
The Linear Distance Traveling Tournament Problem Allows an EPTAS

Jingyang Zhao, Mingyu Xiao*

University of Electronic Science and Technology of China
jingyangzhao1020@gmail.com, myxiao@gmail.com

Abstract

The Traveling Tournament Problem (TTP-k) is a well-known
benchmark problem in tournament timetabling and has been
extensively studied in the field of AI. In this problem, we are
going to design a double round-robin schedule such that each
pair of teams plays one game in each other’s home venue,
minimizing the total distance traveled by all n teams (n is
even) under the constraint that each team can have at most
k-consecutive home games or away games. The Linear Dis-
tance Traveling Tournament Problem (LDTTP-k), where all
teams are located on a line, was introduced by Hoshino and
Kawarabayashi (AAAI 2012). For LDTTP-3, they gave a
4/3-approximation algorithm for n ≡ 4 (mod 6) teams. In
this paper, we show that for any 3 ≤ k = o(3

√
n), LDTTP-

k allows an efficient polynomial-time approximation scheme
(EPTAS).

Introduction
The traveling tournament problem (TTP-k), systematically
introduced in (Easton, Nemhauser, and Trick 2001), is a
widely studied benchmark problem in the field of sports
schedules (Kendall et al. 2010). This problem aims to find
a feasible double round-robin tournament under some con-
straints such that the total traveling distance of all participant
teams is minimized. A double round-robin tournament of n
teams will last 2(n − 1)-consecutive days, and each team
plays exactly one game against another team each day. Each
team plays two games against each of the other n−1 teams:
one home game at its home venue and one away game at
its opponent’s home venue. For TTP-k, there are two more
constraints on the round-robin tournament:

• No-repeat: No pair of teams can play against each other
in two consecutive games.

• Bounded-by-k: Each team can play at most k-consecutive
home games or away games.

In the problem, we also assume that each team travels di-
rectly from its game venue on i-th day to its venue on (i+1)-
th day, and each team is at home before the first game starts
and will return home after the last game ends. We may also

*Corresponding author
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

assume that the distance is a metric, i.e., it satisfies the sym-
metry and triangle inequality properties.

The linear distance traveling tournament problem
(LDTTP-k), introduced in (Hoshino and Kawarabayashi
2012), is an interesting variant of TTP-k where all teams
are located on a line.

Related Work
TTP-k has been extensively studied both in theory and prac-
tice. TTP-k is known to be NP-hard for any fixed k ≥ 3 and
k = n − 1 (Thielen and Westphal 2011; Chatterjee 2021;
Bhattacharyya 2016). The smaller the value of k, the more
frequently each team has to return home. The case of k = 3
is the most extensively studied. However, it is not easy to
find a feasible solution, and many instances of TTP-3 with
more than ten teams in the online benchmark (Trick 2020;
Bulck et al. 2020) have not been completely solved even by
using high-performance machines.

In theory, most contributions are about approximation
algorithms (Thielen and Westphal 2012; Xiao and Kou
2016; Chatterjee and Roy 2021; Imahori 2021; Miyashiro,
Matsui, and Imahori 2012; Yamaguchi et al. 2011; West-
phal and Noparlik 2014; Hoshino and Kawarabayashi 2012,
2013). Now, the approximation ratios have been improved
to 1 + ε for TTP-2 (Zhao and Xiao 2021a,b), 139/87 + ε
for TTP-3 (Zhao, Xiao, and Xu 2022), and 11/4 for TTP-
(n − 1) (Imahori, Matsui, and Miyashiro 2014). There is
also a large number of works on practical and heuristic al-
gorithms (Easton, Nemhauser, and Trick 2002; Lim, Ro-
drigues, and Zhang 2006; Anagnostopoulos et al. 2006;
Di Gaspero and Schaerf 2007; Hentenryck and Vergados
2007; Goerigk et al. 2014; Goerigk and Westphal 2016).

LDTTP-k is a linear distance relaxation of TTP-k, where
all teams are on a line. It reduces the n(n−1)

2 pairwise dis-
tance parameters to just n− 1 variables. Although the hard-
ness of LDTTP-k is still not formally proved yet, it is be-
lieved that LDTTP-k is also NP-hard since it is not even easy
to construct a feasible solution. For LDTTP-3, Hoshino and
Kawarabayashi (2012) proposed a 4/3-approximation algo-
rithm for the case of n ≡ 4 (mod 6). Whether there exist
similar constructions for n ≡ 0 and n ≡ 2 (mod 6) was
asked in (Hoshino and Kawarabayashi 2012; Goerigk et al.
2014). Very recently, the approximation ratio for LDTTP-3
was improved to 6/5 + ε (Zhao, Xiao, and Xu 2022).

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

12155

Our Results
In this paper, we study algorithms for LDTTP-k. We show
that for any 3 ≤ k = o(3

√
n), LDTTP-k allows an EP-

TAS: for any constant ε > 0, we can compute a schedule
for LDTTP-k with the weight at most 1 + ε times the opti-
mal in time Oε(1)+nO(1). Our result significantly improves
all previously known results. In this paper, we mainly focus
on theoretical analysis of the approximation ratio.

For the sake of analysis, we adopt some simple random-
ized methods in our schedule, which can be derandomized
efficiently by using the classic method of conditional expec-
tations. Due to limited space, the proofs of lemmas and the-
orems marked with “*” were omitted and they can be found
in the full version of this paper.

Notations
Let n denote the number of total teams, where n is always
an even number by the definition of the problem. Recall that
k is the maximum number of consecutive home/away games
allowed. In our setting, k is a part of the input. However, we
assume 3 ≤ k = o(3

√
n) since our schedule and analysis

require this condition, which already includes the case that
k is a constant. We use G = (V,E) to denote the complete
graph on the n vertices representing the n teams. There is
a weight function w : E → R≥0 on the edges of G. The
weight w(u, v) of edge uv is the distance between the homes
of teams u and v. For a subset of edges E′ ⊆ E, we define
w(E′) =

∑
x∈E′ w(x).

We use E(u) to denote the set of edges incident on u in
G. The weighted degree of a vertex u is defined as δ(u) =
w(E(u)). We let ∆ be the sum of the weighted degrees of
all vertices, i.e.,

∆ =
∑
u∈V

δ(u) = 2w(E).

A k-path P is a simple path on k different vertices. A
k-path packing P in G is a set of edges such that every com-
ponent is a k-path, and each vertex is covered. A k-path on
k vertices v1 . . . vk in this order is denoted by {v1, . . . , vk}.
The two vertices v1 and vk are called terminals of the k-path.

