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Abstract
Designing a planning domain is a difficult task in AI plan-
ning. Assisting tools are thus required if we want planning
to be used more broadly. In this paper, we are interested in
automatically correcting a flawed domain. In particular, we
are concerned with the scenario where a domain contradicts
a plan that is known to be valid. Our goal is to repair the do-
main so as to turn the plan into a solution. Specifically, we
consider both grounded and lifted representations support for
negative preconditions and show how to explore the space of
repairs to find the optimal one efficiently. As an evidence of
the efficiency of our approach, the experiment results show
that all flawed domains except one in the benchmark set can
be repaired optimally by our approach within one second.

Introduction
One major obstacle for planning techniques being used more
broadly, particularly outside academia, is the fact that mod-
eling a planning domain is a non-trivial task (McCluskey,
Vaquero, and Vallati 2017). As an evidence of this, the com-
petition on modeling domains, the International Competi-
tion on Knowledge Engineering for Planning and Schedul-
ing (ICKEPS), has been held for many years.

Tools are thus developed for modeling assistance, e.g., the
successful online PDDL editor Planning.Domains (Muise
2016), itSIMPLE (Vaquero et al. 2012), MyPDDL (Strobel
and Kirsch 2020), and the Visual Studio Code plugin for
PDDL (see the work by Haslum et al. (2019) for more de-
tails about PDDL). Many of those tools provide a rich range
of features for assisting writing domain models, e.g., syntax
highlighting and auto-completion, whereas only few of they
provide advanced support. We will have a detailed review of
related works at the end of this paper.

As another contribution to modeling assistance, we revisit
the scenario studied in our previous work (Lin and Bercher
2021) of correcting flawed domains by giving plans known
to be valid. We studied the scenario in the context of both
hierarchical and non-hierarchical planning (Bercher, Alford,
and Höller 2019; Ghallab, Nau, and Traverso 2004). For the
latter, we investigated the complexity of checking whether
a certain number of changes to actions (alter their precondi-
tions and effects) is able to turn the given plan into a solution
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(and thus repair the domain). However, we did not provide
any insight into how this can be done in practice there, and
neither negative preconditions nor results for lifted models
were considered, both of which are essential for modeling
assistance in practice.

In this paper, we present an approach for repairing flawed
classical planning domains. Concretely, given a (flawed) do-
main and a plan that is known to be valid but contradict the
domain, our approach finds a cardinality-minimal set of re-
pairs to the domain that turns the plan into a solution. This
scenario stems from how programmers debug their code,
namely by providing test cases that shall be passed. In our
context, the given plan serves as a test case, which is usually
known by a domain modeler in advance (or can be easily ob-
tained/designed), and the proposed repairs are potential cor-
rections to the domain. The domain modeler can judge the
repairs and rule out implausible ones. This process can be
done iteratively until all satisfactory repairs are found. We
thus believe that addressing this scenario will significantly
benefit domain modelers in debugging their models. In the
long run, we hope that we can integrate our approach into the
editor Planning.Domain to make planning more accessible.

Our approach is based on finding hitting sets. This aligns
with our earlier theoretical results(Lin and Bercher 2021)
that the problem is NP-complete, as finding a (minimal)
hitting set is also NP-complete. Further, we only proved
those results for the restricted case of being grounded and
not having negative preconditions. Here, we consider repair-
ing not only grounded domains, but lifted ones with negative
preconditions, making the approach more practical.

Preliminaries
We start by reviewing the fundamental mathematical notion,
called the set theoretical duality explored by Slaney (2014),
which we will exploit to solve the domain repair problem.

Let Σ be a universal set and ∆ a set of sets such that each
set δ ∈ ∆ satisfies a certain property ρ and δ ∈ 2Σ. The
dual set Θ of ∆ is defined as the set of all sets θ such that
the complement set of θ is not in ∆ (i.e., Σ\θ /∈ ∆), namely,
the complement set of θ does not satisfy the property ρ.

