
Diversity Maximization in the Presence of Outliers

Daichi Amagata
Osaka University

amagata.daichi@ist.osaka-u.ac.jp

Abstract

Given a set X of n points in a metric space, the problem of
diversity maximization is to extract a set S of k points from
X so that the diversity of S is maximized. This problem is
essential in AI-related fields, such as web search, databases,
recommender systems, and data mining. Although there have
been extensive studies of this problem, these studies assume
that X is clean. This usually does not hold, because real-
world datasets usually contain outliers. The state-of-the-art
algorithm for the diversity maximization problem is based
on furthest point retrieval, which is too sensitive to outliers.
We therefore address the problem of diversity maximization
with outliers and propose two algorithms with performance
guarantee. The first algorithm runs in O((k + z)n) time,
guarantees 1

2
-approximation, and returns no outliers, where

z is the number of outliers. The second algorithm runs in
O(kz) time (which is independent of n), guarantees 1

6(1+ϵ)
-

approximation, and returns no outliers with constant prob-
ability. We conduct experiments on real datasets to demon-
strate the effectiveness and efficiency of our algorithms.

1 Introduction
Given a set X of n points in a metric space, the problem of
diversity maximization is to extract a set S of k points from
X so that the diversity of S (or dissimilarity between the
k points in S) is maximized. This is an important problem
in AI-related fields, such as web search (Ceccarello, Pietra-
caprina, and Pucci 2018), databases (Agarwal, Sintos, and
Steiger 2020), recommender systems (Hirata et al. 2022),
and data mining (Bauckhage, Sifa, and Wrobel 2020). In the
above applications, the sizes of datasets are growing, as we
have many sources that generate data. Because of this, anal-
ysis of these large datasets and/or building machine-learning
models on them often face a challenge of efficiency. Extract-
ing a summary, i.e., a set of representative points, from a
given dataset is a promising approach to overcoming this
challenge, and the diversity maximization problem can out-
put such a summary (Ceccarello, Pietracaprina, and Pucci
2020; Moumoulidou, McGregor, and Meliou 2021; Zadeh
et al. 2017). This is because it can control the summary size,
i.e., k, and the summary preserves the diversity of (or the
information on) a given dataset as much as possible.

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(a) Max-Min diversification (b) Max-Sum diversification

Figure 1: Difference between Max-Min and Max-Sum di-
versification (k = 10). Triangles are selected as solutions.

Given a set S of k points in X , the diversity of S is usu-
ally evaluated by an objective function. The most frequently
used objective functions are Max-Min and Max-Sum. Given
X and k, the Max-Min diversification problem is to select k
points in X so that the minimum distance between any two
distinct points in a solution set S is maximized. The Max-
Sum diversification problem is to select k points in X so that
the sum of the distances between all two distinct points in S
is maximized. Figure 1 compares the k = 10 points (colored
triangles) selected by the Max-Min and Max-Sum diversifi-
cation problems. Figure 1(b) illustrates that the Max-Sum
diversification problem returns S having similar points. On
the other hand, Figure 1(a) illustrates that the result set ob-
tained by the Max-Min diversification problem is distributed
uniformly in the data space. This result is better as a sum-
mary of a given dataset, so this paper considers Max-Min as
objective function.

Due to the effectiveness of the Max-Min diversification
problem, there exist extensive works on this problem (and
its variants) (Addanki et al. 2022; Aghamolaei, Farhadi,
and Zarrabi-Zadeh 2015; Borassi et al. 2019; Drosou and
Pitoura 2014; Erkut, Ülküsal, and Yenicerioğlu 1994; In-
dyk et al. 2014; Moumoulidou, McGregor, and Meliou
2021; Ravi, Rosenkrantz, and Tayi 1994; Wang, Fabbri,
and Mathioudakis 2022). Because this problem is NP-hard,
these works devised error-bounded approximation algo-
rithms. The state-of-the-art algorithm for the Max-Min di-
versification problem is GMM. (Section 2.2 introduces this

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

12338

(a) GMM (b) GREEDY

Figure 2: Result sets obtained by GMM (existing algorithm)
and GREEDY (one of our algorithms) when k = 10

algorithm in detail.) Given a set X of n points in a met-
ric space, GMM returns a 1

2 -approximation result in O(kn)
time. It is known that, unless P = NP, this bound is tight, i.e.,
cannot be improved in polynomial time.

One main issue of the above existing works is their as-
sumption: a given dataset X is clean, i.e., X contains no out-
liers. This usually does not hold, because real-world datasets
usually contain outliers that exist far from the other points
(Bhaskara, Vadgama, and Xu 2019; Dahiya et al. 2021; Im
et al. 2020; Wang, Guo, and Ding 2021). Unfortunately, the
existing algorithms for the Max-Min diversification prob-
lem are sensitive to outliers. For example, GMM is based
on furthest point retrieval, and the furthest point is usually
an outlier. Figure 2(a) illustrates a result set S (consisting
of red triangles) obtained by GMM. The points located in
the center are the same as those in Figure 1, and the other
points are outliers. GMM is clearly sensitive to the pres-
ence of outliers, as the points in S are dominated by out-
liers. Another state-of-the-art algorithm (Borassi et al. 2019)
also has a similar case, which is presented in Section 5. This
demonstrates that simply running an existing algorithm on
X having outliers does not function. In addition, for ex-
ample, when training a machine learning model through S,
which is obtained by one of the above algorithms and con-
tains outliers, we face “garbage in, garbage out.”
Our Contributions. Motivated by the above observations,
we address the problem of Max-Min diversification with
outliers. If we can identify outliers, it is possible to remove
them from X and then GMM is done on a set of the remain-
ing points in X . A straightforward approach to identifying
the outliers requires the evaluation of each point in X . This
approach, however, does not scale to n, as it incurs O(n2)
time, as shown in Section 2.3. Therefore, to scale well to n,
an algorithm, which runs in at most linear time to n with
approximation guarantee, is required. Designing such an al-
gorithm is a non-trivial task and is challenging.

