run. In
each generation, a new individual is created. With a constant
probability pc, it is created by selecting two parents from
the population uniformly at random, crossing them over, and
then applying mutation to the resulting offspring. With prob-
ability 1 − pc, a single individual is selected and only mu-
tation is applied. At the end of the generation, the worst in-
dividual is removed from the population, with ties broken
randomly.

Similarly to our analysis of the NSGA-II, in our analysis
of the (µ+ 1) GA, we consider applying uniform crossover
with probability pc = 0.9. Here crossover only produces one
child where each bit has 50% chance coming from the first
parent and 50% chance coming from the second. Bit-wise
mutation of rate 1

n is employed.

12401



Benchmark Problems
For x ∈ {0, 1}n, let |x|0 and |x|1 denote the number of
0-bits and 1-bits in x, respectively. Let k = [2..n/4]. The
function JUMPn,k = f : {0, 1}n → R was proposed by
Droste, Jansen, and Wegener (2002) and serves as the prime
example to study how randomized search heuristics cope
with local optima (Jansen and Wegener 2002; Jägersküpper
and Storch 2007; Doerr et al. 2017; Hasenöhrl and Sut-
ton 2018; Lissovoi, Oliveto, and Warwicker 2019; Corus,
Oliveto, and Yazdani 2020; Benbaki, Benomar, and Doerr
2021; Hevia Fajardo and Sudholt 2021; Antipov, Buzdalov,
and Doerr 2022; Doerr 2022; Rajabi and Witt 2022; Witt
2023). It is defined by

f(x) =

{
k + |x|1, if |x|1 ≤ n− k or x = 1n,

n− |x|1, else,

for all x ∈ {0, 1}n. The aim is to maximize f . It has a valley
of low fitness around its optimum, which can be crossed only
by flipping the k correct bits if no solutions of lower fitness
are accepted.

The function ONEJUMPZEROJUMPn,k = (f1, f2) :
{0, 1}n → R2, proposed by Doerr and Zheng (2021), is de-
fined by

f1(x) =

{
k + |x|1, if |x|1 ≤ n− k or x = 1n,

n− |x|1, else;

f2(x) =

{
k + |x|0, if |x|0 ≤ n− k or x = 0n,

n− |x|0, else;

for all x ∈ {0, 1}n; here |x|0 is the number of 0-bits in x.
The aim is to maximize both f1 and f2, two multimodal ob-
jectives. The first objective is the classical JUMPn,k function.
The second objective is isomorphic to the first, with the roles
of zeroes and ones exchanged.

According to Theorem 2 of Doerr and Zheng (2021), the
Pareto set of the benchmark is S∗ = {x ∈ {0, 1}n | |x|1 =
[k..n − k] ∪ {0, n}}, and the Pareto front F ∗ = f(S∗) is
{(a, 2k + n − a) | a ∈ [2k..n] ∪ {k, n + k}}, making the
size of the front n− 2k + 3. We define the inner part of the
Pareto set by S∗

I = {x | |x|1 ∈ [k..n − k]}, and the inner
part of the Pareto front by F ∗

I = f(S∗
I ) = {(a, 2k+n−a) |

a ∈ [2k..n]}.
Doerr and Zheng (2021) proved that the SEMO cannot

optimize this benchmark. The GSEMO can and does so in
expected time O(nk+1). Doerr and Qu (2022b) showed that
when using a population of size N ≥ 4(n − 2k + 3) to op-
timize this benchmark, the NSGA-II algorithm never loses a
Pareto-optimal solution value once found. Then O(nk) iter-
ations are needed in expectation to find the full Pareto front
(all Pareto optimal solution values).

Runtime Analysis of the NSGA-II
In this section, we analyze1 the complexity of the crossover-
based NSGA-II algorithm with population size N = c(n −

1For reasons of space, some proofs had to be omitted in this
extended abstract. They can be found in the preprint (Doerr and Qu
2022a).

2k + 3) for some c > 4. We consider all four different ways
of selecting the parents for variation described in the previ-
ous section. For any generation t of a run of the algorithm,
we use Pt to denote the parent population and Rt to denote
the combined parent and offspring population. For individu-
als x and y, we use H(x, y) to denote the Hamming distance
between x and y.