When n is not divisible by k, there is no k-path packing in
G. For this case, we may consider an induced subgraph Gε

of G with the number of vertices being a multiple of k. We
use nε to denote the number of vertices in Gε, and define the
corresponding notations Eε(·), δε(·) and ∆ε in Gε.

Lower Bounds
We first present two lower bounds for LDTTP-k, which will
be used to compare with our solution. We use OPT to denote
the value of an optimal solution for LDTTP-k or TTP-k.

Since LDTTP-k is a special case of TTP-k, all lower
bounds for TTP-k also hold for LDTTP-k.

The first lower bound is a known bound for TTP-k, which
can be obtained by the triangle inequality property.

Lemma 1. (Westphal and Noparlik 2014). For TTP-k, it
holds that ∆ ≤ (k/2) · OPT.

The second lower bound uses the nature of LDTTP-k. We
consider the induced graph Gε = G[Vε] which is also a line
shape. There are nε = |Vε| teams in Gε. We label them with
t1, t2, . . . , tnε

from left to right on the line respectively, and
let di = w(ti, ti+1) for 1 ≤ i ≤ nε − 1. We have

Lemma 2. For LDTTP-k, it holds that
∑nε−1

i=1 lidi ≤ OPT,
where li = 2i⌈nε−i

k ⌉+ 2(nε − i)⌈ i
k ⌉.

Proof. For an edge titi+1, there are i teams on the left and
nε − i teams on the right of it. For each left team, it takes at
least ⌈nε−i

k ⌉ trips for it to visit all right teams. For each right
team, it takes at least ⌈ i

k ⌉ trips for it to visit all left teams.
There are at least i⌈nε−i

k ⌉+ (nε − i)⌈ i
k ⌉ =

li
2 trips in total.

Each trip must cross the edge twice and hence all teams must
cross the edge at least li times. Together, we get the lower
bound

∑nε−1
i=1 lidi.

The lower bound in Lemma 2 with k = 3 can be used
to get the 4/3-approximation algorithm for the case n ≡ 4
(mod 6) by (Hoshino and Kawarabayashi 2012). It is not
enough to get a PTAS. We reveal more properties.

Note that nε is divisible by k. We can construct a k-path
packing P∗

ε = {tki−k+1tki−k+2 . . . tki}nε/k
i=1 by packing the

k-paths from the most left to the most right along the line. It
is easy to see that P∗

ε is the optimal k-path packing with the
minimum weight of the paths in it. We define ∆ε(P∗

ε) as the
sum weighted degrees of the terminals in P∗

ε . That is

∆ε(P∗
ε) =

nε/k∑
i=1

(δε(tki−k+1) + δε(tki)).

If each team in Gε plays k-consecutive away games along
each k-path in P∗

ε from one terminal to another termi-
nal, then the total traveling distance of all teams is exactly
∆ε(P∗

ε) + nεw(P∗
ε). Interestingly, we have

Lemma 3 (*). ∆ε(P∗
ε) + nεw(P∗

ε) =
∑nε−1

i=1 lidi.
By Lemmas 2 and 3, we get that

Lemma 4. For LDTTP-k, it holds that ∆ε(P∗
ε) +

nεw(P∗
ε) ≤ OPT.

Lemma 4 shows that to obtain a solution close to the op-
timal (or PTAS), almost all teams in Gε may need to play
k-consecutive away games with the teams in every k-path in
P∗
ε . Next, we will introduce our construction.

The Construction of the Schedule
For any constant ε > 0, we will construct a schedule with
the total weight at most 1 + ε times the optimal. Hence, our
construction depends on the value ε, i.e., our schedule may
be different for different values of ε. Let d = 12⌈1/ε⌉ (d is
an even constant). Then, we can get d = Θ(1/ε) = Oε(1).
We also let m = 2⌊ n

2kd⌋. So, m is also an even number.
Then, we can use O(n2) time to choose mkd vertices in V

to form the vertex set Vε such that the sum weighted degrees
of them

∑
ti∈Vε

δ(ti) is maximized. We can get∑
ti∈Vε

δ(ti) ≥ (mkd/n)
∑
ti∈V

δ(ti) = (mkd/n)∆. (1)

12156

The number of vertices in Vε is divisible by k. The graph
Gε induced by Vε has an optimal k-path packing P∗

ε (defined
above). Our construction is based on the k-path packing P∗

ε .
We aim to construct a feasible schedule such that each team
plays k-consecutive away games against teams in each k-
path in the packing as much as possible. More precisely, the
weight of our schedule is bounded by

(1 +O(ε))(∆ε(P∗
ε) + nεw(P∗

ε)) +O(ε) · OPT.

By Lemma 4, we can get an approximation ratio of 1+O(ε)
for LDTTP-k.

We also assume n ≥ 2k2d2. Otherwise, since k = o(3
√
n)

and d = Oε(1), we know that there is a constant n0 = Oε(1)
such that n ≤ n0. We can use a brute-and-force algorithm to
solve the problem in constant time Oε(1). Note that we can
get m = 2⌊ n

2kd⌋ ≥ 2kd. Next, we are going to introduce the
main framework of the construction.

To make our construction clear, we first partition teams
and the days of games into several groups and design a
higher-level schedule for games among groups.

Each team should attend 2(n−1) games on 2(n−1) days.
We partition the 2(n − 1) days into m − 1 time slots. Each
of the first m− 2 time slots lasts 2kd days and the last time
slot contains the remaining 2n− 2− 2kd(m− 2) days.

We also partition the n teams into different groups. First,
we partition the set V into two parts: Vε and V \Vε. There are
nε = |Vε| = mkd teams in Vε. We find an optimal k-path
packing P∗

ε in Gε. The size of P∗
ε is md. We randomly label

the k-paths in P∗
ε by {P1, . . . , Pmd} and take each k-path Pi

as a path-team ui. We regard ui as a set of the k teams in the
corresponding k-path and relabel ui = {tki−k+1, . . . , tki}
for the sake of presentation. We also consider d path-teams
as a super-team Ui: Ui = {udi−d+1, . . . , udi}. Thus, we will
get m super-teams {U1, . . . , Um}. There are still n − mkd
teams in V \ Vε. We arbitrarily partition them into r =
n/2−mkd/2 team-pairs, denoted by {R1, . . . , Rr}, where
we relabel Ri = {tnε+2i−1, tnε+2i} for the sake of presen-
tation. Note that r ≤ kd− 1.

The main idea of the construction is that: we first arrange
a schedule of super-games between super-teams (including
the team-pairs); then, we extend the super-games into nor-
mal games between normal teams, which will form a feasi-
ble schedule for LDTTP-k.