A set (of sets) ∆ together with its dual set Θ has many
nice properties. Among these properties, the most important
one which we are interested in is that if ∆ is monotonic (i.e.,
if δ ∈ ∆, then any δ′ ⊇ δ is also in ∆), every set δ ∈ ∆ is a
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Algorithm 1 Finding a cardinality-minimal set δ which sat-
isfies a property ρ.

Input: A universal set Σ and a property ρ
Output: A cardinality-minimal set δ satisfying ρ

▷ Collection of known elements from the dual set Θ
Θ∗ ← ∅
loop

δ← a minimal hitting set of Θ∗

if δ satisfies ρ then
return δ

θ← θ ∈ Θ with θ ∩ δ = ∅
Θ∗ ← Θ∗ ∪ {θ}

hitting set of Θ, i.e., for every θ ∈ Θ, δ ∩ θ ̸= ∅. Intuitively
speaking, this property holds because when ∆ is monotonic,
every θ ∈ Θ can be interpreted as a set from which at least
one element must be selected in order to satisfy the property
ρ, and hence, a set δ satisfying ρ hits at least one element in
θ. For more details, we refer to the work by Slaney (2014).

The fact that every set in ∆ is a hitting set of Θ leads to
an efficient algorithm for finding a cardinality-minimal set
δ among ∆ that satisfies the property ρ, as shown by Alg. 1
(Slaney 2014). The algorithm maintains a collection Θ∗ of
known elements from the dual set Θ. On each iteration, it
computes a cardinality-minimal hitting set δ of Θ∗. If δ sat-
isfies ρ, the algorithm returns it. Otherwise, a new element θ
in Θ with δ ∩ θ = ∅ is extracted and added to Θ∗.

Alg. 1 is sound because Θ∗ is a subset of the dual set Θ,
and thus, a minimal hitting set (MHS) of Θ∗ has a cardinality
not larger than a MHS of Θ, which is a cardinality-minimal
set δ ∈ ∆. One remark is that Alg. 1 does not require know-
ing the entire sets ∆ and Θ in advance.

Clearly, Alg. 1 relies on two operators. The first one is to
find a minimal hitting set, which is already well-developed.
The second operator is to decide whether a candidate δ sat-
isfies the property ρ and to extract a new element from the
dual set. This is problem-dependent. We call this operator
an oracle, and this paper will mainly focus on how to imple-
ment such an oracle for the domain repair problem.

Duality is exploited in many disciplines, e.g., in optimal
delete-free planning (Haslum, Slaney, and Thiébaux 2012;
Slaney 2014), and in model-based diagnosis (Reiter 1987;
de Kleer and Williams 1987; de Kleer, Mackworth, and Re-
iter 1992) which is to find a minimal set of faulty compo-
nents in a system. Diagnosis is interested in the set ∆ of all
component sets that are faulty, and its dual set Θ is the set of
all component sets θ such that at least one component in θ
is faulty. A component set δ ∈ ∆ is called a diagnosis, and
a θ ∈ Θ is called a conflict. The domain repair problem is
closely related to the diagnosis problem because every repair
applied to a domain can be viewed as a flaw to be fixed.

Repairing Grounded Domains
Now we turn to show how to repair a flawed domain. In this
section, we consider repairing a grounded domain restricted
to positive preconditions, which is the simplest case. In the
following sections, we will generalize the approach to lifted

domains and lifted domains with negative preconditions.
We start with a brief introduction to the grounded classical

planning formalism, and afterwards, we will formulate the
domain repair problem in terms of it.

Grounded Planning Formalism
The grounded planning formalism is defined in a proposi-
tional way (i.e., without variables). A grounded planning
problem Π is a tuple (P,A, α, sI , g) where P is a set of
propositions, also called atoms, A is a set of actions, α :
A → 2P × 2P × 2P is a function, and sI ∈ 2P and g ⊆ P
are called the initial state and the goal description of Π, re-
spectively. In particular,D = (P,A, α) and T = (sI , g) are
respectively the domain and task of Π, and thus Π is also
written as (D, T ). In this section, all planning problems are
referred to as grounded ones, unless otherwise specified.