We overcome this challenge and propose two novel al-
gorithms. Although they are simple, analysing their perfor-
mances is not trivial. The main contributions of this paper
are as follows:

• We tackle the problem of Max-Min diversification with
outliers, for the first time.

• We propose GREEDY (cf. Theorem 1), an O((k + z)n)
time algorithm that guarantees a 1

2 -approximation and re-
turns no outliers (z is the number of outliers), as Figure
2(b) illustrates.

• We propose CORESET (cf. Theorem 2), an O(kz) time
algorithm that guarantees a 1

6(1+ϵ) -approximation and re-
turns no outliers with a constant probability (under a rea-
sonable assumption), where ϵ < 1 is a small constant.

• We conduct experiments using real datasets and demon-
strate that our algorithms are much faster than a baseline
one while preserving a competitive diversity. For exam-
ple, CORESET is three to four orders of magnitude faster
than the baseline algorithm.

2 Preliminary
2.1 Problem Definition
Let X be a set of n points in a metric space. We use
dist(x, x′) to denote the distance between x and x′. We as-
sume that dist(·, ·) satisfies the identity of indiscernibles,
symmetry, and triangle inequality. Furthermore, we assume
that dist(·, ·) can be evaluated in O(1) time. We define
dist(x,X ′), i.e., the distance between a point x and a set
X ′, as minx′∈X′ dist(x, x′).

For ease of presentation, let us first consider that X con-
tains only inliers (non-outliers). The problem of Max-Min
diversification is to select k points in X so that the minimum
distance between the k points is maximized. Formally,
DEFINITION 1 (MAX-MIN DIVERSIFICATION WITHOUT
OUTLIERS PROBLEM). Given a set X of points and an in-
teger k ≥ 2, this problem is to compute S∗ such that

S∗ = argmax
S⊆X,|S|=k

min
x,x′∈S

dist(x, x′). (1)

We use div(S) to denote minx,x′∈S dist(x, x′). It has been
proven that (i) this problem is NP-hard and (ii) no poly-
nomial time algorithms can return a solution with an ap-
proximation factor better than 1

2 unless P = NP (Ravi,
Rosenkrantz, and Tayi 1994).

Now consider that X contains outliers, so X = Xin ∪
Xout, where Xin (Xout) is a set of inliers (outliers) in X .
Our problem is to obtain S∗ on X\Xout.
DEFINITION 2 (MAX-MIN DIVERSIFICATION WITH OUT-
LIERS PROBLEM). Given a set X of points and an integer
k ≥ 2, this problem is to compute S∗ such that

S∗ = argmax
S⊆X\Xout,|S|=k

min
x,x′∈S

dist(x, x′). (2)

We use l∗ to denote div(S∗). This problem is also NP-hard
trivially, so this paper considers approximation algorithms.

To solve this problem, this paper puts the following as-
sumptions.
ASSUMPTION 1. We have |Xout| = z.
ASSUMPTION 2. For each x ∈ Xout, we have (i)
dist(x,X\{x}) > dist(x′, X\{x′}) for every x′ ∈ Xin

and (ii) dist(x,X\{x}) > αl∗, where α ≥ 1 is a suffi-
ciently large constant.

12339

Assumption 1 is the same as that in works of k-clustering
with outliers (Bhaskara, Vadgama, and Xu 2019; Cecca-
rello, Pietracaprina, and Pucci 2019; Ding, Yu, and Wang
2019; Im et al. 2020). The first condition in Assumption 2 is
derived from the problem of distance- or nearest neighbor-
based outlier detection (Amagata, Onizuka, and Hara 2021,
2022), which has empirically good performance (Campos
et al. 2016; Gu, Akoglu, and Rinaldo 2019). This assump-
tion is also essentially similar to that held by the problem of
k-clustering with outliers. The second condition in Assump-
tion 2 is natural for the problem of Max-Min diversification
with outliers. This is because, if dist(x,X\{x}) ≤ l∗, in-
cluding an outlier x in S cannot be seen as unusual, and
even the optimal solution S∗ can contain x, which contra-
dicts Definition 2. This therefore justifies the validity of the
second condition in Assumption 2. Our theoretical analyses
use the above assumptions.

2.2 GMM
We introduce GMM (Ravi, Rosenkrantz, and Tayi 1994), a
state-of-the-art algorithm for the problem of Max-Min di-
versification without outliers (Definition 1), because this is
a building block for our techniques. GMM initializes a so-
lution set S by a random point in X . Then, it computes the
furthest point from S, denoted by x∗, i.e.,

x∗ = argmax
x∈X\S

dist(x, S), (3)

and x∗ is added into S. This is repeated until |S| = k. Al-
gorithm 1 summarizes GMM and has the following facts
(Ravi, Rosenkrantz, and Tayi 1994).
FACT 1. Algorithm 1 runs in O(kn) time and returns a 1

2 -
approximate result for the problem of Max-Min diversifica-
tion without outliers, i.e., div(S) ≥ div(S∗)

2 .
FACT 2 (ANTICOVER PROPERTY). S ← GMM(X, k) has
the following properties: (i) ∀x ∈ S, dist(x, S\{x}) ≥
div(S) and (ii) ∀x ∈ X , dist(x, S) ≤ div(S).