For the schedule of super-games, there are m super-teams,
and each of them will attend m − 1 super-games in m − 1
consecutive time slots. In each of the first m− 2 time slots,
we have m/2 super-games: 1 is called the left super-game,
involving two super-teams; m/2−r−1 are called the middle
super-games, each of them involving two super teams; r are
called the right super-games, each of them involving two
super teams and one team-pair. Note that m/2 ≥ r+1 since
r ≤ kd − 1 and m ≥ 2kd by the previous settings. The last
time slot is special, and we will explain it later.

The First m− 2 Time Slots
In the first time slot, the m/2 super-games are arranged as
shown in Figure 1 (for m = 10 and r = 2). The last
super-team Um is denoted by a double-cycle node on the
left, the other m − 1 super-teams, denoted by single-cycle

U10 U9
L

U1

U8

U2

U7

U3

U6

R2

U4

U5

R1

Figure 1: The super-game schedule in the first time slot,
where m = 10 and r = 2

U10 U8
L

U9

U7

U1

U6

U2

U5

R2

U3

U4

R1

Figure 2: The super-game schedule in the second time slot,
where m = 10 and r = 2

nodes, form a cycle, and the r team-pairs are denoted by r
square nodes on the right. Each super-game is denoted by
a directed edge between two super-teams. The information
on the direction will be used later. We regard that the super-
game happens at the home of Uj if the direction is from Ui

to Uj . The most left super-game involving super-team Um is
called the left super-game and we put a letter ‘L’ on edge to
denote it. The middle m/2 − 1 − r super-games are called
middle super-games. Note that the direction of the arcs is al-
ternative. The most right r super-games, each involving two
super-teams and one team-pair, are called the right super-
games. For the sake of the presentation, we put the square
node for a team-pair beside the edge.

In the second time slot, super-games are scheduled as
shown in Figure 2. We change the positions of single-cycle
nodes in the cycle U1U2 . . . Um−1 by moving one position
in the clockwise direction, and also change the direction of
each edge. The positions of the double-cycle node Um and
the r square nodes are fixed.

The schedules for the first m − 2 time slots are derived
analogously. There are three kinds of super-games in the first
m− 2 time slots: left, middle, and right. We explain how to
extend them into normal games one by one. We first consider
the easy case of middle super-games.

Middle super-games: We consider a middle super-game
from super-teams Ui to Uj . Recall that each super-team con-
tains d path-teams. We will first extend the middle super-
game into path-games between path-teams ui′ ∈ Ui and
uj′ ∈ Uj . Then, we will further extend the path-games into
normal games between normal teams. The time slot is split
into d sessions. Each path-team ui′ ∈ Ui will play an away
path-game with each path-team uj′ ∈ Uj in a session. In Ta-
ble 1, we show the path-games for d = 6, where we relabel
Ui = {u1, . . . , u6} and Uj = {v1, . . . , v6} to make it neat.

Next, we extend path-games into normal games. Consider
a path-game from path-teams ui to vj (1 ≤ i, j ≤ d). Let
ui = {xki−k, . . . , xki−1} and vj = {ykj−k, . . . , ykj−1}. In
a session, which contains 2k days, each team xki−k+k′ ∈
ui (resp., ykj−k+k′ ∈ vj) plays k′-consecutive home

12157

1 2 3 4 5 6
u1 v1 v2 v3 v4 v5 v6
u2 v6 v1 v2 v3 v4 v5
u3 v5 v6 v1 v2 v3 v4
u4 v4 v5 v6 v1 v2 v3
u5 v3 v4 v5 v6 v1 v2
u6 v2 v3 v4 v5 v6 v1
v1 u1u1u1 u2u2u2 u3u3u3 u4u4u4 u5u5u5 u6u6u6

v2 u6u6u6 u1u1u1 u2u2u2 u3u3u3 u4u4u4 u5u5u5

v3 u5u5u5 u6u6u6 u1u1u1 u2u2u2 u3u3u3 u4u4u4

v4 u4u4u4 u5u5u5 u6u6u6 u1u1u1 u2u2u2 u3u3u3

v5 u3u3u3 u4u4u4 u5u5u5 u6u6u6 u1u1u1 u2u2u2

v6 u2u2u2 u3u3u3 u4u4u4 u5u5u5 u6u6u6 u1u1u1

Table 1: Extending the middle super-game from Ui =
{u1, . . . , u6} to Uj = {v1, . . . , v6} into path-games in
d = 6 sessions, where home path-games are marked in bold

1 2 3 4 5 6
x3i−3 y3j−3 y3j−2 y3j−1 y3j−3y3j−3y3j−3 y3j−2y3j−2y3j−2 y3j−1y3j−1y3j−1

x3i−2 y3j−4y3j−4y3j−4 y3j−3 y3j−2 y3j−1 y3j−3y3j−3y3j−3 y3j−2y3j−2y3j−2

x3i−1 y3j−5y3j−5y3j−5 y3j−4y3j−4y3j−4 y3j−3 y3j−2 y3j−1 y3j−3y3j−3y3j−3

y3j−3 x3i−3x3i−3x3i−3 x3i−2x3i−2x3i−2 x3i−1x3i−1x3i−1 x3i−3 x3i−2 x3i−1

y3j−2 x3i−4 x3i−3x3i−3x3i−3 x3i−2x3i−2x3i−2 x3i−1x3i−1x3i−1 x3i−3 x3i−2

y3j−1 x3i−5 x3i−4 x3i−3x3i−3x3i−3 x3i−2x3i−2x3i−2 x3i−1x3i−1x3i−1 x3i−3

Table 2: Extending the path-game from ui = {x3i−3, x3i−2,
x3i−1} to vj = {y3j−3, y3j−2, y3j−1} into normal games in
2k = 6 days, where home games are marked in bold

(resp., away) games with k′ teams in vj−1 (resp., ui−1),
k-consecutive away (resp., home) games with k teams in
vj (resp., ui), and (k − k′)-consecutive home (resp., away)
games with k − k′ teams in vj (resp., ui) in 2k days (0 ≤
k′ ≤ k − 1). The schedule is shown in Table 2 for k = 3.
Here we also regard u0 = ud (resp., v0 = vd).

The design of normal super-games is inspired by the al-
gorithm in (Hoshino and Kawarabayashi 2013). From Ta-
ble 2, we can see that in the path-game, every normal team
in ui will play k-consecutive away games along the k-path
of vj while the normal team in vj may not. However, each
path-team in Uj plays d-consecutive home path-games, as
shown in Table 1. By combining all path-games together,
we can see that every normal team in Ui will play d away
trips along the d k-paths in Uj , and every normal team in
Uj will play d or d + 1 away trips along at least d − 1 k-
paths in Ui. Furthermore, all normal games are arranged be-
tween one normal team in Ui and one normal team in Uj .
Roughly speaking, the bigger the value d, the more success-
ful the schedule. Later, we will show that it is good enough
to set d = Θ(1/ε).