Doerr and Qu (2022b) proved that the NSGA-II in an
expected time (number of fitness evaluations) of O(Nnk)
covers the entire Pareto front of the ONEJUMPZEROJUMP
benchmark. This time mostly stems from the waiting times
to generate the extremal points on the front, i.e., the all-
zeroes string 0n and the all-ones string 1n. Since individ-
uals with lower fitness values are not kept in the population,
these two extremal points can only be created from individ-
uals with i ∈ [k..n− k] 1-bits. Crossing the fitness valley of
length k happens for an individual with probability Θ(n−k),
resulting in the O(Nnk) runtime.

To profit from crossover, we exploit the fact that there
can be diverse individuals at the outermost points of F ∗

I .
For example if in a Pt there are two individuals x and y
such that |x|1 = |y|1 = n − k and x and y are different,
i.e., H(x, y) = 2d for d ≥ 1, crossing them over creates
an individual z such that |z|1 = n − k + d with proba-
bility Θ( 1

22d
). Then mutating z gives 1n with probability

Θ( 1
nk−d ). Therefore, the probability that 1n is generated in

iteration t is Ω( 1
22dnk−d ), making the waiting time smaller

than O(nk). Following this idea, our analysis focuses on the
runtime needed to create, maintain, and in the end, take ad-
vantage of such diversity at the outermost points of F ∗

I .
First, some observations on the selection and survival

probabilities of rank-1 individuals will help us argue that di-
versity can be created and maintained.

Lemma 1. Consider an iteration t of the NSGA-II algo-
rithm optimizing the ONEJUMPZEROJUMPn,k benchmark
with population size N = c(n − 2k + 3) for some c > 4.
With any of the four selection methods, the probability that
two rank-1 individuals x, y ∈ Pt are both selected to mutate
in iteration t is Θ(1).

Lemma 2. Consider an iteration t of the NSGA-II algo-
rithm optimizing the ONEJUMPZEROJUMPn,k benchmark
with population size N = c(n − 2k + 3) for some c > 4
where F ∗ ⊈ f(Rt). Suppose x and y are two rank-1 indi-
viduals in Rt. Then with probability at least ( c−4

2c )2, we have
x, y ∈ Pt+1.

Now, we give a lemma on the runtime needed to create
and maintain diversity at the outermost points of F ∗

I . The
idea is that in an iteration t, through mutation, an individual
x with n − k 1-bits can generate an individual y with the
same number of 1-bits but different from x (e.g., H(x, y) =
2), creating diversity among individuals with n − k 1-bits.
Then by Lemma 2, x and y survive to iteration t + 1 with a
constant probability, where further diversity can be created
in the same way. Accumulating diversity in k iterations, we
will have two individuals both with n− k 1-bits and having
a Hamming distance of 2k.
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Lemma 3. Consider an iteration t of the NSGA-II algo-
rithm optimizing the ONEJUMPZEROJUMPn,k benchmark
for k = o(

√
n) with population size N = c(n− 2k + 3) for

some c > 4. With any of the four parent selection methods,
applying uniform crossover with probability 0.9 and bit-wise
mutation, if there is x ∈ Pt such that |x|1 = n − k, then in
another O( (Kn)k

(k−1)! ) iterations, for K = ( 2c
c−4 )

2, in expecta-
tion, the parent population will contain x and y such that
|x|1 = |y|1 = n− k and H(x, y) = 2k.
Theorem 4. Consider an iteration t of the NSGA-II algo-
rithm optimizing the ONEJUMPZEROJUMPn,k benchmark
for k = o(

√
n) with population size N = c(n− 2k + 3) for

some c > 4. Suppose 1n /∈ Pt. With any of the four parent
selection methods, applying uniform crossover with proba-
bility 0.9 and bit-wise mutation, if there is x ∈ Pt such that
|x|1 = n − k, then in expectation the algorithm needs an-
other O(N

2(Cn)k

(k−1)! ) fitness evaluations, for C = ( 4c
c−4 )

2, to
find 1n.