2.3 Baseline Algorithm
Since this is the first work on the problem of Max-Min di-
versification with outliers, we first consider how to solve this
problem by employing existing techniques. Assumption 2
suggests that, if we run a nearest neighbor search for each
point in X , we can identify the z outliers. After removing
these outliers from X in this way, we have Xin. Therefore,
by running GMM(Xin, k), we can obtain a 1

2 -approximate
result for the problem of Max-Min diversification with out-
liers. Algorithm 2 summarizes this baseline algorithm.

Although this baseline has a theoretical approximation
guarantee, its worst-case running time is O(n2), since it runs
a nearest neighbor search for every point in X . The practical
time of this algorithm can be alleviated by using some data
structure for nearest neighbor search in metric space, but this
is still slow for large n.

2.4 Related Work
The diversity maximization problem has been extensively
studied since the 1990s, as it outputs a succinct and effec-
tive subset of a given dataset. Particularly recently, diversity

Algorithm 1: GMM(X, k)

1 S ← a random point in X
2 while |S| < k do
3 x∗ = argmax

x∈X\S
dist(x, S)

4 S ← S ∪ {x∗}
5 return S

Algorithm 2: BASELINE(X, k, z)

1 Xout ← z points with the largest distance to their
nearest neighbor in X

2 return S ← GMM(X\Xout, k)

maximization under some constraint has been considered to
satisfy observations or requirements in the real world (Ad-
danki et al. 2022; Ceccarello, Pietracaprina, and Pucci 2018,
2020; Moumoulidou, McGregor, and Meliou 2021; Wang,
Fabbri, and Mathioudakis 2022). The presence of outliers,
however, has not been considered for the diversity maxi-
mization problem.
Max-Sum Diversification. This problem is also NP-hard,
and efficient algorithms with bounded error guarantee were
developed. A 1

2 -approximation algorithm was presented in
(Borodin et al. 2017). A MapReduce algorithm was de-
veloped in (Ceccarello et al. 2017); it needs to assume a
bounded doubling dimension. There are some works that
consider constraints. For example, matroid constraint was
considered in (Ceccarello, Pietracaprina, and Pucci 2018,
2020), whereas the work in (Zhang and Gionis 2020) con-
siders clustered data.
Max-Min Diversification. Some other works, e.g., (Ama-
gata and Hara 2019), also employ this objective function,
and GMM provides a good solution for them. There are
works (Amagata and Hara 2016; Drosou and Pitoura 2014)
that consider how to deal with dynamic X . Fairness con-
straint has recently been considered in (Addanki et al. 2022;
Moumoulidou, McGregor, and Meliou 2021; Wang, Fabbri,
and Mathioudakis 2022). The algorithms proposed in these
works were extended from the algorithms for Max-Min di-
versification with no constraint (Ravi, Rosenkrantz, and Tayi
1994; Borassi et al. 2019).

3 Outlier-aware Greedy Algorithm
The main drawback of Algorithm 2 is its quadratic time to
n, which is not scalable for a large n. Recall that this time
is derived from running a nearest neighbor search for every
point in X . To improve the efficiency, we need to theoreti-
cally reduce the number of candidates for outliers, but this
is not a trivial challenge. We overcome this challenge and
prove that we can identify the z outliers without running a
nearest neighbor search for every point in X . Our idea here
is to leverage the sensitivity of GMM to outliers.
LEMMA 1. Let S′ be the output of GMM(X, k+ z), and S′

contains the z outliers.

12340

Algorithm 3: GREEDY(X, k, z)

1 S′ ← GMM(X, k + z)
2 Z ← z points with the largest distance to their

nearest neighbor in S′

3 return S ← GMM(X\Z, k)

PROOF. Recall that GMM iteratively computes x∗, see
Equation (3). Let x∗

i be x∗ at the i-th iteration. Also, let Si

be S before x∗
i is inserted. It is important to notice that
dist(x∗

i+1, Si+1) ≤ dist(x∗
i , Si) (4)

This means that, as the size of S grows, div(S) decreases.
Now assume that S′ contains only z′ ≤ z − 1 outliers.

We have l∗ = div(S∗) ≥ div(S′\Xout), because we have
k + 1 ≤ |S′\Xout| ≤ k + z and Equation (4). Notice that
X\S′ has z − z′ outliers, and each of these outliers, say x,
has dist(x,X\{x}) > αl∗. This contradicts Fact 2, so S′

must have z outliers. □

From this lemma, we can reduce the number of candidates
for the outliers from n points to only k + z points. This en-
ables to design a linear time algorithm for the problem of
Max-Min diversification with outliers.

Algorithm 3 describes our first algorithm GREEDY. It first
runs GMM(X, k + z) to obtain a set S′ of k + z candidate
points for the outliers. Then, it computes the nearest neigh-
bor for each x ∈ S′ to identify the z outliers. After that, it
runs GMM(X\Z, k), where Z is a set of the z points. We
introduce the main result of this section below.
THEOREM 1. Algorithm 3 runs in O((k + z)n) time and
returns a 1

2 -approximate result, which has no outliers, for
the problem of Max-Min diversification with outliers.
PROOF. From Fact 1, S′ ← GMM(X, k + z) runs in
O((k + z)n) time. Identifying the z outliers from S′ needs
O((k+z)n) time, as |S′| = k+z. It is straightforward to see
that GMM(X\Z, k) runs in O(k(n − z)) time. Therefore,
Algorithm 3 runs in O((k + z)n) time.