An illustration of the normal games after extending one
middle super-game for k = 3 and d = 2 is shown in Table 3.

Left super-games: We consider a left super-game from
super-teams Ui to Uj . Note that one of Ui and Uj is Um.
Let Ui = {{x0, . . . , xk−1}, . . . , {xkd−k, . . . , xkd−1}} and
Uj = {{y0, . . . , yk−1}, . . . , {ykd−k, . . . , ykd−1}}. For all

1 2 3 4 5 6 7 8 9 10 11 12
x0 y0 y1 y2 y0y0y0 y1y1y1 y2y2y2 y3 y4 y5 y3y3y3 y4y4y4 y5y5y5
x1 y5y5y5 y0 y1 y2 y0y0y0 y1y1y1 y2y2y2 y3 y4 y5 y3y3y3 y4y4y4
x2 y4y4y4 y5y5y5 y0 y1 y2 y0y0y0 y1y1y1 y2y2y2 y3 y4 y5 y3y3y3
x3 y3 y4 y5 y3y3y3 y4y4y4 y5y5y5 y0 y1 y2 y0y0y0 y1y1y1 y2y2y2
x4 y2y2y2 y3 y4 y5 y3y3y3 y4y4y4 y5y5y5 y0 y1 y2 y0y0y0 y1y1y1
x5 y1y1y1 y2y2y2 y3 y4 y5 y3y3y3 y4y4y4 y5y5y5 y0 y1 y2 y0y0y0
y0 x0x0x0 x1x1x1 x2x2x2 x0 x1 x2 x3x3x3 x4x4x4 x5x5x5 x3 x4 x5

y1 x5 x0x0x0 x1x1x1 x2x2x2 x0 x1 x2 x3x3x3 x4x4x4 x5x5x5 x3 x4

y2 x4 x5 x0x0x0 x1x1x1 x2x2x2 x0 x1 x2 x3x3x3 x4x4x4 x5x5x5 x3

y3 x3x3x3 x4x4x4 x5x5x5 x3 x4 x5 x0x0x0 x1x1x1 x2x2x2 x0 x1 x2

y4 x2 x3x3x3 x4x4x4 x5x5x5 x3 x4 x5 x0x0x0 x1x1x1 x2x2x2 x0 x1

y5 x1 x2 x3x3x3 x4x4x4 x5x5x5 x3 x4 x5 x0x0x0 x1x1x1 x2x2x2 x0

Table 3: Extending the middle super-game from Ui =
{{x0, x1, x2}, {x3, x4, x5}} to Uj = {{y0, y1, y2},
{y3, y4, y5}} into normal games in 2kd = 12 days, where
home normal games are marked in bold

1 2 3 4 5 6 7 8 9 10 11 12
x0 y0 y1y1y1 y2 y3y3y3 y4 y5y5y5 y0y0y0 y1 y2y2y2 y3 y4y4y4 y5
x1 y5 y0y0y0 y1 y2y2y2 y3 y4y4y4 y5y5y5 y0 y1y1y1 y2 y3y3y3 y4
x2 y4 y5y5y5 y0 y1y1y1 y2 y3y3y3 y4y4y4 y5 y0y0y0 y1 y2y2y2 y3
x3 y3 y4y4y4 y5 y0y0y0 y1 y2y2y2 y3y3y3 y4 y5y5y5 y0 y1y1y1 y2
x4 y2 y3y3y3 y4 y5y5y5 y0 y1y1y1 y2y2y2 y3 y4y4y4 y5 y0y0y0 y1
x5 y1 y2y2y2 y3 y4y4y4 y5 y0y0y0 y1y1y1 y2 y3y3y3 y4 y5y5y5 y0
y0 x0x0x0 x1 x2x2x2 x3 x4x4x4 x5 x0 x1x1x1 x2 x3x3x3 x4 x5x5x5

y1 x5x5x5 x0 x1x1x1 x2 x3x3x3 x4 x5 x0x0x0 x1 x2x2x2 x3 x4x4x4

y2 x4x4x4 x5 x0x0x0 x1 x2x2x2 x3 x4 x5x5x5 x0 x1x1x1 x2 x3x3x3

y3 x3x3x3 x4 x5x5x5 x0 x1x1x1 x2 x3 x4x4x4 x5 x0x0x0 x1 x2x2x2

y4 x2x2x2 x3 x4x4x4 x5 x0x0x0 x1 x2 x3x3x3 x4 x5x5x5 x0 x1x1x1

y5 x1x1x1 x2 x3x3x3 x4 x5x5x5 x0 x1 x2x2x2 x3 x4x4x4 x5 x0x0x0

Table 4: Extending the left super-game from Ui =
{{x0, x1, x2}, {x3, x4, x5}} to Uj = {{y0, y1, y2},
{y3, y4, y5}} into normal games in 2kd = 12 days, where
home normal games are marked in bold

normal teams in Ui and Uj , we define matches

si = {xi′ → y(kd+i−i′) mod kd}kd−1
i′=0 .

We use si to denote the case that the game venues in si are
reversed. We directly extend the left super-game into nor-
mal games between normal teams in Ui and Uj . The normal
games can be presented by

s0s1s2s3 · · · skd−2skd−1 · s0s1s2s3 · · · skd−2skd−1.

An illustration of the normal games after extending one left
super-game for k = 3 and d = 2 is shown in Table 4. Note
that all normal games between one normal team in Ui and
one in Uj are arranged.