In the formalism, an action a is mapped to the respective
precondition prec(a) ⊆ P , positive effects eff +(a) ⊆ P ,
and negative effects eff −(a) ⊆ P by the function α, written
α(a) = (prec(a), eff +(a), eff −(a)). Applying an action a
in some state s ∈ 2P , which is a set of propositions, will
lead to a new state s′ such that s′ = (s\eff −(a))∪ eff +(a),
written s→a s′. An action a is applicable in some state s iff
prec(a) ⊆ s, i.e., its precondition is satisfied in s. Given a
sequence of actions π = ⟨a1 · · · an⟩, we write s→∗

π s′ to in-
dicate that the state s′ is obtained by applying the action se-
quence π in s, that is, there exists a state sequence ⟨s0 · · · sn⟩
such that s0 = s, sn = s′, and for each 1 ≤ i ≤ n, ai is
applicable in si−1, and si−1 →ai si. We say that ⟨s0 · · · sn⟩
is the state trajectory obtained by applying π in s.

An action sequence π = ⟨a1 · · · an⟩ is a solution to a plan-
ning problem Π if sI →∗

π s for some s ∈ 2P and g ⊆ s. In
other words, the criteria demand that every action in π is ap-
plicable, and applying π in sI leads to a state in which every
proposition in g holds.

Domain Repair Problem
Next we formulate the domain repair problem in the context
of the grounded classical planning formalism. The problem
was first introduced by Lin and Bercher (2021) and proved
to be NP-complete. Here, we refine the formulation so that
we can explore the duality inside the problem more easily.

Recall that the basic configuration of the problem is that
we are given a planning problem Π and a plan π which is not
a solution to Π. We want to repair (i.e., change) the domain
of Π so that π will be a solution.

For the purpose of formulating the problem precisely, we
first define repairs that are allowed to be used in correcting
a planning domain. Specifically, repairs we are concerned
with are restricted to removing propositions from actions’
preconditions, adding propositions to actions’ positive ef-
fects, and removing propositions from actions’ negative ef-
fects. The reason for making such a restriction is that other
changes (e.g., adding propositions to actions’ preconditions)
only increase the chance of a plan not being executable. In
later sections, we will consider more repairs when negative
preconditions are taken into account.
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Figure 1: An example of the domain repair problem. One
solution to the problem is the repair set {⟨Fa1

|−r ⟩, ⟨Fa1
|+f ⟩},

which is a cardinality-minimal one.

Definition 1. Let a be an action. The set Fa of all atomic
repairs targeted at a is Fa = F p

a ∪ F+
a ∪ F−

a in which
• F p

a = {⟨Fa|pf ⟩ | f ∈ prec(a)}
• F+

a = {⟨Fa|+f ⟩ | f ∈ P}
• F−

a = {⟨Fa|−f ⟩ | f ∈ eff −(a)}
Consequently, given a planning problem Π, the set FΠ of all
atomic repairs for Π is

⋃
a∈A Fa.

Intuitively speaking, the semantics of ⟨Fa|pf ⟩ is removing
the proposition f from the precondition of a, and similarly,
⟨Fa|+f ⟩ and ⟨Fa|−f ⟩ respectively adds f to the positive effects
of a and removes f from the negative effects of a. Note that
we allow adding a proposition to the positive effects of an
action which has the same proposition in its negative effects.
We formally define the semantics of these repairs in terms of
the consequence of applying them to a planning domain.
Definition 2. Let Π = (P,A, α, sI , g) be a planning prob-
lem and κ a subset of FΠ. Applying κ to Π leads to a new
planning problem Π′ = (P,A, α′, sI , g), such that for ev-
ery action a ∈ A with α(a) = (prec(a), eff +(a), eff −(a)),
α′(a) = (prec(a)\P, eff +(a) ∪ E+, eff −(a)\E−) where
• P = {f | ⟨Fa|pf ⟩ ∈ κ}
• E+ = {f | ⟨Fa|+f ⟩ ∈ κ}
• E− = {f | ⟨Fa|−f ⟩ ∈ κ}

We write Π⇒κ Π′ to indicate that Π′ is obtained by apply-
ing a set κ of repairs to Π.

