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Abstract

Evolutionary algorithms are popular algorithms for multiob-
jective optimisation (also called Pareto optimisation) as they
use a population to store trade-offs between different objec-
tives. Despite their popularity, the theoretical foundation of
multiobjective evolutionary optimisation (EMO) is still in its
early development. Fundamental questions such as the bene-
fits of the crossover operator are still not fully understood.
We provide a theoretical analysis of well-known EMO algo-
rithms GSEMO and NSGA-II to showcase the possible ad-
vantages of crossover. We propose a class of problems on
which these EMO algorithms using crossover find the Pareto
set in expected polynomial time. In sharp contrast, they and
many other EMO algorithms without crossover require expo-
nential time to even find a single Pareto-optimal point. This is
the first example of an exponential performance gap through
the use of crossover for the widely used NSGA-II algorithm.

Introduction
Many optimisation problems have multiple conflicting ob-
jectives and the aim is to find a set of Pareto-optimal so-
lutions. Evolutionary algorithms (EAs) are general-purpose
optimisers that use principles from natural evolution such as
mutation, crossover (recombination) and selection to evolve
a population (multi-set) of candidate solutions. EAs such as
the popular algorithm NSGA-II (Deb et al. 2002) are well
suited for this task due as they are able to use their popu-
lation to store multiple trade-offs between objectives. How-
ever, the theoretical understanding of evolutionary multiob-
jective optimisation (EMO) is lagging far behind its success
in practice (Zheng, Liu, and Doerr 2022). There is little un-
derstanding on how the choice of search operators and pa-
rameters affects performance in multiobjective settings.

In single-objective evolutionary optimisation, a rigorous
theory has emerged over the past 25 years. It led to a better
understanding of the working principles of EAs via perfor-
mance guarantees and it inspired the design of novel EAs
with better performance guarantees, e. g. choosing muta-
tion rates from a heavy-tailed distribution to enable large
changes (Doerr et al. 2017), changing the order of crossover
and mutation and amplifying the probability of improving
mutations (Doerr, Doerr, and Ebel 2015), parent selection

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

preferring worse search points (Corus et al. 2021) or adapt-
ing mutation rates during the run (Doerr et al. 2019).

The importance of the crossover operator is not well un-
derstood, despite being a topic of intensive, ongoing re-
search in evolutionary computation and in population ge-
netics (Paixão et al. 2015). In single-objective optimisation
there is a body of works on the usefulness of crossover (Sud-
holt 2020, Section 8.4) on illustrative pseudo-Boolean ex-
ample problems (Jansen and Wegener 2005; Storch and We-
gener 2004; Kötzing, Sudholt, and Theile 2011; Dang et al.
2017; Sudholt 2017; Corus and Oliveto 2018; Doerr, Doerr,
and Ebel 2015) and problems from combinatorial optimisa-
tion such as shortest paths (Doerr, Happ, and Klein 2012),
graph colouring problems (Fischer and Wegener 2005; Sud-
holt 2005) and the closest string problem (Sutton 2021).

However, in EMO results are scarce. Understanding and
rigorously analysing the dynamic behaviour of EAs is hard
enough in single-objective optimisation. EMO brings about
additional challenges as there is no total order between
search points. Search points may be incomparable due to
trade-offs between different objectives. The most widely
used EMO algorithm NSGA-II (Deb et al. 2002) imposes a
total order by using non-dominated sorting (sorting the pop-
ulation according to ranks based on dominance) and a di-
versity score called crowding distance to break ties between
equal ranks. Understanding this ranking is non-trivial, and
the first rigorous runtime analyses of NSGA-II were only
published at AAAI 2022 (Zheng, Liu, and Doerr 2022).

Our contribution: We demonstrate the possible advan-
tages of crossover for EMO by presenting an example of an
n-bit pseudo-Boolean function RRMO on which the use of
crossover has a drastic effect on performance: EMO algo-
rithms like GSEMO and NSGA-II using crossover can find
the Pareto set of RRMO in expected time O(n4), whereas
if crossover is disabled, they require expected exponential
time to even find a single Pareto-optimal individual. To our
knowledge, this is the first proof of an exponential perfor-
mance gap for the use of crossover for NSGA-II. In parallel
independent work, Doerr and Qu (2023) showed a polyno-
mial gap for the use of crossover in NSGA-II.

Our result showcases the potential benefits of crossover
on a function designed to serve as a “royal road” for the suc-
cess of crossover, that is, an illustrative example of a prob-
lem where the use of crossover is essential. The design of
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RRMO is deliberately simple to support a rigorous theoreti-
cal analysis and to be suited for teaching purposes. We study
GSEMO as a simple algorithm and present a more involved
analysis for NSGA-II as the best known EMO algorithm.
Our hardness results apply to a broad class of EMO algo-
rithms to show that all (unbiased) mutation operators are in-
effective. Along the way, we refine and generalise previous
arguments from the analysis of NSGA-II (Lemma 7) about
the survival of useful search points from function-specific
arguments to general classes of fitness functions. Our work
may serve as a stepping stone towards analyses of the bene-
fits of crossover on wider problem classes, in the same way
that this was achieved for single-objective optimisation.