Lemma 1 shows that the z outliers are included in S′, so
X\Z contains no outliers. From this observation and Fact 1,
we have div(S) ≥ div(S∗)

2 . □

4 Coreset-based Algorithm with Probable
Success Guarantee

This section proves that there exists an algorithm which does
not have a factor of n as its time complexity with sacrifice
in a success probability (the probability that S contains no
outliers) a bit. This algorithm is based on a coreset, a good
summary of X informally (its definition is introduced later,
see Definition 3). Note that the coreset is constructed offline.

For ease of presentation, we first devise an outlier-robust
online algorithm in Section 4.1. Then, Section 4.2 explains
how to construct a coreset. After that, Section 4.3 introduces
our main algorithm in this section.

4.1 Online Algorithm
For now, this section assumes that X ′ ⊆ X is given for an
online algorithm. We prove that our online algorithm in this

section is linear only to k and |X ′|. The main idea of making
this algorithm robust to outliers is to select a result point that
is not near S but not too far from S, which is different from
the idea of GMM. To implement this idea, we use a guess
of l∗ = div(S∗), denoted by l̂.
Guessing l∗. Let S′ be the set of k + z points obtained by

GMM(X, k + z). Below, we show that div(S′) ≥ div(S∗)
2 ,

where S∗, such that |S∗| = k, is the optimal solution for the
problem of Max-Min diversification with outliers. This is
not a trivial result, because (i) S′ contains the z outliers (see
Theorem 1), (ii) |S′| = k + z ̸= |S∗|, and S′\Xout is not
guaranteed to be the same as the output of GMM(Xin, k).
COROLLARY 1. Given S′ ← GMM(X, k + z), we have
div(S′) ≥ div(S∗)

2 .
PROOF. To prove this corollary, it is sufficient to demon-
strate that x∗ in Equation (3) has dist(x∗, S′) ≥ l∗

2 — (⋆).
(Recall that S does not contain x∗ at the corresponding it-
eration.) When x∗ is an outlier, dist(x∗, S′) > l∗, so (⋆)
holds. When x∗ is an inlier, we show that (⋆) holds by ex-
tending the proof of Theorem 2 in (Ravi, Rosenkrantz, and
Tayi 1994).

Assume that S∗ = {s∗1, ..., s∗k}. Let B∗
i = {x ∈

X | dist(s∗i , x) < l∗

2 }, and notice that B∗
i contains at

least s∗i . In addition, the proof of Theorem 2 in (Ravi,
Rosenkrantz, and Tayi 1994) demonstrates that B∗

i ∩ B∗
j =

∅ for i ̸= j. It is also important to notice that all out-
liers in X do not belong to

⋃
k B

∗
i . Now consider the j-

th iteration of GMM(X, k + z). In this iteration, S′ con-
tains at most k − 1 inliers. Hence, for some i ∈ [1, k],
we have S′ ∩ B∗

i = ∅. The definition of B∗
i derives that

dist(s∗i , S
′) ≥ l∗

2 . That is, there exists at least one inlier
x ∈ X\S′ such that dist(x, S′) ≥ l∗

2 . From this, when x∗

is an inlier, (⋆) still holds. □

Consequently, we have l∗ ∈ [div(S′), 2div(S′)]. By set-
ting l̂ = (1 + ϵ)idiv(S′) for i ∈ [0, log 2], where ϵ < 1 is a
small constant, we obtain l̂ = l∗

1+ϵ . Recall that this guessing
is done offline1, and we later show that div(S′) is obtained
as a side product of coreset construction, see Remark 2.
Algorithm Description. Algorithm 4 shows the online al-
gorithm. As with GMM, it first adds a random point in the
input set X ′ ⊆ X into a temporary solution set Stemp. Then,
given l̂ (a guess of l∗), it scans the input set X ′. During this,
if a given point x ∈ X ′ has l̂

2 ≤ dist(x, Stemp) ≤ l̂, x
is added into Stemp. This algorithm stops the scan when
|Stemp| = k. This is repeated for each l̂, and this algorithm
finally returns the solution set with the best diversity.
LEMMA 2. Algorithm 4 runs in O(k|X ′|) time. In addition,
it returns no outliers and guarantees 1

2(1+ϵ) -approximation
with probability at least 1− z

|X′| for the problem of Max-Min
diversification with outliers, if α ≥ 2.

1This is common in (Addanki et al. 2022; Bhaskara, Vadgama,
and Xu 2019; Ceccarello et al. 2017; Ding, Yu, and Wang 2019; Im
et al. 2020; Moumoulidou, McGregor, and Meliou 2021).

12341

Algorithm 4: STREAMING(X ′, k)

1 S ← ∅
2 for each l̂ (a guess of l∗) ∈ L do
3 Stemp ← a random point in X ′

4 for each x ∈ X ′ s.t. l̂
2 ≤ dist(x, Stemp) ≤ l̂ do

5 Stemp ← Stemp ∪ {x}
6 if |Stemp| = k then
7 break

8 if (|Stemp| = k) ∧ (div(S) < div(Stemp)) then
9 S ← Stemp

10 return S

PROOF. Given l̂, we have |Stemp| ≤ k and the number of
accessed points in X ′ is at most |X ′|, as Algorithm 4 scans
X ′ once. Since the number of guesses is at most log 2 =
O(1), the time complexity of Algorithm 4 is O(k|X ′|).

