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Abstract

Nested Rollout Policy Adaptation (NRPA) is an approach
using online learning policies in a nested structure. It has
achieved a great result in a variety of difficult combinato-
rial optimization problems. In this paper, we propose Meta-
NRPA, which combines optimal stopping theory with NRPA
for warm-starting and significantly improves the performance
of NRPA. We also present several exploratory techniques for
NRPA which enable it to perform better exploration. We es-
tablish this for three notoriously difficult problems ranging
from telecommunication, transportation and coding theory,
namely Minimum Congestion Shortest Path Routing, Trav-
eling Salesman Problem with Time Windows and Snake-in-
the-Box. We also improve the lower bounds of the Snake-in-
the-Box problem for multiple dimensions.

Introduction
Search algorithms can be used to solve many difficult com-
binatorial optimization problems. Monte Carlo Search algo-
rithms rely on randomness to discover good sequences of
decisions for difficult problems. Following their success in
games (Coulom 2007; Kocsis and Szepesvári 2006; Browne
et al. 2012; Silver et al. 2016, 2017, 2018), they were applied
with success to multiple combinatorial optimization prob-
lems (Cazenave 2009; Rosin 2011). They work particularly
well when combined with machine learning.

We propose new general techniques to Monte Carlo
Search algorithms that improve the algorithms for multiple
applications. Using these techniques we get better results
than the previous ones for three difficult combinatorial opti-
mization problems from varied fields, namely telecommuni-
cation, transportation and coding theory.

The problems we address were already successfully ad-
dressed using Nested Rollout Policy Adaptation (NRPA)
(Rosin 2011). They are the Minimum Congestion Short-
est Path Routing problem (Dang et al. 2021), the Travel-
ing Salesman Problem with Time Windows (Edelkamp et al.
2013) and the Snake-in-the-Box problem (Edelkamp and
Cazenave 2016). For these three problems we improve the
results compared to standard NRPA. In particular for the
Snake-in-the-Box problem, we provide new lower bounds
for several dimensions.

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Our contributions deal with the initialization of NRPA us-
ing the optimal stopping theory and with better exploration
avoiding already scored sequences of decisions. More pre-
cisely, we observed that whenever NRPA gets unsatisfactory
solutions from the beginning it is highly unlikely that it will
find significantly better solutions in subsequent iterations.
To remedy this problem, we cast the initialization step of
NRPA as an instance of the secretary problem, a well-known
optimal stopping problem: a decision maker (DM) wants to
recruit a secretary for a job position, n candidate secretaries
are thus interviewed one after the other in a random order,
which can be ranked among the examined candidates. The
DM can decide whether to terminate the recruitment process
by accepting the last interviewed candidate. The decision of
DM about recruiting a candidate needs to be just after the
interview of the candidate and it is irrevocable. In addition,
DM has no knowledge of the quality of the upcoming can-
didates. The goal is to maximize the probability of selecting
the best candidate. In our case, we are interested in a variant
of this problem, where candidates are NRPA runs and we
aim at minimizing the expected rank of the chosen candi-
date. To our knowledge, this is the first time that the optimal
stopping theory is used in the context of Monte Carlo search.

The paper is organized in five sections. The second sec-
tion deals with related works. The third section details our
contributions. The fourth section gives experimental results
for the Minimum Congestion Shortest Path Routing prob-
lem, the Traveling Salesman Problem with Time Windows
and the Snake-in-the-Box problem. Conclusions and future
works are given in section five.

Related Works
Monte Carlo Search
Monte Carlo Search has many applications in games and
difficult combinatorial optimization problems. When com-
bined with deep learning it surpasses the level of the best
human players in games such as Go, Chess and Shogi (Silver
et al. 2018). The combination has been applied to many other
games with success (Cazenave et al. 2020). It is also the
best general algorithm to solve a problem when given only
the raw description of the problem as is the case in General
Game Playing. Since 2007, all the world champions of the
General Game Playing competition have used Monte Carlo
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Search (Finnsson and Björnsson 2008; Méhat and Cazenave
2010).