Related work: In single-objective optimisation, the first
proof that using crossover can speed up EAs was provided
by Jansen and Wegener (2002) for the function class JUMPk,
where a fitness valley of size k has to be crossed. For k =
log n, the performance gap was between polynomial and su-
perpolynomial times. These results were refined in (Kötzing,
Sudholt, and Theile 2011; Dang et al. 2017). The first ex-
ponential performance gap was shown by Jansen and We-
gener (2005) for a function REALROYALROAD, which en-
courages EAs to evolve strings with all 1-bits gathered in a
single block, and then 1-point crossover can easily assemble
the optimal string. A simple EA with 1-point crossover op-
timises REALROYALROAD in expected time O(n4), while
all mutation-only EAs need exponential time with over-
whelming probability. Advantages through crossover were
also proven for combinatorial problems: shortest paths (Do-
err, Happ, and Klein 2012), graph colouring problems (Fis-
cher and Wegener 2005; Sudholt 2005) and the closest string
problem (Sutton 2021). Crossover speeds up hill climbing
on ONEMAX(x) that simply counts the number of ones in
x by a constant factor (Sudholt 2017; Corus and Oliveto
2018). A cleverly designed EA called (1+(λ,λ)) GA outper-
forms the best mutation-only EAs on ONEMAX by a factor
of O(log n) (Doerr, Doerr, and Ebel 2015; Doerr and Do-
err 2018). Finally, crossover increases robustness on difficult
monotone pseudo-Boolean functions (Lengler 2020).

Early rigorous analysis of EMO focused on simple al-
gorithms, like SEMO (flipping a single bit for muta-
tion) and its variant GSEMO (using standard bit muta-
tions as a global search operator), without crossover. Lau-
manns, Thiele, and Zitzler (2004) introduced two biob-
jective benchmark functions LEADINGONESTRAILINGZE-
ROES (LOTZ) and COUNTINGONESCOUNTINGZEROES
(COCZ) to prove linear and sub-linear speed-ups in the
expected optimisation time of two variants of SEMO over
a single-individual algorithm called (1+1) EMO. Giel and
Lehre (2010) gave an example of a biobjective function on
which an exponential performance gap between SEMO and
(1+1) EMO can be proven. Covantes Osuna et al. (2020)
proposed the use of diversity measures such as crowding
distance in the parent selection for SEMO. They proved that
the use of a power-law ranking selection to select parents
ranked by the crowding distances yields a linear speed-up in
the expected optimisation time for LOTZ, and for also the
ONEMINMAX (OMM) function. Doerr and Zheng (2021)
introduced the ONEJUMPZEROJUMP function, which gen-

eralises JUMPk to the multiobjective setting, to show that
GSEMO, in contrast to SEMO, can fully cover the Pareto
set, and to further prove that the performance of GSEMO
can be improved with the use of heavy-tailed mutation.

NSGA-II (Deb et al. 2002) is a practical and hugely pop-
ular reference algorithm for EMO, however its theoreti-
cal analysis only succeeded recently. Zheng, Liu, and Do-
err (2022) conducted the first runtime analysis of NSGA-II
without crossover and proved expected time bounds O(µn2)
and O(µn log n) to find the whole Pareto set of LOTZ and
OMM, resp., if the population size µ is at least four times
the size of the Pareto set. The drawback of using a too
small population size was further studied in (Zheng and Do-
err 2022), and shown to be due to the consideration of the
same fitness multiple times. Thus an incremental procedure
to compute the crowding distances was proposed as an im-
provement to the standard algorithm. Doerr and Qu (2022)
showed that heavy-tailed mutations presented for the single
objective settings (Doerr et al. 2017) are also highly bene-
ficial for EMO. Our work is similar to these papers in the
spirit, however we generalise REALROYALROAD (Jansen
and Wegener 2005) to show the advantage of crossover.

Only a few works rigorously prove the advantages of
crossover in EMO, despite experimentally they are notice-
able (e. g. Doerr and Qu (2022)). Qian, Yu, and Zhou (2011)
proposed the REMO algorithm that initialises the popula-
tion with local optima and uses crossover to quickly fill
the Pareto set of example functions LOTZ and COCZ.
This constitutes a speedup of order n compared to the
SEMO algorithm. They later extended this work to more
general function classes and multiobjective minimum span-
ning trees (Qian, Yu, and Zhou 2013). Qian, Bian, and Feng
(2020) compared two variants of GSEMO with and without
crossover, called POSS and PORSS respectively, for the sub-
set selection problem and showed that the recombination-
based GSEMO is almost always superior. In particular, they
provide an exponential performance gap for constructed in-
stances of sub-set selection. Bian and Qian (2022) intro-
duced a new parent selection strategy named stochastic tour-
nament selection using crowding distance to favour diverse
parents as in Covantes Osuna et al. (2020) to improve the
expected running time upper bounds of LOTZ, OMM and
COCZ to O(n2). Their analysis relies on crossover to fill the
Pareto set quickly. However, the work by Covantes Osuna
et al. (2020) already showed that for SEMO on LOTZ the
same performance guarantee can be obtained through tai-
loring the parent selection mechanism and that crossover is
not required for an O(n2) bound. Finally, Doerr, Hadri, and
Pinard (2022) introduced the (1+(λ,λ)) GSEMO algorithm
and proved that it optimizes OMM in expected time O(n2),
a speedup of order log n compared to GSEMO.