Having defined the set of all atomic repairs for a planning
problem together with the respective semantics, we now for-
mulate the problem of finding a set of repairs that turns a
non-solution plan into a solution.
Definition 3. Given a planning problem Π and an action
sequence π = ⟨a1 · · · an⟩ with ai ∈ A for each 1 ≤ i ≤ n,
a domain repair problem is the tuple (Π, π) that is to find a
cardinality-minimal subset δ∗ ⊆ FΠ such that Π ⇒δ∗ Π∗

for some Π∗, and π is a solution to Π∗.
Notice that here we demand that a repair set found for the

problem must have the minimal cardinality, because other-
wise, we can always find the repair set which empties the
precondition of every action in the plan and adds all propo-
sitions in the goal description to the last action in the plan.

For clarity, throughout the paper, we will let δ be any re-
pair set that turns π into a solution, δ∗ a cardinality-minimal
one that does so, and κ ⊆ FΠ an arbitrary repair set.

As mentioned earlier, we could also interpret each repair
in FΠ as a flaw. For instance, ⟨Fa|+f ⟩ can be interpreted as
the flaw that the positive effects of a lack the proposition f .
We could thus regard a domain repair problem as a diagnosis

Algorithm 2 Computing a conflict for a grounded domain.
Input: A diagnosis candidate κ

A domain repair problem (Π, π)
Output: A conflict θ

1: Π⇒κ Π′ ▷ Apply κ to the domain of Π
2: Find the first inapplicable action aj in π with an unsat-

isfied proposition f ∈ prec(aj) in the domain of Π′

3: θ ←
{
⟨Faj |

p
f ⟩
}

4: for i← j − 1 to 1 do
5: θ ← θ ∪

{
⟨Fai |+f ⟩

}
6: if f ∈ eff −(ai) then
7: θ ← θ ∪

{
⟨Fai
|−f ⟩

}
8: break
9: return θ

problem by viewing each repair as a component which is
faulty if the respective flaw exists, and the goal of the domain
repair problem is to find a cardinality-minimal set of faulty
components which must be repaired to turn π into a solution.
We will bear this connection in the paper and call each repair
set that turns π into a solution a diagnosis (Reiter 1987).

Fig. 1 illustrates an example of the domain repair prob-
lem. Consider the planning problem Π = (P,A, α, sI , g)
where P = {l, f, q, r, z}, A = {a1, a2, a3}, sI = {l}, and
g = {z}. For each action in A, its precondition and effects
are depicted in the figure where propositions on the left are
those in the precondition, and those on the right are effects.
A proposition (on the right) with negation is a negative ef-
fect, and a proposition without negation is a positive one.

The plan ⟨a1 a2 a1 a3⟩ in Fig. 1 is not a solution because
a2 and a3 are not applicable in the respective states where
they are executed. Concretely, the proposition f is missing
in those two states and r is deleted after executing a1. The
domain repair problem is to find a cardinality-minimal sub-
set δ∗ of FΠ such that π will be a solution to the planning
problem Π∗ obtained by applying δ∗.

One repair set which can turn the plan π into a solution
is {⟨Fa2 |

p
f ⟩, ⟨Fa3 |

p
f ⟩, ⟨Fa3 |pr⟩}, i.e., removing the unsatisfied

preconditions from a1 and a3. This is however not a solu-
tion to the domain repair problem because it is not optimal.
One solution is {⟨Fa1

|−r ⟩, ⟨Fa1
|+f ⟩}, which is a cardinality-

minimal repair set.