Right super-games: Consider that super-team Ui plays
an away right super-game with the super-team Uj together
with a team-pair Ri′ (the direction of the edge is from Ui to
Uj). Let Ui = {{x0, . . . , xk−1}, . . . , {xkd−k, . . . , xkd−1}},
Uj = {{y0, . . . , yk−1}, . . . , {ykd−k, . . . , ykd−1}}, and
Ri′ = {tnε+2i′−1, tnε+2i′}. We will put the first team
tnε+2i′−1 ∈ Ri′ to the upper super-team as shown in Fig-
ure 1 or 2 and put the second team tnε+2i′ ∈ Ri′ to the

12158

1 2 3 4 5 6 7 8 9 10 11 12
x0 y0 y2y2y2 y4 y6y6y6 y1 y3y3y3 y2 y4y4y4 y6 y1y1y1 y3 y0y0y0
x1 y6 y1y1y1 y3 y5y5y5 y0 y2y2y2 y1 y3y3y3 y5 y0y0y0 y2 y6y6y6
x2 y5 y0y0y0 y2 y4y4y4 y6 y1y1y1 y0 y2y2y2 y4 y6y6y6 y1 y5y5y5
x3 y4 y6y6y6 y1 y3y3y3 y5 y0y0y0 y6 y1y1y1 y3 y5y5y5 y0 y4y4y4
x4 y3 y5y5y5 y0 y2y2y2 y4 y6y6y6 y5 y0y0y0 y2 y4y4y4 y6 y3y3y3
x5 y2 y4y4y4 y6 y1y1y1 y3 y5y5y5 y4 y6y6y6 y1 y3y3y3 y5 y2y2y2
x6 y1 y3y3y3 y5 y0y0y0 y2 y4y4y4 y3 y5y5y5 y0 y2y2y2 y4 y1y1y1
y0 x0x0x0 x2 x4x4x4 x6 x1x1x1 x3 x2x2x2 x4 x6x6x6 x1 x3x3x3 x0

y1 x6x6x6 x1 x3x3x3 x5 x0x0x0 x2 x1x1x1 x3 x5x5x5 x0 x2x2x2 x6

y2 x5x5x5 x0 x2x2x2 x4 x6x6x6 x1 x0x0x0 x2 x4x4x4 x6 x1x1x1 x5

y3 x4x4x4 x6 x1x1x1 x3 x5x5x5 x0 x6x6x6 x1 x3x3x3 x5 x0x0x0 x4

y4 x3x3x3 x5 x0x0x0 x2 x4x4x4 x6 x5x5x5 x0 x2x2x2 x4 x6x6x6 x3

y5 x2x2x2 x4 x6x6x6 x1 x3x3x3 x5 x4x4x4 x6 x1x1x1 x3 x5x5x5 x2

y6 x1x1x1 x3 x5x5x5 x0 x2x2x2 x4 x3x3x3 x5 x0x0x0 x2 x4x4x4 x1

Table 5: Extending the right super-game from Ui =
{{x0, x1, x2}, {x3, x4, x5}} to Uj = {{y0, y1, y2},
{y3, y4, y5}} into normal games in 2kd = 12 days, where
home normal games are marked in bold

lower super-team: if Ui is the upper super-team, then let
tnε+2i′−1 = xkd and tnε+2i′ = ykd, and otherwise, let
tnε+2i′ = xkd and tnε+2i′−1 = ykd. Recall that kd is divisi-
ble by 2 since d is an even constant. For all normal teams in
Ui, Uj and Ri′ , we define matches

si = {xi′ → y(kd+1+2i−i′) mod (kd+1)}kdi′=0.

The extended normal games can be presented by

s0s1s2s3 · · · skd−2skd−1 · s1s2s3s4 · · · skd−1s0.

An illustration of the normal games after extending one right
super-game for k = 3 and d = 2 is shown in Table 5.

For each right super-game, we have two more normal
teams, and then two days of normal games may not be able
to arrange in the super-game. In fact, we did not arrange the
matches skd and skd, which contain the two games between
xkd and ykd. They will be arranged in the last time slot.

The Last Time Slot
Next, we consider the schedule in the last time slot. Recall
that the last time slot contains 2n−2−2kd(m−2) days. We
also split the last time slot into two sessions. The first session
contains 2kd days, which hold m/2 super-games similar to
these in the first m − 2 time slots. The second session will
schedule all unarranged games.

For the first session, we have m/2 − r left super-games
(all previous middle super-games become left super-games)
and r right super-games, as shown in Figure 3. We denote
the games in the first session by

Υ = Υ1 · Υ2 · · ·Υkd,

where Υi represents the matches on days 2i − 1 and 2i. We
will use ‘A’ (resp., ‘H’) to indicate the state of one team play-
ing an away (resp., a home) game. According to the design
of left and right super-games (see Tables 4 and 5), we know
that the states of each team in Υi are AH or HA.

U10 U1
L

U2

U9

L

U3

U8

L

U4

U7

R2

U5

U6

R1

Figure 3: The super-game schedule in the last time slot,
where m = 10 and r = 2

Next, we consider all unarranged games in the second ses-
sion.

The unarranged games: Part-1. We consider the games
involving teams in the last super-team Um and the r team-
pairs. According to the previous construction, we know that
no pair of teams in this part has played a game. Thus, we
only need to arrange a double round-robin for them. There
are kd+2r = n−(m−1)kd teams in total. Hence, the games
will span 2n− 2(m− 1)kd− 2 days. We can simply call an
algorithm of TTP-2 (for example, the algorithm in (Thielen
and Westphal 2012)) for them to arrange the games to satisfy
the no-repeat and bounded-by-2 constraints. The matches of
the n − (m − 1)kd teams on these 2n − 2(m − 1)kd − 2
days are denoted by Φ.

The unarranged games: Part-2. We consider the
unarranged games involving teams in super-teams in
{U1, . . . , Um−1}. We further split games into two sub-parts:
Part 2.1 and Part 2.2.

Part 2.1 is the unarranged games within each super-team.
For each super-team, no pair of teams in it has played a game
and then we also arrange a double round-robin for the teams
in each super-team. There are m − 1 super-teams and each
super-team contains kd teams. Similarly, for each super-
team, we call an algorithm of TTP-2 to arrange the games
satisfying the no-repeat and bounded-by-2 constraints. This
will span 2kd−2 days. The matches of the (m−1)kd teams
on these 2kd− 2 days are denoted by Ψ1.

Part 2.2 is the unarranged games left in the right super-
games. Note that when r = 0, Part 2.2 does not exist.
We simply assume r > 0. In each right super-game, only
matches skd and skd were not arranged.

There are r right super-games, and each of them involves
one team-pair. The right super-game involving team-pair Ri

is called the i-th right super-game. Suppose there is a i-th
right super-game between super-teams Uj and Uj′ , then we
color the super-edge UjUj′ with color i. Since each super-
team of {U1, . . . , Um−1} plays exactly two i-th right super-
games, we know the super-edges with color i form a set of
disjoint cycles, denoted by Ci.

For example, when m = 10 and r = 2 (see Figure 3), C1
contains one cycle U1U2 . . . U9 and C2 contains three cycles
U1U4U7, U2U5U8 and U3U6U9. All these cycles are odd cy-
cles, i.e., the cycle has an odd number of super-teams.

Lemma 5 (*). Ci is a set of disjoint odd cycles on super-
teams {U1, . . . , Um−1}.