Preliminaries
Consider maximising a function f(x) = (f1(x), . . . , fd(x))
where fi : {0, 1}n → N0 for 1 ≤ i ≤ d. Given two search
points x, y ∈ {0, 1}n, x weakly dominates y, denoted by
x ⪰ y, if fi(x) ≥ fi(y) for all 1 ≤ i ≤ d; and x dominates
y, denoted x ≻ y, if one inequality is strict. Each solution
that is not dominated by any other in {0, 1}n is called Pareto
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Algorithm 1 GSEMO Algorithm
1: Initialize P0 := {s} where s ∼ Unif({0, 1}n);
2: for t := 0 to ∞ do
3: Sample p1 ∼ Unif(Pt);
4: Sample u ∼ Unif([0, 1]);
5: if (u < pc) then
6: Sample p2 ∼ Unif(Pt);
7: Create s by 1-point crossover between p1 and p2;
8: else
9: Create s as a copy of p1;

10: Create s′ by bitwise mutation on s with rate 1/n;
11: if (s′ is not dominated by any individual in Pt) then
12: Create the next population Pt+1 := Pt ∪ {s};
13: Remove all x ∈ Pt+1 weakly dominated by s′;

optimal. A set of these solutions that cover all possible non-
dominated fitness values is called a Pareto/optimal set of f .

The GSEMO algorithm with 1-point crossover is shown
in Algorithm 1. Starting from a randomly generated solu-
tion, in each generation a new search point s′ is created by
crossover, with probability pc ∈ (0, 1), on parents selected
uniformly at random. Mutation then flips each bit indepen-
dently with probability 1/n. If s′ is not dominated by any
solutions of the current population Pt then it is inserted, and
those weakly dominated by s′ are removed from the popula-
tion. Thus the population size |Pt| may vary over time.

The NSGA-II (Deb et al. 2002; Deb 2011) with 1-
point crossover is shown in Algorithm 2. In each genera-
tion, a population Qt of µ offspring is created by binary
tournament, crossover and mutation. Note that the 1-point
crossover, if applied with probability pc ∈ (0, 1), produces
two offspring solutions, and that the binary tournaments
(with replacement) in line 6 uses the same criteria as the
sorting in line 17. The merged population Rt of both parents
and offspring are then partitioned into layers F 1

t+1, F
2
t+1, . . .

of non-dominated solutions and the crowding distances are
computed within each layer. Search points of Rt are then
sorted with respect to the indices of the layer that they be-
long to, as the primary criterion, and then with the computed
crowding distances, as the secondary criterion. Only the µ
best solutions of Rt are kept in the next generation.

For a set S = (x1, x2, . . . , x|S|) of search points the
crowding distances are computed for each objective and then
summed up. Thus S is sorted separately for each objective
fk (k ≤ d) and the first and last ranked individuals are as-
signed an infinite crowding distance. The remaining individ-
uals are then assigned the differences between the values of
fk of those ranked immediate above and below the search
point and normalized by the difference between fk of the
first and last ranked. Let Sk = (xk1 , xk2 , . . . , xk|S|) denote
the elements of S sorted in descending order w. r. t. fk, then
CDIST(xi, S) :=

∑d
k=1 CDISTk(xi, S) where

CDISTk(xki
, S) :=

∞ if i ∈ {1, |S|},
fk(xki−1)−fk(xki+1)
fk(xk1)−fk

(
xk|S|

) otherwise.

In a nutshell, NSGA-II is a standard (µ+λ) GA with

Algorithm 2 NSGA-II Algorithm (Deb et al. 2002)
1: Initialize P0 ∼ Unif(({0, 1}n)µ);
2: Partition P0 into layers F 1

0 , F
2
0 , . . . of non-dominated

fitnesses, then for each layer F i
0 compute the crowding

distance CDIST(x, F i
0) for each x ∈ F i

0;
3: for t := 0 to ∞ do
4: Initialize Qt := ∅;
5: for i := 1 to µ/2 do
6: Sample p1 and p2, each by a binary tournament;
7: Sample u ∼ Unif([0, 1]);
8: if (u < pc) then
9: Create s1, s2 by 1-point crossover on p1, p2;

10: else
11: Create s1, s2 as exact copies of p1, p2;
12: Create s′1 by bitwise mutation on s1 with rate 1/n;
13: Create s′2 by bitwise mutation on s2 with rate 1/n;
14: Update Qt := Qt ∪ {s′1, s′2};
15: Set Rt := Pt ∪Qt;
16: Partition Rt into layers F 1

t+1, F
2
t+1, . . . of non-

dominated fitnesses, then for each layer F i
t+1 com-

pute CDIST(x, F i
t+1) for each x ∈ F i

t+1;
17: Sort Rt lexicographically by (1/i, CDIST(x, F i

t+1));
18: Create the next population Pt+1 := (R[1], . . . , R[µ]);

Algorithm 3 Elitist (µ+λ) black-box algorithm.
1: Initialize P0 ∼ Unif(({0, 1}n)µ);
2: Query the ranking ρ(P0, f) induced by f ;
3: for t := 0 to ∞ do
4: Choose a probability distribution Dt(Pt, ρ(Pt, f)) on

{{0, 1}n}λ which only depends on its two arguments;
5: Sample Qt from Dt, and set Rt := Pt ∪Qt;
6: Query the ranking ρ(Rt, f) induced by f ;
7: Sort Rt according to ρ(Rt, f);
8: Set Pt+1 := (R[1], . . . , R[µ]);

λ = µ generalized to as multiple-objective setting. This is
done by imposing a total order on the objective space, i. e. by
sorting the population into layers of non-dominated fitnesses
and further ordering search points within a layer using the
crowding distance measure. The algorithm therefore fits in
the elitist black-box model of Algorithm 3.