Solving the Domain Repair Problem
We move on to show how to solve a domain repair problem
(Π, π) with π = ⟨a1 · · · an⟩ by exploiting Alg. 1. Here, we
are interested in the set ∆ of all repair sets (diagnoses) δ such
that Π ⇒δ Π′ and π is a solution to Π′ (i.e., the property ρ
that every δ ∈ ∆ should satisfy), and our goal is to find a
cardinality-minimal diagnosis δ∗ in ∆. The dual set Θ of ∆
is such that Θ = {θ | FΠ \ θ /∈ ∆}. One can observe that
the set ∆ is monotonic, and henceforth, we could interpret
every θ ∈ Θ as a repair set containing at least one repair that
must be applied in order to turn π into a solution. We also
follow the convention in diagnosis to call each θ a conflict.
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The core of using Alg. 1 to find a cardinality-minimal di-
agnosis δ∗ is the oracle for 1) deciding whether a candidate
κ ⊆ FΠ satisfies ρ, and 2) extracting a set θ from the dual
set Θ of ∆ provided a candidate κ /∈ ∆ such that θ ∩ κ = ∅.

For the former, the procedure is straightforward. We first
apply the candidate repair set κ to Π with Π⇒κ Π′, and, af-
terwards, we verify whether the solution criteria are satisfied
by the plan π in Π′.

For extracting a conflict θ with θ ∩ κ = ∅ given a κ /∈ ∆,
we first observe that for each θ ∈ Θ, since the complement
θ′ of θ (i.e., θ′ = FΠ \ θ) does not satisfy the property ρ, we
have that π is not a solution to the planning problem Π′ with
Π ⇒θ′ Π′. Consequently, let κ be a repair set with κ /∈ ∆
and Π ⇒κ Π′ and aj (1 ≤ j ≤ n) an action in π which
has a proposition q in its precondition that is not satisfied in
Π′ (such a and q must exist because θ is not a diagnosis).
A repair set θ is a conflict with θ ∩ κ = ∅ if it is a set of
repairs at least one of which is required to turn q from being
unsatisfied into being satisfied in Π′ (or in other words, q can
not be satisfied if none of the repairs in κ is applied). The key
observation for this is that the complement θ′ of θ contains
no repairs which can make q be satisfied, and hence θ′ /∈ Θ,
and θ ∩ κ = ∅ holds, because otherwise, it contradicts the
fact that q is not satisfied after applying κ.

More concretely, we compute a conflict θ with θ ∩ κ = ∅
as follows: We first apply κ to Π such that Π ⇒κ Π′ (i.e.,
κ is applied to the input domain on each iteration). Let aj
(1 ≤ j ≤ n) be the first action in π which has a proposition
q in its precondition that is not satisfied in Π′. We find the
largest index i with 1 ≤ i < j ≤ n such that q ∈ eff −(ai),
and for each k with i < k < j, q /∈ eff +(ak). The conflict θ
is thus the set:

θ =
{
⟨Fai
|−q ⟩, ⟨Faj

|pq⟩
}
∪
{
⟨Fak
|+q ⟩ | i ≤ k < j

}
Additionally, if such an i does not exist, i.e., the proposition
q is not satisfied because it is missing from the initial state,
then the conflict θ is simply the set:

θ =
{
⟨Faj
|pq⟩

}
∪
{
⟨Fak
|+q ⟩ | i ≤ k < j

}
The whole procedure is summarized in Alg. 2.

The oracle can then be employed by Alg. 1 to find an op-
timal set of repairs. The soundness of the entire procedure is
assured by the correctness of Alg. 2.