Note that the case for finding 0n is symmetrical. There-
fore, it takes O(N(Cn)k

(k−1)! ) iterations to find both 1n and 0n. To
cover any other point on the front, since there is a 0.1 chance
that crossover is not applied and since covered points remain
covered, the O(Nn log n) time for covering the whole inner
part of the Pareto front shown in Doerr and Qu (2022b) re-
mains valid (and is a lower order term compared to the time
to generate the extremal points). In conclusion, in total, with
uniform crossover happening at a constant probability, the
number of iterations taken is O(N(Cn)k

(k−1)! ).
Our analysis has revealed that the advantage of using

crossover comes from the fact that now the algorithm does
not need to flip all k bits at once to cross the fitness valley.
Still, k bits need to be flipped for an individual x with n− k
bits of 1 to create another individual with n−k bits of 1 that
is different enough from x so that the two can produce 1n

by only crossover. This explains the nk term in the runtime
proven. However, now these k bits can be flipped one at a
time in k iterations, and this happens with probability larger
than flipping them all at once since at each iteration the al-
gorithm only needs to flip one bit from multiple available
choices. This explains the 1

(k−1)! term in the proven run-
time. We note that a disadvantage is that flipping one bit at a
time means the diversity needed is created in k iterations and
in all these k iterations, the diversity that has been created
so far needs to be maintained, which is where the Ck term
in the runtime comes from. Another disadvantage is that in
the end, creating the extremal point through only crossover
requires pairing up two particular individuals, which hap-
pens with probability Θ(1/N) only. Therefore, crossover
brings an asymptotic speed-up only when (k−1)! outweighs
NCk, i.e., when k ≥ c log(N)/ log log(N) where c is a
suitably large constant. Our experiments, however, show that
crossover is profitable already from k = 2 on.

Runtime Analysis of the (µ+ 1) GA
Dang et al. (2018) showed that the (µ + 1) GA with pop-
ulation size µ = O(n) optimizes the JUMPn,k function,

k ≥ 3, in expected time O( nk

min{µ,n/ logn} ). Hence for
µ = Θ(n/ log n), a speed-up from crossover of Ω(n/ log n)
was shown. The proof of this result builds on a complex
analysis of the population dynamics. With additional argu-
ments, the requirements on µ were relaxed in (Doerr et al.
2022), but still a logarithmic population size was needed to
obtain a speed-up of Ω(n). In this section, we provide a sim-
pler analysis using the insights from the previous section and
prove that crossover is helpful even when µ is Θ(1).

Dang et al. (2018, Lemma 1) showed that the expected
time that the algorithm takes so that the entire population
reaches the local optimum, i.e., all individuals have n − k
bits of 1, is O(n

√
k(µ log µ + log n)). We reuse this result,

but now show that after the entire population has reached the
local optimum, crossover decreases the waiting time to find
the all-ones string with the (µ+1) GA in a similar fashion as
for the NSGA-II. We note that crossover does not interfere
with mutation, so as in (Doerr and Qu 2022b) we have an
Ω(n−k) chance to generate the extremal points via mutation
and thus have an O(nk) iterations runtime guarantee also
when crossover is used with rate 0.9.
Lemma 5. Consider the (µ+1) GA optimizing the JUMPn,k
function with k = o(

√
n), applying uniform crossover with

probability 0.9 and bit-wise mutation. Suppose that in some
iteration t the entire population is at the local optimum.
Then in another O((10eµ+1

µ−1 )
kµk−1k nk

k! ) iterations in ex-
pectation, the population contains x and y such that |x|1 =
|y|1 = n− k and H(x, y) = 2k.
Theorem 6. Consider the (µ + 1) GA optimizing
the JUMPn,k function, applying uniform crossover with
probability 0.9 and bit-wise mutation. The number
of iterations needed in expectation is O((40eµ(µ +

1))k( 1
µ−1 )

k−1 10e
9

nk

(k−1)! ) + n
√
k(µ log µ+ log n)).

The runtime proven in Theorem 6 is minimized when
µ = Θ(1). Take µ = 2 for example. There the speed-up
compared with the expected Θ(nk) runtime of EAs with-
out crossover is Ω( (k−1)!

(240e)k
), which is a real speed-up for

k = ω(1). In Dang et al. (2018), crossover is only shown
to lead to speed up when µ is large. Specifically, for k = 2,
the best speed-up is observed for µ = Θ(

√
n/ log n) and

for k ≥ 3, the best speed-up is observed for µ = Θ(n).
For µ = Θ(1) however, no real speed-up can be inferred
from Dang et al. (2018). Our arguments here demonstrate
that crossover is helpful for the (µ+1) GA even for a small
population.