In this model, adapted from Doerr and Lengler (2017), the
algorithm keeps µ best solutions, according to the ranking
function ρ(P, f), it has seen so-far and can only sample new
offspring solutions based on these elitist solutions. The rank-
ing function is deterministic and provides a ranking of all
search points seen so far. NSGA-II uses the non-dominated
sorting and the crowding distance measure for the ranking
function, but other algorithms can have different choices.

The Multi-Objective Royal Road Function
The idea behind the design of our function is to encourage
EMO algorithms to evolve a specific number of ones in a
search point x, denoted as |x|1, and then to evolve a prefix
and a suffix of zeros. We define the number of leading zeros,
LZ(x) as the length of the longest prefix in x that contains
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only zeros. Similarly, the number of trailing zeros, TZ(x),
gives the length of the longest suffix of zeros in x. For ex-
ample, for x = 0010110 we have LZ(x) = 2, TZ(x) = 1.

Our REALROYALROAD function in multi-objective set-
ting is described by a trade-off between leading zeros and
leading ones for all search points with 3n/5 ones. There
is an additional set of high-fitness search points with 4n/5
ones that can be created easily using recombination but for
which common mutation operators require exponential time.
Definition 1. For all n ∈ N divisible by 5 the bi-objective
function RRMO : {0, 1}n → N2

0 is defined as follows. Let
F := {x | |x|1 = 4n/5 ∧ LZ(x) + TZ(x) = n/5} and
G := {x | |x|1 ≤ 3n/5} ∪ F , then

RRMO(x) :=

{
(n|x|1 + TZ(x), n|x|1 + LZ(x)) if x ∈ G

(0, 0) if x /∈ G

Note that all x ∈ G strictly dominate all y /∈ G as
f(0n) = (n, n) and for x ∈ G \ {0n} both objective values
are at least n|x|1 ≥ n. Algorithms initialising their popu-
lation uniformly at random will typically start with search
points having at most 3n/5 ones, that is, only search points
in G that fall into the first case of Definition 1. Then the
function gives a strong fitness signal to increase the num-
ber of ones. In fact, every search point x ∈ G dominates all
search points y with |y|1 < |x|1. Every search point x ∈ F
dominates all search points y /∈ F . Comparing two solu-
tions x, y ∈ G with |x|1 = |y|1, x weakly dominates y if
TZ(x) ≥ TZ(y) and LZ(x) ≥ LZ(y); it strongly domi-
nates y if one of these inequalities is strict. Thus, the set

F := {0i14n/50n/5−i | 0 ≤ i ≤ n/5}
where all zeros contribute to either TZ(x) or LZ(x) is the
Pareto optimal set for RRMO and all search points in

F ′ := {0i13n/502n/5−i | 0 ≤ i ≤ 2n/5}
dominate all search points y /∈ F ′ ∪ F .

The following lemma bounds the number of non-
dominated solutions contained in any population.
Lemma 2. If S is a set of non-dominated solutions of RRMO

with positive fitness then |S| ≤ n.

Proof. By our previous observations, S may only contain
search points with the same number of ones, denoted by k.
For k = 0 there is only one search point, thus we assume
k ≥ 1. Consider x ∈ S with f(x) = (kn+i, kn+j). If there
is a search point y ∈ S, y ̸= x, with f(y) = (kn+i, kn+j′)
then y weakly dominates x if j′ ≥ j and otherwise x weakly
dominates y. Thus, for every value i there can only be one
search point in S with an f1-value of kn+ i. Since the range
of TZ is at most n (using k ≥ 1 and the fact that there are at
most n− 1 zeros), the claim follows.

Hardness for EAs without Crossover
We show that setting pc = 0 makes GSEMO and NSGA-II
highly inefficient, even for discovering the Pareto font.
Theorem 3. GSEMO (Algorithm 1) with pc = 0 requires
at least nΩ(n) evaluations in expectation to find any Pareto-
optimal search point for RRMO.

Proof. By classical Chernoff bounds, the probability of ini-
tialising the algorithm with a search point of at most 3n/5
ones, i. e. belonging to G\F , is 1−2−Ω(n). We assume in the
following that this has happened and note that then the algo-
rithm will never accept a search point s′ with fitness (0, 0),
i. e. s′ /∈ G. Furthermore, because pc = 0 the algorithm
can only rely on the bitwise mutation operator to generate a
search point on F . Fix a search point y ∈ F , then for each
search point x ∈ G \ F the Hamming distance to y is at
least H(x, y) ≥ |y|1 − |x|1 ≥ n/5. Therefore, flipping n/5
specific bits is required to create y as a mutant of x, and this
occurs with probability n−n/5. Taking a union bound over
all y ∈ F , the probability of creating any search point in F
is at most |F | · n−n/5 = O(n−n/5+1). By the law of total
probability, the expected number of evaluations required for
this phase is at least (1−2−Ω(n)) ·Ω(nn/5−1) = nΩ(n).

Theorem 4. NSGA-II (Algorithm 2) with pc = 0 and µ ∈
poly(n) requires at least nΩ(n) generations in expectation
to find any Pareto-optimal search point on RRMO.