Recall that Algorithm 4 selects a point x ∈ X ′ such that
l̂
2 ≤ dist(x, Stemp). For l̂ = l∗

1+ϵ , it is straightforward to
see that Algorithm 4 returns S such that div(S) ≥ l∗

2(1+ϵ) .

Assume that x1 ∈ X ′ is firstly added into S, and x1 is
an inlier with probability at least |X′|−z

|X′| . Next, let B(x, l̂)

be a ball centered at x ∈ S with radius l̂. If B(x, l̂) con-
tains no outliers, only inliers can be added into S. When
lgreedy = l∗, l̂ is at most 2l∗. Since each outlier x′ ∈ Xout

has dist(x′, X\{x′}) > αl∗, B(x, 2l∗) contains no outliers
if α ≥ 2. To summarize, as long as the first point in S is an
inlier, S certainly contains only inliers if α ≥ 2. Now we
complete the proof of Lemma 2. □

REMARK 1. Recall that α is sufficiently large (see Section
2.1): outliers are significantly different to the others usually.
Assuming α ≥ 2 is therefore still reasonable.

4.2 Coreset Construction: Offline Processing
To start with, we formally define coreset below.
DEFINITION 3 (CORESET). A set C ⊆ X is a β-coreset, if
we have S ⊆ C such that div(S) ≥ div(S∗)

β , where |S| =
|S∗| = k.
In (Indyk et al. 2014), the following fact is demonstrated
(see its Lemma 1).
FACT 3. When X contains no outliers, GMM yields a 3-
coreset for the problem of Max-Min diversification.
Note that this bound is shown to be tight in (Aghamolaei,
Farhadi, and Zarrabi-Zadeh 2015).

Importantly, the existing work (Indyk et al. 2014) proves
that, if Y ⊆ X satisfies the anticover property (see Fact 2),
Y is a 3-coreset for the problem of Max-Min diversification.
We use this observation to prove the following.
LEMMA 3. GMM(X, k+z) returns a 3-coreset for the prob-
lem of Max-Min diversification with outliers.
PROOF. From the proof of Lemma 1, C ← GMM(X, k+z)

Algorithm 5: CORESET(X, k, z)

1 /* Offline processing */
2 C ← GMM(c) where c = O(z) and c ≥ k + z

3 /* Online processing */
4 return S ← STREAMING(C, k)

contains the z outliers. To prove Lemma 3, we show that
C\Xout has the anticover property for any inlier in X .

For any inlier x ∈ C, we trivially have dist(x,C\{Xout∪
{x}}) ≥ div(C\Xout). Also, for any inlier x ∈ C,
we trivially have dist(x,C\Xout) = 0 ≤ div(C\Xout).
We therefore focus on each inlier x′ ∈ X\C and con-
sider whether x′ has dist(x′, C\Xout) ≤ div(C\Xout).
Assume that argminx∈C dist(x, x′) is an outlier. Let this
outlier be xout, and dist(x′, xout) > αl∗. This contra-
dicts Corollary 1, so argminx∈C dist(x, x′) must be an
inlier. This means that dist(x′, C\Xout) = dist(x′, C).
From Fact 2, dist(x′, C) ≤ div(C). Now notice that
div(C) = div(C\Xout). These observations derive the
fact that dist(x′, C\Xout) ≤ div(C\Xout) for any inlier
x′ ∈ X\C. □

REMARK 2. From (Aghamolaei, Farhadi, and Zarrabi-
Zadeh 2015), this bound is also tight. In addition, as
GMM(X, k + z) is used to construct a coreset C, we have
l∗

2 ≤ div(C) ≤ l∗ from Corollary 1. Recall that Algorithm
4 requires a guess of l∗, and div(C) is used for guessing.

4.3 Putting It All Together
Now we are ready to introduce our final algorithm CORE-
SET, which is described in Algorithm 5. It constructs a core-
set C offline. When computing a solution set S, it runs
STREAMING(C, k).

We below introduce the main result of this section: the
time complexity of STREAMING(C, k) is independent of n
while guaranteeing an error bound and success probability.
THEOREM 2. Given a coreset C built by GMM(X, c) where
c = O(z) and c ≥ k + z, STREAMING(C, k) runs in
O(kz) time. In addition, it returns no outliers and guaran-
tees 1

6(1+ϵ) -approximation for the problem of Max-Min di-
versification with outliers, with at least a constant probabil-
ity, if α ≥ 2.
PROOF. From Lemma 2, it is trivial to see that STREAM-
ING(C, k) runs in O(kz) time for |C| = O(z). Also, C ←
GMM(X, k + z) derives the 1

6(1+ϵ) -approximation bound,
which is seen from Lemmas 2 and 3. Given a fixed (constant)
success probability p, we have

1− z

|C|
= p⇔ |C| = z

1− p
= O(z). (5)

The above discussions complete the proof. □

REMARK 3. The above theorem assumes that z
1−p > k + z.

This holds when p is sufficiently large (e.g., p ≥ 0.9) and z is
not too small (i.e., a standard setting). If we do not have this
case, |C| = O(k+z) and CORESET needs O(k(k+z)) time
(while the probable approximation guarantee still holds).