Experiments
To complement our theoretical results, we also experimen-
tally evaluate some runs of the NSGA-II algorithm on the
ONEJUMPZEROJUMP benchmark, and the (µ + 1) GA on
the JUMP benchmark.

NSGA-II Optimizing ONEJUMPZEROJUMP
Settings We implemented the algorithm as described in
the preliminaries section in Python. We regarded the prob-
lem sizes n = 50 and n = 100 and the jump size k = 2.
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pc = 0 pc = 0.9
n = 50, N = 2(n− 2k + 3) 247,617 190,577
n = 50, N = 4(n− 2k + 3) 416,284 147,921
n = 100, N = 2(n− 2k + 3) 2,411,383 1,954,681
n = 100, N = 4(n− 2k + 3) 3,858,084 1,322,046

Table 1: Average runtime of the NSGA-II on the ONE-
JUMPZEROJUMP benchmark with k = 2.

We used the population sizes N = 2(n − 2k + 3) and
N = 4(n−2k+3) and employed fair selection for variation.
With probability pc, uniform crossover is applied followed
by bit-wise mutation, otherwise only mutation is performed.
We regarded the crossover rates pc = 0 (no crossover) and
pc = 0.9. We conducted 10 independent repetitions per set-
ting.

We note that Doerr and Qu (2022b) already present some
results on the runtime (for k = 3, N/(2n− k+3) = 2, 4, 8,
and n = 20, 30, 40). Therefore, we chose these settings
to present new data points, in particular, for smaller k and
larger problem sizes.

Results Table 1 contains the average number of fitness
evaluations taken by the NSGA-II algorithm to cover the en-
tire Pareto front of the ONEJUMPZEROJUMPn,k benchmark
for n ∈ {50, 100} and k = 2. For all results, a standard
deviation between 50% to 80% of the mean was observed.

The data clearly supports our claim that crossover speeds
up the NSGA-II on the ONEJUMPZEROJUMP benchmark
(by a factor of between 1.2 and 2.9). The benefit of crossover
is much more pronounced for the larger of the two popula-
tion sizes. We suspect that this is because when the popula-
tion becomes larger, there will be more individuals close to
the outermost points of F ∗

I . As a result, it is easier for the al-
gorithm to reach and maintain diversity there, which as our
analysis has suggested, is what makes crossover beneficial.

The runtimes for k = 3 (and smaller problem sizes) re-
ported by Doerr and Qu (2022b) showed speed-ups from
crossover between a factor of 3.9 and 9. This fits our math-
ematical analysis which showed more significant speed-ups
for larger problem difficulties k.

To support our reasoning on how efficient crossover could
be for different population sizes, we have also recorded for
n = 50 the diversity among the individuals with k and n−k
bits of 1 throughout the runs of the experiments. Specifi-
cally, for every nk/50 iterations, we look at the individuals
in the parent population with k and n − k bits of 1. Among
all individuals with k bits of 1, we calculate the Hamming
distances between any two individuals, and record the maxi-
mum distance divided by 2. This number gives us an idea of
how much a lucky crossover can decrease the waiting time
of finding 0n, since as discussed in our analysis, pairing up
two individuals with k bits of 1 whose hamming distance
is 2d means there is an Ω( 1

22dnk−d ) chance of creating the
all-zeroes string. We do the same for the individuals with
n − k bits of 1. Note that the greatest this number can be
is k. Since as shown in Doerr and Qu (2022b), the runtime
is dominated by the waiting time needed to find the all-ones

and the all-zeroes strings after the inner part of the Pareto
front has been covered, we are mostly interested in how the
diversity develops in that phase. To this end, we discard data
points recorded when the inner part of the Pareto front has
not been fully covered, and those recorded after one of the
extremal points has already been discovered. For one run of
the experiment, we average the data points recorded for k
and n − k bits of 1 together in the end. Finally we aver-
age the mean values obtained from the 10 repetitions. For
N = 2(n − 2k + 3), we have observed that the diversity
measure is 0.76±0.62, while for N = 4(n − 2k + 3), it is
0.99±0.45. This means indeed there is more diversity on the
boundaries with a larger population, explaining why with
N = 4(n − 2k + 3) the speed-up from crossover is more
than that with N = 2(n − 2k + 3). We note that this does
not mean that large population sizes are preferable since the
higher cost of one iteration has to be taken into account.
Due to the high runtimes, we do not have yet data allow-
ing us to answer this question conclusively, but preliminary
experiments for n = 50 suggest that a population size of
N = 8(n− 2k + 3) already gives inferior results.