Proof. We follow the same arguments as the ones in the
proof of Theorem 3, with only minor differences due to the
fixed population size. The initialisation phase can be skipped
with probability µ2−Ω(n) by an union bound, but this is
still o(1) since µ ∈ poly(n). The second phase then starts
with µ search points of strictly positive objective values and
the algorithm will never accept a search point with fitness
(0, 0) during the survival selection. Therefore, flipping n/5
0s to 1s by mutation is still required to complete this phase,
and overall the expected number of generations is at least
(1− o(1))(1 + nΩ(n)) = nΩ(n).

Furthermore, we prove that the general framework of Al-
gorithm 3 also requires exponential optimisation time in ex-
pectation to create a first Pareto optimal point of RRMO if
only unary unbiased variation operators are used.

Theorem 5. Any black-box algorithm that fits the model of
Algorithm 3 with µ = poly(n) and only uses unary unbiased
variation operators for choosing the distribution Dt requires
at least 5Ω(n)/λ generations, or 5Ω(n) fitness evaluations, in
expectation to find any Pareto-optimal point of RRMO.

Proof. Let G′ := {x | 2n/5 ≤ |x|1 ≤ 3n/5} be a subset
of G. Using Chernoff bounds and a union bound over µ =
poly(n) initial search points, the probability of initialising
the first µ search points in G′ is 1−µ · 2−Ω(n). Then, owing
to elitism the algorithm will only accept points in G′ ∪ F .

According to Lemma 1 in (Doerr, Doerr, and Yang 2020)
every unary unbiased variation operator op(x) on {0, 1}n
can be modelled as a two-step process: first choose a Ham-
ming radius r from some distribution, then return a search
point on the Hamming sphere Sr(x) := {y ∈ {0, 1}n |
H(x, y) = r} chosen uniformly at random. For all search
points x ∈ G′ \ F and all y ∈ F we have H(x, y) ≥ |y|1 −
|x|1 ≥ n/5. Moreover, since |x|1 ≥ 2n/5 and |y|1 = 4n/5
there are at least n/5 bit positions i in which xi = yi = 1.
Together, n/5 ≤ H(x, y) ≤ 4n/5. Thus, even when the ra-
dius r is chosen as r := H(x, y), the probability that op(x)
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creates y is 1/
(

n
H(x,y)

)
≤ 1/

(
n

n/5

)
≤ (n/5)n/5

nn/5 = 5−n/5.
Taking a union bound over all search points y ∈ F , the prob-
ability of creating any Pareto-optimal search point is at most
(n/5+1) ·5−n/5 := p. The expected number of evaluations
until a Pareto optimal search point is found is thus at least
1/p = 5Ω(n). The expected number of generations follows
since every generation makes λ evaluations.

Use of Crossover Implies Polynomial Time
While RRMO is hard for many EMO algorithms without
crossover, now we show for GSEMO and for NSGA-II that
they both succeed in finding the whole Pareto set of RRMO

in expected polynomial time.

Analysis of GSEMO
Theorem 6. GSEMO (Algorithm 1) with pc ∈ (0, 1) re-

quires at most O
(

n4

1−pc
+ n

pc

)
fitness evaluations in expec-

tation to find the whole Pareto-optimal set of RRMO.

Proof. We use the well-known method of typical runs (We-
gener 2002, Section 11) and divide a run into several phases
that reflect “typical” search dynamics. Each phase has a de-
fined goal and we provide upper bounds on the expected
time to achieve these goals. When a phase ends, the next
phase starts; however, phases may be skipped if the goal of
a later phase is achieved before the phase starts.

Phase 1: Create a search point in G.
By a Chernoff bound the probability that the initial search

point is not in G is at most 2−Ω(n) as it is necessary to create
a search point with more than 3n/5 ones. Since all search
points not in G have the same fitness vector (0, 0), while no
search point in G is found, the population always consists
of the latest search point and crossover, if executed, has no
effect. We show that mutation tends to drive the algorithm
towards G very quickly. Let xt denote the single search point
at time t and Xt be its number of ones if xt it is not in G,
and zero otherwise. If Xt > 0 then |xt|1 > 3n/5 and in
expectation at least 3/5 ones are flipped to zero and at most
2/5 zeros are flipped to one by mutation, so

E [Xt −Xt+1 | Xt > 0] ≥ 3/5− 2/5 = 1/5 =: δ.

Let T := inf{t ≥ 0 | Xt = 0} = inf{t ≥ 0 | xt ∈
G}. Then by the additive drift theorem (see (He and Yao
2004)), it holds that E [T | X0] ≤ X0

δ ≤ 5n (since X0 ≤
n). Consequently, the expected number of generations for
finding a search point in G is 1 + 2−Ω(n) · 5n = 1 + o(1).

Phase 2: Create a search point with 3n/5 ones.
Once an individual in G is found, every individual in Pt

always has the same number i of ones because otherwise
those with the highest number of ones will dominate and
remove the others. We now compute the expected time for
Pt to contain individuals with exactly 3n/5 ones using a
fitness-level argument. Note that creating a search point with
a higher number of ones always removes the previous popu-
lation and advances the process. Suppose that Pt contains in-
dividuals with i ∈ {0, . . . , 3n/5− 1} ones, then the number

of ones can be increased by selecting an arbitrary individ-
ual as a parent, choosing not to apply crossover, and during
the mutation flipping exactly one zero bit while keeping the
other bits unchanged. The probability of this event is at least
(1− pc) · n−i

n ·
(
1− 1

n

)n−1 ≥ (1−pc)(n−i)
en . Thus, summing

up expected waiting times of all levels i gives a bound of

en

1− pc

3n/5−1∑
i=0

1

n− i
= O

(
n

1− pc

)
.