Example As a demonstration, we show an example about
how Alg. 1 together with the oracle presented above works
on the domain repair problem shown in Fig. 1. The algorithm
starts with an empty set Θ∗ of known conflicts. On the first
iteration, the MHS solver will first extract an empty set κ
of repairs as a diagnosis candidate, and our oracle will then
compute θ1 = {⟨Fa2 |

p
f ⟩, ⟨Fa1 |+f ⟩} as the conflict. This is

because a2 is the first action which has f in its precondition
that is not satisfied, and in order to make a2 applicable, we
should either add f to a1’s positive effects or remove it from
a2’s precondition.

On the second iteration, let’s assume that the MHS solver
returns κ = {⟨Fa2

|pf ⟩} as the candidate. The oracle will then
check whether κ is a diagnosis by applying it to the domain

and validating the plan. The candidate κ here is not a diag-
nosis because it cannot turn the plan into a solution, and thus
the algorithm continues to find the next conflict. Since a3 is
now the first action after applying κ which has two proposi-
tions f and r in its precondition that are not satisfied, our or-
acle will choose any one of those two to compute a new con-
flict. We assume that the computation is based on f , which
results in the conflict θ2 = {⟨Fa3

|pf ⟩, ⟨Fa1
|+f ⟩, ⟨Fa2

|+f ⟩}.
On the third iteration, we now have the collection of the

known conflicts Θ∗ = {θ1, θ2}. The MHS solver will thus
return κ = {⟨Fa1 |+f ⟩} as the candidate, which further results
in {⟨Fa3

|pr⟩, ⟨Fa1
|−r ⟩} as a new conflict. Lastly, on the fourth

iteration, a cardinality-minimal diagnosis will be returned.

Repairing Lifted Domains
Thus far we have presented how to repair a flawed grounded
planning domain. However, in practice, a planning domain
is usually engineered as a lifted model. Thus, in this section,
we generalize our previous approach to repair a lifted plan-
ning domain. To this end, we first introduce briefly the lifted
planning formalism based on the one by Lauer et al. (2021).

Lifted Planning Formalism
The lifted planning formalism is defined on a variable set V .
A lifted planning problem is a tuple Π = (P,A, α,O, sI , g)
where D = (P,A, α) and T = (O, sI , g) are respectively
the domain and task of Π. Π is thus also written as (D, T ).
Compared with a grounded problem, a lifted one has an extra
component O which is a set of objects. Each object o ∈ O
is of some type. For a type t, we use OJtK ⊆ O to refer to
the subset of objects each of which is of the type t. P in the
context of the lifted formalism is a set of predicates. A predi-
cate f consists of a predicate name that is unique and a tuple
of variables as parameters, written P (v1|t1 , · · · , vn|tn) for
some n ∈ N, where P is the predicate’s name, and for each
1 ≤ i ≤ n, vi ∈ V is a variable, and the subscript ti is a type
specifying the restriction that vi can only be substituted by
an object of the type ti. More specifically, a variable substi-
tution on the predicate f is to substitute each variable vi with
an object oi with oi ∈ OJtiK. A variable substitution on a
predicate is also called grounding, and a grounded predicate
is equivalent to a proposition (atom) in the grounded for-
malism. Given a variable substitution function ϱ : V → O
defined over V , the notation f [ϱ] indicates that f is grounded
under the variable substitution rule defined by ϱ.

Notably, if f = P (v1|t1 , · · · , vn|tn) is a predicate in P ,
then any P (v′1|t1 , · · · , v′n|tn) with v′i being an arbitrary vari-
able for each 1 ≤ i ≤ n is also a syntactically correct predi-
cate even if it is not explicitly in P .