A variant of Monte Carlo Search that works well for
combinatorial optimization problems is Nested Monte Carlo
Search (Cazenave 2009). It uses nested levels of playouts
and memorizes the best playout of each level. It has appli-
cations in various domains, ranging from the Snake-in-the-
Box (Kinny 2012) to the design of RNA molecules (Portela
2018).

NRPA
NRPA (Rosin 2011) keeps some of the ideas from Nested
Monte Carlo Search: the nested levels and the memorization
of the best sequence at each level. However, it differs from
Nested Monte Carlo Search as it learns a playout policy spe-
cific to the instance it solves and as it does not recursively
search the state space. It only explores the state space with
non-uniform playouts following the learned policy.

NRPA has been applied to numerous problems. Its first
results were worlds records in Morpion Solitaire and Cross-
words Puzzles (Rosin 2011). It was then applied to trans-
portation problems such as the Traveling Salesman Prob-
lem with Time Windows (Cazenave and Teytaud 2012a;
Edelkamp et al. 2013) and the Vehicle Routing Problems
(Abdo, Edelkamp, and Lawo 2016; Edelkamp and Cazenave
2016; Cazenave et al. 2021; Sentuc, Cazenave, and Lucas
2022). It was also applied to network problems such as Net-
work Traffic Engineering (Dang et al. 2021) or Virtual Net-
work Embedding (Elkael et al. 2021). Other applications
include applications in bioinformatics such as Multiple Se-
quence Alignment (Edelkamp and Tang 2015) or the design
of RNA molecules (Cazenave and Fournier 2020).

Multiple improvements have been proposed to NRPA. An
improvement that works well for problems such as Weak
Schur Numbers, SameGame, and the Bus Regulation prob-
lem is Selective NRPA (Cazenave 2016). It avoids playing
actions that are considered bad in the playouts and results in
a possibly large increase in the scores of the playouts. A gen-
eralization of this behavior is Generalized NRPA (Cazenave
2020) that uses a bias on the possible actions to perform
playouts with an informed policy. It is a generalization of
NRPA since GNRPA with a bias of zero for all actions is
NRPA and it is a generalization of Selective NRPA since a
bias of −∞ for actions to avoid is equivalent to Selective
NRPA. GNRPA improves a lot on NRPA for problems such
as the Traveling Salesman with Time Windows and Vehi-
cle Routing Problems. Yet another improvement to NRPA
is Beam NRPA (Cazenave and Teytaud 2012b) that memo-
rizes multiple best sequences per level instead of one. Com-
bined with a measure of the diversity of the sequences it has
led to Diversity NRPA (Edelkamp and Cazenave 2016) that
broke records in the Snake-in-the-Box and the Vehicle Rout-
ing Problems.

The NRPA algorithm is shown in Algorithms 1, 2 and 3.

The Secretary Problem
First introduced in the early ’60s, the secretary problem is a
famous optimal stopping problem: a decision maker (DM)
wants to recruit a secretary for a job position, n candidate

Algorithm 1: The playout algorithm
Function playout(state, weight):

sequence← []
while state is not terminal do

z ←
∑

a′∈A(state) e
weight(a′)

Draw a with probability 1
z e

weight(a)

state← play(state, a)
append a to sequence

end
return (score(state), sequence)

Algorithm 2: The adapt algorithm
Function adapt(weight, sequence, α):

w ← weight
state← root
for a in sequence do

z ←
∑

a′∈A(state) e
weight(a′)

for a′ ∈ A(state), do
w(a′) −= α · 1z e

weight(a′)

end
w(a) += α
state← play(state, a)

end
return w

Algorithm 3: The NRPA algorithm
Function NRPA(level, weight):

if level == 0 then
return playout(root, weight)

else
bestScore←∞
for N iterations do

(sc, new)← NRPA(level − 1, weight)
if sc ≤ bestScore then

bestScore← sc
seq ← new

end
weight← adapt(weight, seq, α)

end
end
return (bestScore, seq)

secretaries are thus interviewed one after the other in a ran-
dom order, which can be ranked among the examined candi-
dates. The DM can decide whether to terminate the recruit-
ment process by accepting the last interviewed candidate.
The decision of DM about recruiting a candidate needs to
be just after the interview of the candidate and it is irrevoca-
ble. In addition, DM has no knowledge of the quality of the
upcoming candidates.