Phase 3: Create the first search point in F ′.
To make progress towards F ′, it suffices to first select an

individual x with a maximum value of LZ(x) + TZ(x), de-
noted by 2n/5− i, and to increase this sum while maintain-
ing 3n/5 ones. By Lemma 2, the probability of selecting x
as parent is at least 1/|Pt| ≥ 1/n. If the algorithm then omits
crossover, either flips the first 1-bit or the last 1-bit and flips
one of the i 0-bits that do not contribute to LZ(x) + TZ(x),
the fitness is increased. The probability for this event is at
least 1

n · (1 − pc) · 1
n · i

n ·
(
1− 1

n

)n−2 ≥ i(1−pc)
en3 , and the

expected number of generations to complete this phase, by
summing up the expected waiting times over all i, is at most

2n/5∑
i=1

en3

i(1− pc)
=

en3

1− pc

2n/5∑
i=1

1

i
= O

(
n3 log n

1− pc

)
.

Phase 4: Cover F ′ entirely.
Suppose F ′ is not completely covered, then there must ex-

ist a missing individual z on F ′\Pt next to a y ∈ Pt∩F ′, i. e.
|TZ(z)−TZ(y)| = 1 and TZ(z)−TZ(y) = LZ(y)−LZ(z).
Individual z can be generated from y by omitting crossover
and flipping a one at one extreme of the consecutive block
of ones to a zero and a zero at the other extreme to a one
while keeping the other bits unchanged. Since the parent is
chosen uniformly at random, the probability of that event is
1−pc

n3 ·
(
1− 1

n

)n−2 ≥ 1−pc

en3 . As 2n/5 such steps suffice to
cover F ′, the expected number of generations is at most

en3

1− pc
· 2n
5

= O
(

n4

1− pc

)
.

Phase 5: Create the first search point in F .
Starting from a population Pt = F ′, thus |Pt| = 2n/5+1,

the first search point on F can be created by crossover as
follows. If the algorithm picks parents p1 = 0i13n/502n/5−i

with 1 ≤ i ≤ n/5 and p2 = 0i+n/513n/50n/5−i and any
cutting point ℓ ∈ [i + n/5, i + 3n/5], the result of the 1-
point crossover contains a single block of 4n/5 ones and
thus belongs to F . The same applies to the final offspring if
the mutation following crossover does not flip any bit. The
probability for selecting p1 and p2 is n/5

(|Pt|)2 = n/5
(2n/5+1)2 =

Ω(1/n). So the probability of creating an offspring in F is
at least pc · 2n/5

n+1 · Ω(1/n) · (1− 1/n)n = Ω(pc/n) and the
expected number of generations for this to happen is O( n

pc
).

Phase 6: Cover F entirely.
The creation of the first search point on F removes all

the individuals on F ′. We rely on 2-bit-flip mutation steps
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to cover F similarly to the arguments in Phase 4. A minor
difference is that the number of missing points like z is now
n/5 since |F | = n/5+1. Nevertheless, the asymptotic num-
ber of generations to fully cover F is still O( n4

1−pc
).

Summing up the time bounds of all phases gives a bound
of O

(
n4

1−pc
+ n

pc

)
on the expected number of generations

(or evaluations) for GSEMO to find the Pareto set.

Analysis of NSGA-II
We now turn to the analysis of NSGA-II. The search dynam-
ics of NSGA-II are more complex than those of GSEMO due
to the non-dominated sorting and the use of crowding dis-
tance. Furthermore, the uniform parent selection of GSEMO
is replaced with a binary tournament selection, complicating
the analysis. Unlike for GSEMO, it is not always guaranteed
that all non-dominated solutions survive to the next genera-
tion, especially if the population size is chosen too small.

The following lemma shows that with a sufficient large
population size, search points of the first-ranked layer, with
a specific lattice structure in the objective space, are pro-
tected between generations. No assumption about the search
space is required, thus the result also holds for search spaces
other than bitstrings. The proof generalises the arguments
from Zheng, Liu, and Doerr (2022) which correspond to the
specific application of the lemma with C = 0, D = n.

Lemma 7. Consider two consecutive generations t and
t + 1 of the NSGA-II optimising a biobjective function
f(x) := (f1(x), f2(x)). Suppose that there are natural
numbers C,D ∈ N0 such that every search point in F 1

t
and F 1

t+1 has a fitness vector of (C + ℓ, C + m − ℓ) for
ℓ,m ∈ {0, . . . , D} and ℓ ≤ m, then it holds that

(i) At most 4(D+1) individuals in F 1
t have positive crowd-

ing distances, and the same statement holds for F 1
t+1.

(ii) If µ ≥ 4(D + 1) and there exists a x ∈ Pt with f(x) =
(C + k, C +D− k) for some k ∈ {0, . . . , D} then there
exists a y ∈ Pt+1 with f(y) = f(x).