12342

REMARK 4. A coreset C is available for any k such that
|C| ≥ k + z. Therefore, the offline processing can be done
once for such k, i.e., this offline processing is not unique for
a specific value of k.

5 Experiment
All experiments were conducted on a Ubuntu 20.04 LTS ma-
chine equipped with Xeon Platinum 8268 CPU@2.90GHz
and 768GB RAM.
Dataset. We used the following real datasets2.

• FCT: a set of 10-dimensional cartographic variables for
forest cover type, and n = 580, 812.

• Household: a set of 7-dimensional sensor readings, and
n = 2, 049, 280.

• KDD99: a set of 16-dimensional packet records, and n =
311, 029.

• Mirai: a set of 115-dimensional Mirai malware infected
network capture data, and n = 764, 137.

We normalized each dataset so that its domain of each di-
mension was [0, 100] to have the same scale. After this, we
injected z outliers into a given dataset, as with (Bhaskara,
Vadgama, and Xu 2019; Ceccarello, Pietracaprina, and
Pucci 2019; Ding, Yu, and Wang 2019; Im et al. 2020). We
used Euclidean distance for these datasets.
Algorithm. We evaluated the following algorithms.

• GMM (Ravi, Rosenkrantz, and Tayi 1994): a 1
2 -

approximation algorithm for Max-Min diversification
without outliers.

• PODS19 (Borassi et al. 2019): a (15 − ϵ)-approximation
algorithm for Max-Min diversification without outliers.

• BASELINE: the 1
2 -approximation algorithm for Max-Min

diversification with outliers (Algorithm 2).
• GREEDY: our 1

2 -approximation algorithm for Max-Min
diversification with outliers (Algorithm 3).

• STREAMING: our 1
2(1+ϵ) -approximation algorithm for

Max-Min diversification with outliers (Algorithm 4 with
X as its input).

• CORESET: our 1
6(1+ϵ) -approximation algorithm for Max-

Min diversification with outliers (Algorithm 5).

We set ϵ = 0.01. For BASELINE and GREEDY, we employed
a VP-tree (Yianilos 1993) to retrieve the nearest neighbor
point, because it is one of the most efficient data structure for
metric spaces (Chen et al. 2017). For CORESET, we set the
coreset size so that the success probability was 0.95. All al-
gorithms were implemented in C++, compiled by g++ 9.4.0
with -O3 flag, and single threaded. Source codes of our al-
gorithms are available3.
Parameter Setting. We set k = 100 and z = 200 by de-
fault. This setting of z is similar to those in the evaluation
paper (Campos et al. 2016) and in the experiments using
large datasets (Ceccarello, Pietracaprina, and Pucci 2019;

2https://archive.ics.uci.edu/ml/datasets.php
3https://github.com/amgt-d1/Max-Min-w-Outliers

Algorithm FCT Household

div(S) Time div(S) Time

BASELINE 51.514 312.489 38.999 391.429
GREEDY 51.514 2.348 38.999 6.962

STREAMING 49.614 1.874 37.374 5.165
CORESET 50.158 0.005 38.369 0.006

Table 1: Average div(S) and running time [sec] (k = 100
and z = 200) on FCT and Household

Algorithm KDD99 Mirai

div(S) Time div(S) Time

BASELINE 80.281 360.946 113.460 485.57
GREEDY 80.281 2.135 113.460 31.046

STREAMING 79.996 1.574 95.439 20.955
CORESET 77.064 0.009 106.352 0.098

Table 2: Average div(S) and running time [sec] (k = 100
and z = 200) on KDD99 and Mirai

Algorithm FCT Household KDD99 Mirai

BASELINE 311.955 390.577 360.585 477.996
GREEDY 1.814 5.256 1.774 23.474

Table 3: Average time to identify z outliers [sec]

Gupta et al. 2017). When studying the impact of k (resp.
z), the value of z (resp. k) was fixed. We ran each algorithm
20 times and report the average result.
GMM and PODS19 are not appropriate. When S con-
tains outliers, div(S) tends to be large, which is trivial from
Assumption 2. However, such S is meaningless, as demon-
strated in Figure 2(a). We hence investigated how many out-
liers were included in S.

We found that 99% (at least 84%) points in S returned
by GMM (PODS19) are outliers, suggesting that they do
not yield a meaningful result. We therefore did not consider
GMM and PODS19 in the subsequent experiments. Note
that the other algorithms did not include any outliers in S.
Comparison with BASELINE. We compare our algorithms
with BASELINE by using the default parameter setting. Ta-
bles 1 and 2 show their div(S) and running time.

As BASELINE and GREEDY run GMM on Xin, they re-
turn the same S, so their div(S) is the same. However, their
running times are totally different, and GREEDY is at least
one order of magnitude faster than BASELINE. Table 3 clar-
ifies why we have this result and the efficacy of the outlier
identification approach of GREEDY.

STREAMING and CORESET yield a diverse set competi-
tive with that of GREEDY. In addition, CORESET is signifi-
cantly faster than the other algorithms. For example, CORE-
SET is up to 67,000 times faster than BASELINE, showing
the efficacy of coreset even in the presence of outliers.