The classical secretary problem attempts to maximize the
probability of selecting the best candidate. In our case, we
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are interested in a variant of this problem, which aims to
minimize the expected rank of the chosen candidate. (Chow
et al. 1964) showed that the optimal stopping rule satisfies∏n

j=1(
j+2
j )1/j+1 ∼= 3.8695, which can be determined by

dynamic programming. In practice, this is hard to imple-
ment for large n. (Krieger and Samuel-Cahn 2009) proposed
much simpler stopping rules that perform almost equally
well in minimizing the sum of the expected rankings of the
chosen items when one or more candidates are desired.

When only one candidate is needed, with stopping rule
Ri ≤ ic

n+1−i for a given constant c, where Ri is the rela-
tive rank of the ith item and n the total number of items,
we can have an asymptotic expected absolute rank of 3.928
for the chosen candidate. When multiple candidates are to be
retained, we are interested in the case where a given percent-
age of candidates are desired. For a fixed given percentage
α, 0 < α < 1, the item j is kept if it satisfies the condition
Ri ≤ ⌈αi⌉. With this simple rule, we have Sn

nLn
→ α

2 a.s. as
n→∞, where Ln is the number of candidates retained, Sn

the sum of the absolute ranks of the candidates retained.

Contributions
Meta-NRPA
Inspired by the secretary problem, we hereby present Meta-
NRPA, which warm-starts the NRPA with optimal stopping
theory.

When dealing with difficult combinatorial optimization
problems with large instances, sometimes the variance be-
tween executions of NRPA can be very important. After be-
ing stuck in the local minimum, it’s difficult to escape to a
better solution. If NRPA is optimized towards a better local
minimum from the beginning, we can easily get better re-
sults at the end of the execution. On the contrary, if it gets un-
satisfactory results from the beginning, there is only a small
probability that it will get better results in subsequent exe-
cution than in other executions (see for instance Figure 3).

From this observation, we have the idea of warm-starting
the executions of NRPA by selecting those that lead to bet-
ter results and discarding those that do not. The choice is
made according to the performance of a small fraction of
the NRPA runs at the beginning. If it satisfies the criteria of
the optimal stopping, the NRPA is continued to its full exe-
cution, otherwise, the current execution is abandoned and a
new NRPA is executed.

When there is not enough time, only several complete
level l NRPA executions can be performed, and the opti-
mal stopping rule with only one chosen candidate is used. In
practice, we execute NRPA with level l− 1 and compare its
score with existing scores. If the relative rank Ri of the i-th
NRPA satisfies Ri ≤ ic

n+1−i , we continue the current NRPA
with level l; otherwise, it’s abandoned and next NRPA with
level l − 1 is performed and compared, until the timeout.
The algorithm is shown in Algorithm 4. The function Con-
tinueNrpa executes a normal NRPA, but with the best score
and the best sequence of previous NRPA run of level l − 1.

When many executions of the NRPA are possible within
the time limit, we tend to select a certain percentage of ex-

Algorithm 4: Meta-NRPA with one item
Function MetaNrpa(level):

scores← empty ordered list
i← 0
while not timeout do

weights← InitPolicy()
score, seq ← NRPA(level − 1, weights)
Ri ← scores.insert(score)
i+ = 1
n← NbExecutionEstimation()
if Ri ≤ ic

n+1−i then
score← ContinueNrpa(level, weights)
scores.insert(score)
i+ = 1

end
end
return min(scores)

Algorithm 5: Meta-NRPA with α% items
Function MetaNrpa(level):

scores← empty ordered list
i← 0
while not timeout do

weights← InitPolicy()
score, seq ← NRPA(level − 1, weights)
Ri ← scores.insert(score)
i+ = 1
if Ri ≤ ⌈αi⌉ then

score, seq ← ContinueNrpa(level,
weights)
scores.insert(score)
i+ = 1

end
end
return min(scores)

ecutions to continue, as this will allow the NRPA to be op-
timized more deeply in a variety of different directions. The
algorithm is shown in Algorithm 5. Figure 1 demonstrates
the process of this version of Meta-NRPA with level 2.