We are ready to arrange the matches in Part 2.2. Accord-
ing to the r sets of cycles, the matches will be divided into r
parts, denoted by Ψ2, . . . , Ψr+1.

12159

Ui1

Ui2

Ui9

Ui3

Ui8

Ui4

Ui7

Ui5

Ui6

Figure 4: An illustration of the unarranged matches on the
cycle C, where p = 9 and we only consider the first and the
last team of each super-team

Without loss of generality, we consider the matches Ψi+1

which is related to the cycle set Ci. By Lemma 5, we know
Ci is a set of odd cycles which also contains all of the m− 1
super-teams {U1, . . . , Um−1}. Let C = Ui1Ui2 . . . Uip be
an arbitrary odd cycle where p is odd. Due to the symmet-
ric property of the unarranged matches skd and skd, we only
consider the first team and the last team in each super-team
Uij of C. The unarranged matches on C are shown in Fig-
ure 4.

We can see that the matches form a bi-directed cycle with
an even length on normal teams. It can be decomposed into
four directed matchings s1, s2, s1 and s2, where s1 ∪ s2 is
a directed cycle and s1 ∪ s2 is the cycle with an opposite
direction.

We can use four days to arrange the matches on C with
s1s2s1s2. Note that the states of each team on these four
days are either AHHA or HAAH. The games on four days
over all cycles in Ci form the matches Ψi+1. Hence, the
matches in Part 2.2 can be presented by Ψ2 · Ψ3 · · ·Ψr+1,
which span 4r = 2n − 2mkd days. Note that there are at
most two consecutive home/away games in Part 2.2.

The matches in Part 2 can be presented by

Ψ = Ψ1 · Ψ2 · · ·Ψr+1.

Recall that the matches in Ψ1 span 2kd− 2 days. Hence, the
matches in Part 2 span 2kd−2+4r = 2n−2(m−1)kd−2
days which is the same to Φ in Part 1.

According to Ψi, we can decompose Φ = Φ1 ·Φ2 · · ·Φr+1,
where the days of Φi correspond to that of Ψi. If we further
use Λi to denote the corresponding matches Φi and Ψi, the
entire unarranged matches can be presented by

Λ = Λ1 · Λ2 · · ·Λr+1.

Recall that the games in the first session of the last time
slot are Υ = Υ1 ·Υ2 · · ·Υkd. The games in the second session
are denoted by Λ. By putting them together, the games in the
last time slot can be presented by

Υ · Λ = (Υ1 · Υ2 · · ·Υkd) · (Λ1 · Λ2 · · ·Λr+1).

Lemma 6 (*). The games in the last time slot satisfy the
bounded-by-3 property.

Theorem 7 (*). When n ≥ 2k2d2, the above construction
generates a feasible solution for TTP-k with any k ≥ 3.

The Analysis
Next, we analyze the total weight of our schedule and the
approximation ratio. We first define some notations.

Recall that the k-path packing P∗
ε of Gε contains md k-

paths and each k-path Pi corresponds to a path-team ui. Tak-
ing each path-team as a vertex, we define a complete graph
G = (V, E), where V = {u1, . . . , ukd}. The weight of an
edge uiuj (i ̸= j) is defined to be the total weight of the
edges in Gε between one team in ui and one team in uj ,
i.e., w(ui, uj) =

∑
ti′∈ui,tj′∈uj

w(ti′ , tj′). We also define
w(ui, ui) = 0 and w(ui) =

∑
ti′ ,tj′∈ui

w(ti′ , tj′). Recall
that ∆ε (resp., ∆) is twice the total weight of the edges in
Gε (resp., G). So,

w(E) = ∆ε/2− w(V) ≤ ∆ε/2 ≤ ∆/2. (2)

Since the labels of path-teams are obtained randomly, by (2),
we have

E[w(ui, uj)] =
1

|E|
w(E) ≤ 2

m2d2
∆ε, (3)

where it follows from that |E| = |V|(|V|−1)
2 = md(md−1)

2 ≥
m2d2

4 since md ≥ 2kd2 ≥ 24 (recall that k ≥ 3, d ≥ 2, and
m ≥ 2kd).

Taking each super-team as a vertex, we can define a simi-
lar graph H = (U ,F). The weight of an edge UiUj (i ̸= j)
is defined as w(Ui, Uj) =

∑
ui′∈Ui,uj′∈Uj

w(ui′ , uj′). De-
fine w(Ui, Ui) = 0 and w(Ui) be the total weight of all
edges between any pair of vertices in

⋃
ui′∈Ui

ui′ . We can
get that E[w(Ui, Uj)] =

∑
ui′∈Ui,uj′∈Uj

E[w(ui′ , uj′)] =

d2 · E[w(ui′ , uj′)]. By (3), we have

E[w(Ui, Uj)] ≤ (2/m2)∆ε. (4)

For the sake of analysis, we assume that all teams return
home before and after each day’s game in left super-games,
right super-games, and the last time slot. For example, as-
suming that there are two games between teams ti and tj in
the last time slot, the weight of them will be 4w(ti, tj) after
the assumption. In middle super-games, we assume that all
teams of it return home before the first day and after the last
day. By the triangle inequality, these assumptions will not
decrease the weight of our schedule.

We will consider the weight of the following four parts:
• Wa: the weight in games involving teams in team-pairs;
• Wb: the weight in games within super-teams;
• Wc: the weight in games in left and right super-games;
• Wd: the weight in games in middle super-games.

First, we consider Wa. The games are arranged in the right
super-games and Part 1. There are 2r teams in r team-pairs.
For each team ti of it, every other team tj ∈ V \ {ti} plays
one away game and one home game with it in right super-
games or the last time slot. By the assumption, ti and tj
return home before and after each of these two games. The
weight of them is 4w(ti, tj). Hence, the weight of games
related to ti is exactly 4δ(ti). The weight Wa is bounded
by

∑
ti∈V \Vε

4δ(ti). Note that
∑

ti∈Vε
δ(ti) ≥ (mkd/n)∆

12160

by (1),
∑

ti∈V δ(ti) = ∆, and 2r = n − nε = n − mkd
by definitions. Hence, we can get that

∑
ti∈V \Vε

4δ(ti) ≤
4(1−mkd/n)∆ = (8r/n)∆. Recall that r = kd− 1 ≤ kd
and ∆ ≤ (k/2) · OPT by Lemma 1. We have

E[Wa] ≤ (8r/n)∆ = (4k2d/n) · OPT. (5)

Second, we consider Wb. The games within super-teams
are arranged in Part 1 and Part 2.1. For each super-team Ui,
by the assumption, the weight of games is 4w(Ui). Hence,
Wb = 4