12343

BASELINE STREAMING CORESETGREEDY

0

10

20

30

40

50

60

70

50 100 150 200

d
iv

(S
)

k (FCT)

(a) FCT (div)

0

10

20

30

40

50

60

50 100 150 200

d
iv

(S
)

k (Household)

(b) Household (div)

0

20

40

60

80

100

120

50 100 150 200

d
iv

(S
)

k (KDD99)

(c) KDD99 (div)

0

20

40

60

80

100

120

140

160

50 100 150 200

d
iv

(S
)

k (Mirai)

(d) Mirai (div)

50 100 150 200
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

k (FCT)

R
u
n
n
in

g
 t
im

e
 [
s
e
c
]

(e) FCT (time)

50 100 150 200
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

k (Household)

R
u
n
n
in

g
 t
im

e
 [
s
e
c
]

(f) Household (time)

50 100 150 200
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

k (KDD99)

R
u
n
n
in

g
 t
im

e
 [
s
e
c
]

(g) KDD99 (time)

50 100 150 200
10

−2

10
−1

10
0

10
1

10
2

10
3

k (Mirai)

R
u
n
n
in

g
 t
im

e
 [
s
e
c
]

(h) Mirai (time)

Figure 3: Impact of k (best viewed in color)

Impact of k. From the problem definition, it is trivial that
div(S) decreases as k increases. Figures 3(a)–3(d) illustrate
this result and show that the relationship between the algo-
rithms does not change for different k w.r.t. div(S). Figures
3(e)–3(h) show the running times of the four algorithms. As
BASELINE needs O(n2) time, its running time is stable. On
the other hand, the running times of the other algorithms are
linear to k, so the times increase as k increases. Since CORE-
SET outperforms the other algorithms with a large margin, it
is easy to imagine that CORESET can compute a solution
much faster than them even when k is a larger scale.

Impact of z. Figures 4(a)–4(d) observe that div(S) is robust
against z, as they do not include the z outliers in S. Fig-
ures 4(e)–4(h) show that the running times of BASELINE and
STREAMING are generally stable, whereas those of GREEDY
and CORESET are linear to z. This result is consistent with
their time complexities.

BASELINE STREAMING CORESETGREEDY

0

10

20

30

40

50

60

100 200 400 800 1600

d
iv

(S
)

z (FCT)

(a) FCT (div)

0

10

20

30

40

50

100 200 400 800 1600

d
iv

(S
)

z (Household)

(b) Household (div)

0

10

20

30

40

50

60

70

80

90

100 200 400 800 1600

d
iv

(S
)

z (KDD99)

(c) KDD99 (div)

0

20

40

60

80

100

120

100 200 400 800 1600

d
iv

(S
)

z (Mirai)

(d) Mirai (div)

0 200 400 600 800 1000120014001600
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

z (FCT)

R
u
n
n
in

g
 t
im

e
 [
s
e
c
]

(e) FCT (time)

0 200 400 600 800 1000120014001600
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

z (Household)

R
u
n
n
in

g
 t
im

e
 [
s
e
c
]

(f) Household (time)

0 200 400 600 800 1000120014001600
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

z (KDD99)

R
u
n
n
in

g
 t
im

e
 [
s
e
c
]

(g) KDD99 (time)

0 200 400 600 800 1000120014001600
10

−2

10
−1

10
0

10
1

10
2

10
3

z (Mirai)
R

u
n
n
in

g
 t
im

e
 [
s
e
c
]

(h) Mirai (time)

Figure 4: Impact of z (best viewed in color)

6 Conclusion & Future Work
This paper addressed the problem of Max-Min diversifica-
tion with outliers for the first time, motivated by (i) the use-
fulness of the Max-Min diversification problem in many ap-
plications and (ii) the fact that real-world datasets usually
contain outliers. Existing algorithms for Max-Min diversifi-
cation without outliers cannot be effective when outliers ex-
ist. We hence proposed two effective and efficient algorithms
with theoretical performance guarantee for the problem of
Max-Min diversification with outliers. Our experimental re-
sults demonstrate their effectiveness and efficiency.

This paper has an assumption for outliers, and how to ex-
tend our algorithms for different assumptions is one of fu-
ture works. Moreover, when points in X have demographic
groups, fairness constraint is often considered, as introduced
in Section 2.4. Addressing a fair case of our problem re-
mains an open issue.

12344

Acknowledgments
This research is partially supported by JST PRESTO Grant
Number JPMJPR1931, JSPS Grant-in-Aid for Scientific Re-
search (A) Grant Number 18H04095, and JST CREST Grant
Number JPMJCR21F2.