Note that the assumption we apply here is that NRPA
that performs well at the beginning will also provide bet-
ter results in the later optimizations. This is not always true,
but statistically speaking, this assumption holds most of the
time. And the larger the fraction of NRPA we run, the more
likely this assumption will hold.

Using a larger fraction of the NRPA strengthens this as-
sumption, but it also takes more time, so we get fewer can-
didates in a fixed period and therefore risk losing the oppor-
tunity to get better candidates. In fact, running only the infe-
rior level of NRPA in our tests has roughly shown a strong
correlation with the final NRPA results and has been able to
obtain satisfactory results.
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Figure 1: Meta-NRPA. We execute NRPA with level l − 1 and compare its score with existing scores. If the relative rank Ri of
the i-th NRPA satisfies a certain condition, we continue the current NRPA with level l; otherwise, it’s abandoned and the next
NRPA with level l− 1 is performed and compared, until the timeout. The final score of Meta-NRPA is the best score among all
executions of NRPA.

Exploratory NRPA
Since NRPA tends to converge quickly and has difficulty
getting away from local minima, we also use several tech-
niques to help NRPA do more exploration. These techniques
do not work for every problem, but in our tests, they help a
lot for one or many problems.

Force Exploration Force exploration was introduced by
(Dang et al. 2021) and greatly improves the performance
of NRPA by performing random selection when an already
discovered solution is encountered. This simple mechanism
encourages exploration while maintaining the original struc-
ture and strategy learning of NRPA.

ϵ-greedy NRPA When the NRPA is executed after some
time, the NRPA may converge to some specific solution and
keep exploiting the same solution, which does not help to
escape the local minima. Inspired by the ϵ-greedy agent in
multi-armed bandit problem (Sutton and Barto 2018), we
propose here ϵ-greedy NRPA. ϵ-greedy NRPA uses the same
idea as a ϵ-greedy agent: each choice is made with uniform
probability for a probability of ϵ, while following the learned
policy of NRPA with a probability of 1− ϵ. It allows NRPA
to keep exploring at any stage of the execution, giving better
performance for long-running executions.

Dynamic Learning Rate Without finding a better solu-
tion, NRPA continues to enforce the policy on the best-
known sequence at the current level, which can easily lead
to a rapid convergence to a sub-optimal value. As a result,
the exploration of other options decreases, which makes it
more difficult to find better results.

To address this problem, we propose a dynamic learning
rate that reduces the learning rate of the NRPA if it has dif-
ficulty finding a better solution. In this way, NRPA still con-
verges quickly towards the best-known solution at the be-
ginning but slows down when another better solution is not
found, thus encouraging exploration. The modified learning
rate αnew is defined as:

αnew =
α

Nstagnant

where α is the default learning rate, Nstagnant is the number
of times that the playout result is not better than the best
result at the current level.

Experimental Results
In this section, we test the efficiency of our approach on the
following three notoriously NP-hard optimization problems.

a

b

c

d

e

f

g
1; 1 1; 1

2

2; 1
2

1; 1
4

1; 1
4 1; 1

4

1; 3
4

2; 0 1; 0

3; 0

3; 0

Figure 2: Illustration of a shortest path routing with the
ECMP rule. In this figure, we assume unit capacities and
suppose that a demand k with traffic volume Dk = 1 must
be routed from sk = a to tk = g. A label wuv; load(uv,w)
is associated to each arc uv ∈ A.

Minimum Congestion Shortest Path Routing
Among the optimization problems arising in telecommuni-
cation traffic engineering (TE), we address the one related to
setting weights in networks that are based on shortest path
routing protocols (e.g OSPF, IS-IS). Indeed, finding weights
that induce efficient routing paths (e.g that minimize the
maximum congested link) is a well-known and well-studied
problem in TE (the reader is referred to (Bley et al. 2010)
for more details on the subject).