In the lifted formalism, A is a set of action schemas. An
action schema a again consists of a unique action name and
a tuple of parameters, written A(v1|t1 , · · · , vn|tn) (n ∈ N).
Each action schema is mapped to its precondition, positive
effects, and negative effects by the function α each of which
is a set of predicates P (vi1 |ti1 , · · · , vij |tij ) for some j ≥ 1

where ik ∈ {1, · · · , n} for each k with 1 ≤ k ≤ j, written
α(a) = (prec(a), eff +(a), eff −(a)), i.e., every parameter
of such a predicate is a parameter of the action schema.
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v 7→ o2 v1 7→ o1
v2 7→ o2

v1 7→ o2
v2 7→ o1

Figure 2: The lifted version of the domain (and the domain
repair problem) shown in Fig. 1 together with the variable
substitution functions that ground the domain.

Similar to grounding a predicate, grounding an action is
to substitute each variable parameter of the action with an
object of the respective type. Given a variable substitution
function ϱ, we again use a[ϱ] to indicate that a is grounded
under ϱ. Further, every predicate f in the action’s precondi-
tion and effects is grounded simultaneously under the same
substitution rule, i.e., f [ϱ]. A grounded action schema is thus
equivalent to an action in the grounded formalism.

Throughout the paper, we will use boldface symbols, e.g.,
f and a, to denote predicates and action schemas in order to
distinct them from (grounded) propositions and actions.
sI and g in Π are respectively the initial state and the goal

description of Π, which are two sets of propositions and are
equivalent to their counterparts in a grounded planning prob-
lem. A solution to a lifted problem Π is an action sequence
π = ⟨a1 · · · an⟩ such that sI →∗

π s′ for some s′ with g ⊆ s′,
and for each 1 ≤ i ≤ n, there exist an action schema a ∈ A
and a variable substitution function ϱ such that ai = a[ϱ].

As an example, Fig. 2 depicts the lifted version of the do-
main shown in Fig. 1. The lifted domain has two objects o1
and o2 which are of the same type t, three predicates P (v|t),
Q(v|t), and L(v|t), and three action schemas each of which
can be grounded to an action in the plan in Fig. 1 with the
respective variable substitution function, as shown in Fig. 2.

Lifted Domain Repair Problem
We now formulate the domain repair problem for lifted plan-
ning domains. In contrast to the one for grounded domains,
the major difference here is that the allowed repairs are also
defined in a lifted way. Let a = A(v1|t1 , · · · , vn|tn) be an
action schema. The set Fa of all atomic repairs targeted at a
is again defined as Fa = Fp

a ∪ F+
a ∪ F−

a in which
• Fp

a = {⟨Fa|pf ⟩ | f ∈ prec(a)}
• F−

a =
{
⟨Fa|−f ⟩ | f ∈ eff −(a)

}
In particular, the set F+

a is the following:

F+
a =

{
⟨Fa|+f ⟩

∣∣∣∣∣ f = P (vi1 |ti1 , · · · , vij |tij ),
1 ≤ k ≤ j, ik ∈ {1, · · · , n}

}
that is, ⟨Fa|+f ⟩ is a repair to a if every parameter of the pred-
icate f is also a parameter of a. In other words, if a repair
⟨Fa|+f ⟩ with f = P (vi1 |ti1 , · · · , vij |tij ) is in F+

a , and for
each vik with 1 ≤ k ≤ j, there exists a set Vik of the vari-
ables in a’s parameters each of which is of the type tik , then

⟨Fa|+f ′⟩ is also in F+
a in which f ′ = P (v′i1 |ti1 , · · · , v

′
ij
|tij )

with v′ik ∈ Vik for each k with 1 ≤ k ≤ j. For instance, in
Fig. 2, the predicates that can be added to the action schema
A2(v1|t, v2|t) form the following set:

{Q(x|t), L(x|t) | x ∈ {v1, v2}} ∪ {P (v1|t)}

Henceforth, given a lifted planning problem Π, the set FΠ

of all atomic repairs for Π is
⋃

a∈A Fa. The semantics of a
lifted repair is defined in the same way as that of a grounded
repair, namely, the predicate is removed from or added to
the action schema’s precondition or effects. Given a set of
repairs F′

Π, we again use Π ⇒F′
Π
Π′ to indicate that Π′ is

obtained from Π by applying F′
Π. The lifted domain repair

problem Φ = (Π, π) is again to find a cardinality-minimal
repair set F∗

Π such that Π ⇒F∗
Π
Π∗, and π is a solution to

Π∗. In Fig. 2, one cardinality-minimal repair set to the lifted
domain repair problem is to add P (v1|t) to a2’s positive ef-
fects, remove P (v1|t) from a2’s precondition, and remove
P (v1|t) from a3’s precondition.