∑m
i=1 w(Ui). By the triangle inequality, we can get

that w(Ui) + w(Uj) ≤ 2w(Ui, Uj) for any i ̸= j. By (4),
we have that E[w(Ui) + w(Uj)] ≤ (4/m2)∆ε and hence∑m

i=1 4E[w(Ui)] ≤ (8/m)∆ε ≤ (8/m)∆. Recall that m =
2⌊ n

2kd⌋ ≥ n
kd − 2 ≥ n

2kd since n ≥ 2k2d2 ≥ 4kd (k ≥ 3
and d ≥ 2). We have

E[Wb] ≤ (8/m)∆ ≤ (8k2d/n) · OPT. (6)

Third, we consider Wc. Recall that r ≤ kd − 1 ≤ kd.
Hence, there are (m − 2) + (m/2 − r) ≤ 2m ≤ mkd left
and (m−1)r ≤ mr ≤ mkd right super-games. Note that we
take the games in Part 2.2 as a part of right super-games. In
each left/right super-game between super-teams Ui and Uj ,
by the assumption, the weight of all games is 4w(Ui, Uj).
By (4), we have 4E[w(Ui, Uj)] = (8/m2)∆ε. Hence, the
expected weight of mkd left and mkd right super-games is
(16kd/m)∆ε. Recall that m ≥ n

2kd . We have

E[Wc] ≤ (16kd/m)∆ ≤ (16k3d2/n) · OPT. (7)

At last, we consider Wd. For the sake of analysis, we as-
sume each super-team plays m−1 middle super-games with
the other m−1 super-teams, which can only increase the to-
tal weight of our schedule.

By Lemma 4, if every team in Gε plays k-consecutive
away games along each k-path of P∗

ε , then the total traveling
distance of all teams is exactly ∆ε(P∗

ε)+nεw(P∗
ε) = OPT.

We call such a schedule an ideal schedule. Our construction
is similar to the ideal schedule and hence we only need to
calculate the weight of different parts.

Consider each middle super-game separately. Recall that
we assume all teams return home before the first day and af-
ter the last day in the super-game. By the design of middle
super-games, every team plays d or d + 1 away trips which
follows at least d− 1 k-paths. There are at most m− 1 mid-
dle super-games for it and md k-paths in P∗

ε . Hence, for
an arbitrary team xi′ of path-team ui, it does not follow at
most m k-paths. Suppose it does not follow the k-path of
path-team uj = {y0, . . . , yk−1}. Then it plays two away
trips on the k-path, and we assume that the two correspond-
ing segments are {y0, . . . , yk′−1} and {yk′ , . . . , yk−1}. Note
that these two segments follow from two sub-parts of the
k-path (see Figure 3). Comparing with the trip on {y0,. . . ,
yk−1} in the ideal schedule, the weight of the different
parts is w(xi′ , yk′−1) + w(xi′ , yk′) − w(yk′−1, yk′) ≤
w(xi′ , yk′−1)+w(xi′ , yk′) ≤ (2/k2)w(ui, uj)+2(w(Pi)+
w(Pj)) by the triangle inequality. There are md k-paths in
P∗
ε . We have 2E[w(Pi)] = 2E[w(Pj)] = 2

mdw(P
∗
ε). By

(3), we have 2
k2E[w(ui, uj)] ≤ 4

m2d2k2∆ε =
4
n2
ε
∆ε. Hence,

the expected weight of the different parts is bounded by
4
n2
ε
∆ε +

4
mdP

∗
ε . Since it does not follow at most m k-paths,

for team xi′ , the total expected weight of the different parts
is at most 4m

n2
ε
∆ε+

4
dP

∗
ε = 4

nεkd
∆ε+

4
dP

∗
ε . For all nε teams

of Gε, the total expected weight of the different parts is at
most 4

kd∆ε+
4
dnεP∗

ε . Note that 4
kd∆ε ≤ 4

kd∆ ≤ 2
d ·OPT. By

Lemma 4, we can get that 4
dnεP∗

ε ≤ 4
d (∆ε(P∗

ε) + nεP∗
ε) ≤

4
d · OPT. We have

E[Wd] ≤ (1 + 6/d) · OPT. (8)

Theorem 8. For any 3 ≤ k = o(3
√
n), LDTTP-k allows an

EPTAS: for any constant ε > 0, we can compute a schedule
for LDTTP-k with the weight at most 1+ε times the optimal
in time Oε(1) + nO(1).

Proof. First, our schedule takes O(n2) time to find the ver-
tex set Vε and complete the construction. Second, by (5),
(6), (7), (8), kd ≥ 6, and 12k2d/n ≤ 2k3d2/n, we know
the total weight is bounded by (1 + 4k2d/n + 8k2d/n +
16k3d2/n + 6/d) · OPT ≤ (1 + 18k3d2/n + 6/d) · OPT.
Recall that d = 12⌈1/ε⌉ ≥ 12/ε, we have (1+18k3d2/n+
6/d) · OPT ≤ (1 + 18k3d2/n + ε/2) · OPT. Furthermore,
since k = o(3

√
n) and d = Oε(1), we know there is a con-

stant n1 = Oε(1) such that 18k3d2/n ≤ ε/2 when n ≥ n1.
Recall the constant n0 = Oε(1). When n ≤ max{n0, n1},
we can simply use a brute-and-force algorithm to find an op-
timal solution which takes constant time Oε(1). Otherwise,
our schedule takes O(n2) time. The total weight is bounded
by (1 + ε/2 + ε/2) · OPT = (1 + ε) · OPT and the running
time is bounded by Oε(1) + n2, which implies that it is an
EPTAS.

Our algorithm is random since the path-teams are labeled
randomly. It can be derandomized efficiently by the method
of conditional expectations (Motwani and Raghavan 1995),
which takes an additional nO(1) time. The derandomization
is omitted.

When k is a constant, we have k = O(1) and then we
can get that n0 = O(1/ε2) and n1 = O(1/ε3). By enumer-
ating all n(n − 1) games on 2(n − 1) days, a trivial brute-
and-force algorithm takes (2(n − 1))n(n−1) = 2O(n2 logn)

time. Therefore, the running time of the brute-and-force al-
gorithm for n ≤ max{n0, n1} is 2O(1/ε6 log(1/ε)) and the
running time of the randomized algorithm is bounded by
2O(1/ε6 log(1/ε)) +O(n2).