Formally, we consider the Minimum Congestion Shortest
Path Routing problem that takes as input a bidirected graph
G = (V,A) whose vertices correspond to routers and the
arcs correspond to links between routers. Every arc uv is as-
sociated with a capacity denoted by cuv . Let K denote a set
of demands or commodities to be routed in G. Each demand
k ∈ K is defined by a pair of vertices sk and tk represent-
ing the source and the target of k, a traffic volume Dk to
be routed from sk to tk. Such a demand k will be denoted
by the quadruplet (sk, tk, Dk). Given a metric w ∈ Z

|A|
+ ,

each demand k ∈ K is routed along the shortest paths be-
tween sk and tk. If there is more than one shortest path
joining the extremities of k, the traffic volume Dk is split
evenly among those paths according to the so-called ECMP
(Equal-Cost Multi-Path) rule. More precisely, the traffic vol-
ume that reaches a node v ∈ V must be split equally among
all arcs leaving v and belonging to the shortest paths to-
ward destination tk. We then define the load of an arc uv
induced by w, denoted by load(uv,w), as the amount of
traffic traversing the arc uv over its capacity (see Figure 2).
The congestion cong(w) of a given metric w is defined by
maxuv∈A load(uv,w), that is the maximum load over all
arcs. The problem asks to find a metric w ∈ Z

|A|
+ and the
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name |V | |A| |K|
∑

Dk

igen50 50 101 1221 34517
igen100 100 200 2399 83248
igen500 500 1009 12565 377072

igen1000 1000 2025 14908 487523
igen2000 2000 4028 14918 488331
igen5000 5000 10029 19863 656416
inet3040 3040 9586 4540 144103
inet4000 4000 13288 7920 266207
inet5000 5000 17380 12717 414545

Table 1: Information of graphs: network name, number of
nodes, number of arcs, number of demands, total volume of
demands

routing paths induced by these weights such that the net-
work congestion cong(w) is minimum.

Table 1 shows all the graphs we used for the experiments.
Two popular large-scale telecommunication topology gener-
ators are used, IGen (Quoitin et al. 2009) and Inet (Winick
and Jamin 2002). IGen generates two-level networks with a
backbone node and access node topology, while Inet follows
a power-law distribution of node degrees, which corresponds
to the topology of the Internet.

For the traffic matrix, we generate traffic between any two
nodes with a fixed probability, and the volume of the demand
Dk for demand k between nodes s and t is :

Dk = αSsTtC(s,t)e
−d(s,t)
2dmax

where α is a constant, Su, Tu ∈ [0, 1] are two random num-
bers for node u, C(s,t) ∈ [0, 1] is a random number for node
pair (s, t), d(s, t) is the distance between node s and t, dmax

is the maximum distance between any pair of nodes in the
graph.

Finally, we define the score used in NRPA to evaluate a
solution w ∈ Z

|A|
+ as the congestion value induced by w,

that is:
score(w) = cong(w)

Figure 3 shows an example of the correlation of the con-
gestion values between the 30 independent runs of small
fraction of the NRPA executed in Meta-NRPA and the con-
gestion value of the full NRPA execution. This confirms the
earlier assumption that, in general, NRPAs that perform bet-
ter at the beginning provide better results when they are fully
executed.

Figure 4 shows the comparison between the congestion
values obtained with NRPA and Meta-NRPA with one item.
Our implementation of NRPA is similar as in (Dang et al.
2021) except that we use the Customizable Contraction Hi-
erarchy (CCH) algorithm (Dibbelt, Strasser, and Wagner
2016), instead of Dijkstra, for improving the computation
time of the shortest paths and, hence, the congestion value.

Since each playout takes a long time, we use NRPA with
a level of 2 and 50 iterations. Each method executes 20 in-
dependent runs on each graph, the results are normalized
according to the lower bound calculated by Fleischer’s ap-
proximation scheme with ϵ = 0.1 (Fleischer 2000). Graphs

Figure 3: Correlation between the congestion values of the
lower level NRPA and the full NRPA of 30 independent
executions on two generated telecommunication networks
igen1000 and inet3040. The full NRPA execution is the con-
tinuation of the lower level NRPA.

having more than 400 nodes are executed for 2 hours, others
for 30 minutes. We do not use ϵ-greedy or dynamic learning
rate, because for this problem NRPA already has difficulty
converging within the time limit.