Proof. (i) It suffices to show the result for F 1
t , as the same

arguments apply for F 1
t+1. First we determine the maximal

number of distinct fitness values of individuals in F 1
t . De-

fine M := {(f1(x), f2(x)) | x ∈ F 1
t } and we claim that

|M | ≤ D + 1. Let M1 := {f1(x) | x ∈ F 1
t } then for

every a ∈ M1 there is a unique b ∈ N with (a, b) ∈ M .
This is because if there are (a, b1) ∈ M and (a, b2) ∈ M
with b1 < b2 then there are x, y ∈ F 1

t with f(x) = (a, b1),
f(y) = (a, b2), thus x ≺ y and this contradicts the defini-
tion of F 1

t . So, |M | ≤ |M1| ≤ D+1 and the last inequality
is due to M1 ⊆ {C,C+1, . . . , C+D}. So there are at most
D + 1 individuals in F 1

t with distinct fitness values.
To obtain the result, it now suffices to show that for each

(a, b) ∈ M at most four individuals in F 1
t with this fitness

have a positive crowding distance. Let K := |F 1
t | and as-

sume that x1, . . . , xK are the individuals in F 1
t , and let S1 =

(x11 , . . . , x1K ) and S2 = (x21 , . . . , x2K ) be the sorting of
F 1
t with respect to f1 and f2, respectively. Suppose there are

L ≥ 1 individuals in F 1
t with fitness (a, b). By the defini-

tion of the sorting, then there must exist r, s ∈ {1, . . . ,K −

L + 1} such that the subsequences (x1r+i)0≤i≤L−1 of
S1, and (x2s+j )0≤j≤L−1 of S2 have that f(x1r+i) =
f(x2s+j ) = (a, b), in other words, they are the L individ-
uals of F t

1 with fitness (a, b). Furthermore, for each individ-
ual x from these that is not in {x1r , x1r+L−1

, x2s , x2s+L−1
}

there exist 2 ≤ i ≤ L − 2 and 2 ≤ j ≤ L − 2
such that x = xi and x = xj , and CDIST(x, S) =
f1(x1i−1)−f1(x1i+1)
fk(x11)−fk(x1K )

+
f2(x2j−1)−f2(x2j+1)

f2(x21)−f2(x2K )
= 0. This means

only points in {x1r , x1r+L−1
, x2s , x2s+L−1

} can have posi-
tive crowding distances, and the claim follows by noting that
the cardinality of this set is at most 4.

(ii) It follows from (i) and µ ≥ 4(D + 1) that Pt+1 will
contain every search point from F 1

t+1 with positive crowd-
ing distances. Also for each fitness value (a, b) of F 1

t+1
there must exist a search point of the layer that has that fit-
ness and a positive crowding distance, i. e. the cardinality
of {x1r , x1r+L−1

, x2s , x2s+L−1
} is at least 1. Since x ∈ F 1

t
with f(x) = (C + k, C + D − k), then the only reason
the fitness vector f(x) would not be contained in the image
of F 1

t+1 is if it is dominated by some z ∈ F 1
t+1. Denoting

f(z) = (C + h,C +m− h), we show that no such z exists
because the two cases: (a) C + h ≥ C + k ∧ C +m− h >
C + D − k, or equivalently m − D > h − k ≥ 0, and (b)
C + h > C + k ∧ C + m − h ≥ C + D − k, or equiva-
lently m −D ≥ h − k > 0, contradict our assumption that
m ≤ D. The non-existence of z implies that there must exist
y ∈ F 1

t+1 ⊆ Pt+1 with f(y) = f(x).

The statement of Lemma 7 holds for any implementation
of the calculation of crowding distances. However, the factor
4 in front of D + 1 there can be reduced to 2 if a stable sort
algorithm is used to sort each objective, or the asymmetric
version of the crowding distance (Chu and Yu 2018) is used.

Theorem 8. NSGA-II (Algorithm 2) with pc ∈ (0, 1) and
µ ≥ 2n+5 finds the whole Pareto set of RRMO in expected
O
(

µ
npc

+ n3

1−pc

)
generations and O

(
µ2

npc
+ µn3

1−pc

)
fitness

evaluations.

Proof. Consider the following phases of a run.
Phase 1: Create a search point in G.
By a Chernoff bound the probability that every initial in-

dividual has more than 3n/5 ones is at most 2−µΩ(n). If this
happens, the probability of creating a specific individual in
G by mutation is at least n−n, regardless of the input solu-
tion and the preceding operations. By the law of total proba-
bility, the expected number of evaluations to obtain a search
point in G is at most µ+ 2−µΩ(n)nn = µ+ 2−Ω(n2) · nn =
µ+ o(1), and these are 1 + o(1) generations.

Phase 2: Create a search point with 3n/5 ones.
Suppose that the maximal number of ones in Pt is i ∈

{0, . . . , 3n/5− 1}. Let x′ be an individual with that number
of ones, then x′ is picked as a competitor in the two binary
tournaments to choose {p1, p2} with probability 1 − (1 −
1/µ)4 ≥ 4/(µ + 4) by Lemma 10 in (Badkobeh, Lehre,
and Sudholt 2015), and this guarantees that at least one of
the parents has i ones. Therefore, with probability at least
4

µ+4 · (1 − pc) · n−i
en =: si, one of the offspring {s′1, s′2}
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has more than i ones, as it suffices to skip the crossover step,
then flip a zero to a one while keeping the remaining bits
unchanged in the mutation step. This reproduction process
is repeated µ/2 times, so the chance of at least one success
is at least 1−(1−si)

µ/2 ≥ siµ/2
siµ/2+1 by the same lemma. The

expected waiting time by summing up all possible values of
i is no more than

∑3n/5−1
i=0

(
1 + 2

µsi

)
which is

O(n) +
2

µ

3n/5−1∑
i=0

(µ+ 4)en

4(1− pc)(n− i)
= O

(
n

1− pc

)
.