References
Addanki, R.; McGregor, A.; Meliou, A.; and Moumoulidou,
Z. 2022. Improved Approximation and Scalability for Fair
Max-Min Diversification. In ICDT, 7:1–7:21.
Agarwal, P. K.; Sintos, S.; and Steiger, A. 2020. Efficient
Indexes for Diverse Top-k Range Queries. In PODS, 213–
227.
Aghamolaei, S.; Farhadi, M.; and Zarrabi-Zadeh, H. 2015.
Diversity Maximization via Composable Coresets. In
CCCG.
Amagata, D.; and Hara, T. 2016. Diversified Set Monitoring
over Distributed Data Streams. In DEBS, 1–12.
Amagata, D.; and Hara, T. 2019. Correlation Set Discovery
on Time-Series Data. In DEXA, 275–290.
Amagata, D.; Onizuka, M.; and Hara, T. 2021. Fast and
exact outlier detection in metric spaces: a proximity graph-
based approach. In SIGMOD, 36–48.
Amagata, D.; Onizuka, M.; and Hara, T. 2022. Fast, ex-
act, and parallel-friendly outlier detection algorithms with
proximity graph in metric spaces. The VLDB Journal, 31:
797–821.
Bauckhage, C.; Sifa, R.; and Wrobel, S. 2020. Adiabatic
Quantum Computing for Max-Sum Diversification. In SDM,
343–351.
Bhaskara, A.; Vadgama, S.; and Xu, H. 2019. Greedy Sam-
pling for Approximate Clustering in the Presence of Out-
liers. NeruIPS, 11148–11157.
Borassi, M.; Epasto, A.; Lattanzi, S.; Vassilvitskii, S.; and
Zadimoghaddam, M. 2019. Better Sliding Window Algo-
rithms to Maximize Subadditive and Diversity Objectives.
In PODS, 254–268.
Borodin, A.; Jain, A.; Lee, H. C.; and Ye, Y. 2017. Max-
Sum Diversification, Monotone Submodular Functions, and
Dynamic Updates. ACM Transactions on Algorithms, 13(3):
1–25.
Campos, G. O.; Zimek, A.; Sander, J.; Campello, R. J.; Mi-
cenková, B.; Schubert, E.; Assent, I.; and Houle, M. E. 2016.
On the Evaluation of Unsupervised Outlier Detection: Mea-
sures, Datasets, and an Empirical Study. Data Mining and
Knowledge Discovery, 30(4): 891–927.
Ceccarello, M.; Pietracaprina, A.; and Pucci, G. 2018. Fast
Coreset-based Diversity Maximization under Matroid Con-
straints. In WSDM, 81–89.
Ceccarello, M.; Pietracaprina, A.; and Pucci, G. 2019. Solv-
ing k-center Clustering (with Outliers) in MapReduce and
Streaming, almost as Accurately as Sequentially. PVLDB,
12(7): 766–778.
Ceccarello, M.; Pietracaprina, A.; and Pucci, G. 2020. A
General Coreset-based Approach to Diversity Maximization

under Matroid Constraints. ACM Transactions on Knowl-
edge Discovery from Data, 14(5): 1–27.
Ceccarello, M.; Pietracaprina, A.; Pucci, G.; and Upfal, E.
2017. MapReduce and Streaming Algorithms for Diversity
Maximization in Metric Spaces of Bounded Doubling Di-
mension. PVLDB, 10(5): 469–480.
Chen, L.; Gao, Y.; Zheng, B.; Jensen, C. S.; Yang, H.; and
Yang, K. 2017. Pivot-based Metric Indexing. PVLDB,
10(10): 1058–1069.
Dahiya, Y.; Fomin, F.; Panolan, F.; and Simonov, K. 2021.
Fixed-Parameter and Approximation Algorithms for PCA
with Outliers. In ICML, 2341–2351.
Ding, H.; Yu, H.; and Wang, Z. 2019. Greedy Strategy
Works for k-Center Clustering with Outliers and Coreset
Construction. In ESA, volume 144, 40:1–40:16.
Drosou, M.; and Pitoura, E. 2014. Diverse Set Selection over
Dynamic Data. IEEE Transactions on Knowledge and Data
Engineering, 26(5): 1102–1116.
Erkut, E.; Ülküsal, Y.; and Yenicerioğlu, O. 1994. A Com-
parison of p-dispersion Heuristics. Computers & operations
research, 21(10): 1103–1113.
Gu, X.; Akoglu, L.; and Rinaldo, A. 2019. Statistical Anal-
ysis of Nearest Neighbor Methods for Anomaly Detection.
In NeurIPS, 10923–10933.
Gupta, S.; Kumar, R.; Lu, K.; Moseley, B.; and Vassilvitskii,
S. 2017. Local Search Methods for k-means with Outliers.
PVLDB, 10(7): 757–768.
Hirata, K.; Amagata, D.; Fujita, S.; and Hara, T. 2022. Solv-
ing Diversity-Aware Maximum Inner Product Search Effi-
ciently and Effectively. In RecSys, 198–207.
Im, S.; Qaem, M. M.; Moseley, B.; Sun, X.; and Zhou, R.
2020. Fast Noise Removal for k-means Clustering. In AIS-
TATS, 456–466.
Indyk, P.; Mahabadi, S.; Mahdian, M.; and Mirrokni, V. S.
2014. Composable Core-sets for Diversity and Coverage
Maximization. In PODS, 100–108.
Moumoulidou, Z.; McGregor, A.; and Meliou, A. 2021. Di-
verse Data Selection under Fairness Constraints. In ICDT,
13:1–13:25.
Ravi, S. S.; Rosenkrantz, D. J.; and Tayi, G. K. 1994. Heuris-
tic and Special Case Algorithms for Dispersion Problems.
Operations Research, 42(2): 299–310.
Wang, Y.; Fabbri, F.; and Mathioudakis, M. 2022. Streaming
Algorithms for Diversity Maximization with Fairness Con-
straints. In ICDE, 41–53.
Wang, Z.; Guo, Y.; and Ding, H. 2021. Robust and Fully-
Dynamic Coreset for Continuous-and-Bounded Learning
(With Outliers) Problems. In NeurIPS, 14319–14331.
Yianilos, P. N. 1993. Data Structures and Algorithms for
Nearest Neighbor. In SODA, volume 66, 311.
Zadeh, S. A.; Ghadiri, M.; Mirrokni, V.; and Zadimoghad-
dam, M. 2017. Scalable Feature Selection via Distributed
Diversity Maximization. In AAAI, 2876–2883.
Zhang, G.; and Gionis, A. 2020. Maximizing Diversity over
Clustered Data. In SDM, 649–657.

12345