The results clearly show that Meta-NRPA can help reduce
the congestion values on all instances and can lead to a re-
duction in the variance between executions.

Traveling Salesman Problem with Time Windows
In the Traveling Salesman Problem (TSP) a set of n cities
(one of which is the depot) and their pairwise distances are
given. The task is to find the shortest route that starts and
ends at the depot and visits each city only once. In the Trav-
eling Salesman Problem with Time Windows (TSPTW), in
addition to the conditions of the TSP, each city must be vis-
ited and left within a given time interval, which is much
more difficult than the TSP.

The TSPTW can be formulated as follow. An undirected
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T (min) NRPA NRPAv1 NRPAv2 NRPAv3 NRPAv4
1 -30914.67 -10913.89 -910.06 -893.14 -891.30
5 -30914.45 -7580.00 -901.19 -893.11 -888.92

10 -30914.45 -7579.77 -897.30 -893.11 -887.54
30 -30914.12 -7579.48 -892.33 -893.09 -886.80

Table 2: Average score of 30 independent executions of Exploratory NRPA with TSPTW on rc204.1 instance. NRPAv1: NRPA
+ force exploration, NRPAv2: NRPA + force exploration + greedy, NRPAv3: NRPA + force exploration + dynamic alpha,
NRPAv4: NRPA + force exploration + dynamic alpha + greedy

T (min) Meta-NRPA Meta-NRPAv1 Meta-NRPAv2 Meta-NRPAv3 Meta-NRPAv4
1 -4241.87 -908.41 -903.19 -892.37 -888.03
5 -901.01 -903.69 -895.45 -887.53 -884.73

10 -896.53 -898.84 -892.93 -884.71 -883.00
30 -890.84 -890.49 -887.15 -881.68 -881.22

Table 3: Average score of 30 independent executions of Meta-NRPA with TSPTW on rc204.1 instance

Figure 4: Congestion value comparison of 20 independent
executions of NRPA and Meta-NRPA on large generated
telecommunication network instances

graph G(N,A) represents the cities and the corresponding
transportation network, where the nodes N = n1, n2, ...n|N |
corresponds to the cities, among which the node n1 corre-
sponds to the depot, and A = N×N represents to the edges
between nodes. The distance between two cities ni and nj

is also the cost function c(ni, nj). We aim to minimize the
total cost function:

cost(P ) =

|N |∑
k=1

c(pk, pk+1)

where P = (p1, . . . , p|N |+1), (p1, . . . , p|N |) is a permuta-
tion of {n1, n2, . . . , n|N |} and p|N |+1 = p1 = n1.

Apart from the distance cost, a time window is also added
as a constraint. For every city ni, we have a time interval
[ei, ℓi], which means it must be visited before ℓi, but if it’s
visited before ei, we must wait until ei to depart. We can set
every violation of the constraint as a penalty of one million
in the score. So the final score of path P is:

score(P ) = −cost(P )− 106 × Ω(P )

where Ω(P ) is the number of violated constraints.

NRPA-based algorithms have been used on this problem
and have achieved good results (Cazenave 2020).

We test our algorithms on rc204.1, which is the most diffi-
cult instance in the Solomon-Potwin-Bengio TSPTW bench-
mark. We use NRPA of level 4 and 100 iterations. The in-
verse distance between every two cities is used to initialize
the NRPA policy. The learning rate of NRPA α is set to 0.01
to avoid premature convergence.

Table 2 shows the comparison of different versions of ex-
ploratory NRPA. Each result is the average score of 30 inde-
pendent executions. We can see the original NRPA strug-
gles to make sure every solution satisfies the constraints,
while force exploration greatly improved the performance
of NRPA. With ϵ-greedy and dynamic learning rate, NRPA
achieves much better performance.

Table 3 shows the corresponding Meta-NRPA of every
version of exploratory NRPA shown in Table 2. Because
NRPA takes a relatively long time on each execution, we
use Meta-NRPA with 30% items. We can see that for every
version, Meta-NRPA significantly improves the score. And
Meta-NRPA with all the exploratory techniques achieves the
best result among all variants.