Phase 3: Create the first search point in F ′.
Let x′′ ∈ F 1

t be a search point with 3n/5 ones and
maximum value of LZ(x) + TZ(x) =: 2n/5 − i for i ∈
{1, . . . , 2n/5} and positive crowding distance. If x′′ ap-
pears as the first competitor in a binary tournament (which
happens with probability 1/µ), and the second competitor
has zero crowding distance (which happens with probabil-
ity at least 1 − 8n/5+4

µ ≥ 1 − 8n/5+4
2n+5 = 1/5 as there are

at most 8n/4 + 5 individuals with positive crowding dis-
tances by (i) in Lemma 7), then x′′ wins the tournament.
The same holds for swapping roles of first and second com-
petitor, and furthermore there are two tournaments in gener-
ating a pair of offspring. Consequently, the probability of
x′′ being the outcome of at least one of them is at least
1 − (1 − 2

5µ )
2 ≥ 4/(5µ)

4/(5µ)+1 = 4
4+5µ . So, similarly to the

proof of Theorem 6, the probability of increasing the maxi-
mum value of LZ + TZ in the population beyond 2n/5 − i

is at least 4
4+5µ · i(1−pc)

en2 =: s′i during the creation of the
pair. The success probability for µ/2 pairs is then at least
1 − (1 − s′i)

µ/2 ≥ s′iµ/2
s′iµ/2+1 , and the expected waiting time

to complete this phase is no more than
∑2n/5−1

i=1

(
1 + 2

µs′i

)
which is

O(n)+
2

µ

2n/5−1∑
i=1

(4 + 5µ)en2

4(1− pc)i
=O

(
n2 log n

1− pc

)
.

Phase 4: Cover F ′ entirely.
Let y and z be as defined in the proof of Theorem 6

and additionally assume that y has a positive crowding dis-
tance in F 1

t . Similarly to the proof of Theorem 6 and also
to the argument of the previous phase, the probability of
selecting y and then winning in at least one of two tour-
naments, and the subsequent mutation step creating z is at
least 4

4+5µ · 1−pc

en2 =: s′′i , and the probability of at least one

success in µ/2 trials is at least s′′i µ/2
s′′i µ/2+1 . Furthermore, ap-

plying Lemma 7 (ii) with C = 3n2/5 and D = 2n/5 while
noticing that µ ≥ 2n+5 > 4(D+1) implies that a copy of
z always survives in future generations. Thus the expected
time to finish the phase is no more than

O(n) +
2

µ
· (4 + 5µ)en2

4(1− pc)
· 2n
5

= O
(

n3

1− pc

)
.

Phase 5: Create the first search point in F .

Now Pt contains all search points of F ′ and they
are in F 1

t . There are at least n/5 solutions of the form
0i13n/502n/5−i in Pt with i ≤ n/5 and positive crowd-
ing distance, thus they win the tournament for selecting
p1 with probability at least 2 · 1

5 · n/5
µ . Then it suffices to

select a specific solution in Pt ∩ F ′ with positive crowd-
ing distance as p2, i. e. with probability 2 · 1

5 · 1
µ , to form

compatible parents so that we have a probability of at least
pc · 2n/5n+1 ·(1−1/n)n to create one offspring in F . So in each
creation of a pair, a point in F is created with probability
pc · 4

25 ·
2n/5
n+1 ·

n/5
µ · 1µ ·(1−1/n)n = Ω(npc

µ2 ) =: s, and among
µ/2 pairs produced at least one success occurs with proba-
bility 1− (1− s)

µ/2 ≥ sµ/2
sµ/2+1 and only 1 + 2

µs = O( µ
npc

)

generations are required in expectation for this phase.
Phase 6: Cover F entirely.
Once a search point on F is created, the process of cover-

ing it is similar to that of covering F ′ with only minor differ-
ences (e. g. applying Lemma 7 with C = 4n2/5, D = n/5).
The expected number of generations in Phase 6 is O( n3

1−pc
).

Summing up expected times of all the phases gives an up-
per bound O

(
µ

npc
+ n3

1−pc

)
on the expected number of gen-

erations to optimise RRMO. Multiplying this bound with µ
gives the result in terms of fitness evaluations.

Conclusions
We have identified the function class RRMO as examples
on which EMO algorithms GSEMO and NSGA-II using
crossover can find the whole Pareto set in expected time
O(n4) with any constant value of pc ∈ (0, 1) and popula-
tion size 2n+5 ≤ µ = O(n) for NSGA-II. More generally,
the function class can be optimised in expected polynomial
time if 1/pc and µ are polynomials in n. Crossover is a vi-
tal operator as simply finding any Pareto-optimal point re-
quires exponential expected time for GSEMO and NSGA-II
if crossover is omitted. Theorem 5 on a broad class of eli-
tist EMO algorithms showed that this cannot be remedied
by using other unbiased mutation operators.

This is the first proof for an exponential performance gap
for the use of crossover in NSGA-II. While previous work
has mostly used crossover to speed up filling the Pareto
set (Qian, Yu, and Zhou 2011, 2013; Bian and Qian 2022),
our work shows that it can also be essential for discovering
the Pareto set in the first place. We are hopeful that our re-
sults and the proofs may serve as stepping stones towards a
better understanding of the role of crossover in EMO.
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