Conclusion
In this paper, we propose a novel construction for TTP-k.
For LDTTP-k with any 3 ≤ k = o(3

√
n), it generates an

EPTAS, greatly improving previous known approximation
algorithms for LDTTP-k. The paper focuses on theoretical
analysis. It is also worth studying the experimental perfor-
mance of our construction. We mark that the larger the num-
ber n of teams, the better performance of our schedule. For
small n, our algorithm suggests the brute-and-force method,
which will not be practical.

12161

Acknowledgments
The work is supported by the National Natural Science
Foundation of China, under grants 61972070.

References
Anagnostopoulos, A.; Michel, L.; Van Hentenryck, P.; and
Vergados, Y. 2006. A simulated annealing approach to the
traveling tournament problem. Journal of Scheduling, 9(2):
177–193.
Bhattacharyya, R. 2016. Complexity of the unconstrained
traveling tournament problem. Operations Research Letters,
44(5): 649–654.
Bulck, D. V.; Goossens, D. R.; Schönberger, J.; and Gua-
jardo, M. 2020. RobinX: A three-field classification and
unified data format for round-robin sports timetabling. Eu-
ropean Journal of Operational Research, 280(2): 568–580.
Chatterjee, D. 2021. Complexity of Traveling Tour-
nament Problem with Trip Length More Than Three.
arXiv:2110.02300.
Chatterjee, D.; and Roy, B. K. 2021. An Improved Schedul-
ing Algorithm for Traveling Tournament Problem with Max-
imum Trip Length Two. In 21st Symposium on Algorith-
mic Approaches for Transportation Modelling, Optimiza-
tion, and Systems, ATMOS 2021, volume 96 of OASIcs,
16:1–16:15. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik.
Di Gaspero, L.; and Schaerf, A. 2007. A composite-
neighborhood tabu search approach to the traveling tourna-
ment problem. Journal of Heuristics, 13(2): 189–207.
Easton, K.; Nemhauser, G. L.; and Trick, M. A. 2001.
The Traveling Tournament Problem Description and Bench-
marks. In Principles and Practice of Constraint Program-
ming, 7th International Conference, CP 2001, Proceedings,
volume 2239 of Lecture Notes in Computer Science, 580–
584. Springer.
Easton, K.; Nemhauser, G. L.; and Trick, M. A. 2002. Solv-
ing the Travelling Tournament Problem: A Combined Inte-
ger Programming and Constraint Programming Approach.
In Practice and Theory of Automated Timetabling IV, 4th In-
ternational Conference, PATAT 2002, volume 2740 of Lec-
ture Notes in Computer Science, 100–112. Springer.
Goerigk, M.; Hoshino, R.; Kawarabayashi, K.; and West-
phal, S. 2014. Solving the Traveling Tournament Problem by
Packing Three-Vertex Paths. In Proceedings of the Twenty-
Eighth AAAI Conference on Artificial Intelligence, 2271–
2277. AAAI Press.
Goerigk, M.; and Westphal, S. 2016. A combined local
search and integer programming approach to the travel-
ing tournament problem. Annals of Operations Research,
239(1): 343–354.
Hentenryck, P. V.; and Vergados, Y. 2007. Population-Based
Simulated Annealing for Traveling Tournaments. In Pro-
ceedings of the Twenty-Second AAAI Conference on Artifi-
cial Intelligence, 267–272. AAAI Press.
Hoshino, R.; and Kawarabayashi, K. 2012. The Linear Dis-
tance Traveling Tournament Problem. In Proceedings of

the Twenty-Sixth AAAI Conference on Artificial Intelligence,
1770–1778. AAAI Press.
Hoshino, R.; and Kawarabayashi, K. 2013. An Approxima-
tion Algorithm for the Bipartite Traveling Tournament Prob-
lem. Mathematics of Operations Research, 38(4): 720–728.
Imahori, S. 2021. A 1+O(1/N) approximation algorithm for
TTP(2). arXiv:2108.08444.
Imahori, S.; Matsui, T.; and Miyashiro, R. 2014. A
2.75-approximation algorithm for the unconstrained travel-
ing tournament problem. Annals of Operations Research,
218(1): 237–247.
Kendall, G.; Knust, S.; Ribeiro, C. C.; and Urrutia, S. 2010.
Scheduling in sports: An annotated bibliography. Computers
& Operations Research, 37(1): 1–19.
Lim, A.; Rodrigues, B.; and Zhang, X. 2006. A simu-
lated annealing and hill-climbing algorithm for the travel-
ing tournament problem. European Journal of Operational
Research, 174(3): 1459–1478.
Miyashiro, R.; Matsui, T.; and Imahori, S. 2012. An approx-
imation algorithm for the traveling tournament problem. An-
nals of Operations Research, 194(1): 317–324.
Motwani, R.; and Raghavan, P. 1995. Randomized algo-
rithms. Cambridge university press.
Thielen, C.; and Westphal, S. 2011. Complexity of the trav-
eling tournament problem. Theoretical Computer Science,
412(4): 345–351.
Thielen, C.; and Westphal, S. 2012. Approximation algo-
rithms for TTP(2). Mathematical Methods of Operations
Research, 76(1): 1–20.
Trick, M. 2020. Challenge traveling tournament instances.
http://mat.gsia.cmu.edu/TOURN/. Accessed: 2022-8-15.
Westphal, S.; and Noparlik, K. 2014. A 5.875-
approximation for the traveling tournament problem. Annals
of Operations Research, 218(1): 347–360.
Xiao, M.; and Kou, S. 2016. An Improved Approximation
Algorithm for the Traveling Tournament Problem with Max-
imum Trip Length Two. In 41st International Symposium
on Mathematical Foundations of Computer Science, MFCS
2016, volume 58 of LIPIcs, 89:1–89:14. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik.
Yamaguchi, D.; Imahori, S.; Miyashiro, R.; and Matsui, T.
2011. An improved approximation algorithm for the travel-
ing tournament problem. Algorithmica, 61(4): 1077–1091.
Zhao, J.; and Xiao, M. 2021a. A Further Improvement on
Approximating TTP-2. In Computing and Combinatorics
- 27th International Conference, COCOON 2021, Proceed-
ings, volume 13025 of Lecture Notes in Computer Science,
137–149. Springer.
Zhao, J.; and Xiao, M. 2021b. The Traveling Tournament
Problem with Maximum Tour Length Two: A Practical Al-
gorithm with An Improved Approximation Bound. In Pro-
ceedings of the Thirtieth International Joint Conference on
Artificial Intelligence, IJCAI 2021, 4206–4212.
Zhao, J.; Xiao, M.; and Xu, C. 2022. Improved Approxi-
mation Algorithms for the Traveling Tournament Problem.
In MFCS 2022, volume 241 of LIPIcs, 83:1–83:15. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik.

12162