Snake-in-the-Box

The Snake-in-the-Box problem is that of finding the longest
induced path in an n-dimensional hypercube, which is a spe-
cial case of the induced subgraph isomorphism problem. The
path starts at one node of the hypercube and moves as far
as possible along the edge to a neighbor node. Each time
it moves one step to a new node, the previous node, and
its neighboring nodes become unavailable and can never be
traveled to. The detailed description of the problem can be
found in (Abbott and Katchalski 1988). (Potter et al. 1994),
(Östergård and Pettersson 2014), (Wynn 2012) and (Kinny
2012) respectively gave the records on this problem on di-
mensions 7, 8, 9 and 10, and (Allison and Paulusma 2016)
has the latest record on dimensions 11, 12, and 13.

In this problem, we define the score used in NRPA to eval-
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d NRPA NRPAv1 NRPAv2 NRPAv3 NRPAv4 Meta-NRPAv2
8 95.55 97.00 97.00 97.00 97.00 97.00
9 175.55 185.30 186.40 182.40 184.90 186.55

10 333.60 350.50 357.25 352.50 355.90 358.65
11 612.75 628.05 668.05 647.75 597.00 668.35

Table 4: Average score of 20 independent executions of 10 minutes for the Snake-in-the-Box problem. NRPAv1: NRPA + force
exploration, NRPAv2: NRPA + force exploration + greedy, NRPAv3: NRPA + force exploration + dynamic alpha, NRPAv4:
NRPA + force exploration + dynamic alpha + greedy

Dimension Meta-NRPA-fe Best Known Score
7 50 50
8 97 98
9 188 190

10 373 370
11 721 712
12 1383 1373
13 2709 2687

Table 5: Comparison of Meta-NRPA with known lower
bounds on the Snake-in-the-Box

uate a path P as the number of edges of P :

score(P ) = |P |

Since, by definition, whenever a node is visited all its
neighbors are unavailable, it is preferable to visit nodes with
fewer available neighboring nodes to increase the chance of
finding a long path. A prior is thus added to prefer the nodes
with fewer available neighbors.

Table 4 compares the performance of NRPAs. Each re-
sult is the average score of 20 independent runs of 10 min-
utes. We also used the best sequence of the lower dimension
as primers for the NRPAs. Each playout will first apply the
primer, and try to extend the sequence. With force explo-
ration, NRPA has the possibility of changing the primer af-
ter finding that the current sequence has already been discov-
ered. We use NRPA with level 4, 100 iterations, Meta-NRPA
with 10% items, and 5% for ϵ-greedy, 0.01 for learning rate
α.

For this problem, NRPA with ϵ-greedy and dynamic
learning rate have a similar effect of improving the score, but
ϵ-greedy performs significantly better than dynamic learning
rate. Using all two techniques leads to worse performance
than using only ϵ-greedy as it would cause over-exploration.
From the result, we can see that NRPA with force explo-
ration, ϵ-greedy, and Meta-NRPA has the best performance
among all variants.

We also used another slightly different approach to try to
achieve a new record for this problem. At each execution,
the current record in each dimension is used as a primer. We
only used Meta-NRPA with force exploration and did not
use ϵ-greedy or dynamic learning rate.

As a result of the force exploration, Meta-NRPA will ap-
ply the best sequence before changing one random choice in
the sequence to another random valid value and following
the policy for the rest of the choices. We run 20 executions

in parallel over 30 minutes. Each time we have a new record,
it is used as a new primer, and a new execution is performed.
We kept the experiment going until we cannot get better re-
sults.

Table 5 shows the comparison of our record of dimension
10, 11, 12 and 13 and the best known record (Allison and
Paulusma 2016). For dimensions 7, 8 and 9 we don’t have a
new record, so we show our result using a inferior dimension
record as a primer.

Conclusion
In this paper, we introduced Meta-NRPA algorithm along
with several exploratory techniques that substantially im-
prove the performance of NRPA. More precisely, using op-
timal stopping theory and avoiding already seen sequences
of decision we got better results for three difficult problems
from varied fields.

We improved the lower bounds for the Snake-in-the-Box
problem with our Meta-NRPA.

The new techniques we proposed are general improve-
ments to NRPA and could be applied to many other difficult
combinatorial optimization problems.
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