We note that the speed-up from crossover empirically
is more profound than what we have shown theoretically.
Though it is normal that mathematical runtime guarantees
cannot capture the full strength of an algorithm, as a first at-
tempt to understand where the discrepancy comes from we
also recorded for each run how the all-ones string is gen-
erated (for the case n = 100 and N = 2(n − 2k + 3)).
As a result, among the 10 runs that we have done, 9 times
crossover has participated in the generation of 1n. Out of
these 9 times, there are 5 times where crossover by itself has
created 1n. However, for all of those 5 times, only one of the
parents has n−k = 98 1-bits, while the other parent has be-
tween 95 to 97 1-bits. Among all the runs, we have observed
only once that both of the parents have 98 bits of 1. This
suggests that crossover also profits from diversity between
individuals of different objective values, a fact not exploited
in our runtime analysis.

The (µ+ 1) GA Optimizing JUMP

Settings We implemented the algorithm as described in
the preliminaries section in Python. We use the problem
sizes n = 100 and n = 1000, a jump size of k = 4, the
population sizes µ = 2i for i = [0..9] for n = 100, and
µ = 2i for i = [5..11] for n = 1000. With 0.9 chance
uniform crossover is applied followed by bit-wise mutation,
otherwise only bit-wise mutation is performed. Each setting
was run independently 10 times.

Runtime Figure 1 gives the average number of fitness
evaluations needed for the (µ+ 1) GA to optimize JUMPn,k
for n ∈ {100, 1000}. The results confirm that crossover
is beneficial for the (µ + 1) GA optimizing JUMP as pre-
dicted from the runtime analyses in (Dang et al. 2018) and
this work. The experimental results suggest that the best
speed-up is observed for large populations (128 for n = 100
and 512 for n = 1000), different from our analysis. How-
ever, already smaller populations give significant speed-ups.
For example, when n = 100 and k = 4, merely with
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Figure 1: Average runtime of the (µ + 1) GA to optimize
JUMPn,k, k = 4, using uniform crossover with rate 0.9.

µ = 2, crossover is able to decrease the runtime from over
((1/n)k(1− 1/n)n−k)−1 ≥ 108, the expected waiting time
for a successful mutation, to 1.7×107. With µ = 4, the run-
time is further decreased to 6.3× 106. These results suggest
that the effects exploited in our analysis contribute measur-
ably significantly to the advantages of crossover, in particu-
lar, when µ = Θ(1) where the analysis in Dang et al. (2018)
could not show a speed-up.

Conclusions and Future Works
In this work, we conducted a mathematical runtime analysis
of the NSGA-II that shows a speed-up from crossover (on
the ONEJUMPZEROJUMP benchmark), already for small
population sizes (larger than four times the Pareto front,
a number required already for previous runtime analyses
of a mutation-only version of the NSGA-II). Interestingly,
the proven gain from crossover increases with the difficulty
parameter k of the ONEJUMPZEROJUMP benchmark. Our
results are very different from previous runtime analyses of
crossover-based algorithms. Hence our work has detected
a novel way how crossover-based algorithms can leave lo-
cal optima. As a side result, we show that our arguments
can be employed for the (µ+ 1) GA, showing significant
speed-ups there as well, again from small (constant) popula-
tion sizes on and increasing significantly with the difficulty
parameter k.

Our experimental results, similar to the ones in (Dang
et al. 2018), confirm the proven advantages of crossover, but
also show that crossover is much more powerful than what

the mathematical proofs could distill. For the NSGA-II, for
example, we observe considerable speed-ups already for the
smallest possible value k = 2 of the difficulty parameter.
Trying to explain these via proven results appears as an in-
teresting problem for future research.

As a second direction for further research, we note that
we did not prove any lower bounds, so we have no estimate
on how far our runtime guarantees are from the truth. So far
lower bounds have only been proven for the mutation-based
NSGA-II (Doerr and Qu 2023). Understanding the popula-
tion dynamics of a crossover-based algorithm well enough
to admit reasonable lower bounds surely needs significantly
stronger arguments since now it is not sufficient to under-
stand how many individuals with a certain objective value
exist in the population, but also their genotype is important.
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