Solving the Lifted Domain Repair Problem
We again solve the domain repair problem (Π, π), this time
with a lifted domain, by exploiting the duality. Similar to the
grounded setting, suppose ∆ is the set of all repair sets (i.e.,
all diagnoses) δ turning π into a solution. Its dual set Θ (i.e.,
the set of all conflicts) is again the set of all repair sets θ
whose complement cannot make π a solution, and we want
to find a cardinality-minimal set δ∗ ∈ ∆ in light of Alg. 1.

The oracle for Alg. 1 in the lifted setting is an extension
of the one in the grounded setting. The core of the extension
is finding the variable substitution function ϱ for each action
a in π with a = a[ϱ] for some action schema a, which thus
grounds the domain repair problem.

More concretely, given π = ⟨a1 · · · an⟩, the procedure for
deciding whether a repair set δ is in ∆ is as follows:
1) We first compute the variable substitution function ϱi for

each ai with 1 ≤ i ≤ n such that ai = a[ϱi] for some a ∈
A. This can be done by searching for an action schema a
which has the same action name as ai and matching each
object in ai with the respective parameter in a.

2) We then apply δ to Π with Π⇒δ Π′ and verify whether π
is a solution to Π′ under the variable substitution function
ϱi for each 1 ≤ i ≤ n.

For the procedure which, given a repair set κ that is not in
∆, extracts a conflict θ ∈ Θ with κ∩θ = ∅, we have seen that
in the grounded setting, a repair set is a conflict if at least one
in it is required to make a proposition f in the precondition
of some action ai (1 ≤ i ≤ n) be satisfied. This still holds in
the lifted setting due to the same argument in the grounded
case. Thus, we could develop the extraction procedure for a
lifted domain by extending the one for a grounded domain.

Concretely, let Π ⇒κ Π′, aj (1 ≤ j ≤ n) be the first
action in π that has a proposition f in its precondition that is
not satisfied in Π′, and ai the last action in π with 1 ≤ i < j
and f ∈ eff −(ai). We first add ⟨Fa1 |−f1⟩ and ⟨Fa2 |

p
f2
⟩ to θ

where a1,a2 ∈ A are two action schemas with ai = a1[ϱi]
and aj = a2[ϱj ], and f = f1[ϱi] = f2[ϱj ]. Further, for each
ak with i < k < j, we add ⟨Fa|+f ⟩ to θ with ak = a[ϱk] for
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Algorithm 3 Computing a conflict for a lifted domain.
Input: A diagnosis candidate κ

A domain repair problem (Π, π)
Output: A conflict θ

1: Π⇒κ Π′ ▷ Apply κ to the domain of Π
2: Find the first inapplicable action aj in π with an unsat-

isfied proposition f ∈ prec(aj) in the domain of Π′

3: Find an a ∈ A and an f ∈ P with a[ϱ] = aj and f [ϱ] =
f for some ϱ

4: θ ← {⟨Fa|pf ⟩}
5: for i← j − 1 to 1 do
6: Find an a′ ∈ A with a′[ϱ′] = ai for some ϱ′

7: for all ⟨Fa′ |+f ′⟩ ∈ F+
a′ do

8: if f ′[ϱ′] = f then
9: θ ← θ ∪

{
⟨Fa′ |+f ′⟩

}
10: if ∃f ′ ∈ eff −(a′) : f ′[ϱ′] = f then
11: θ ← θ ∪

{
⟨Fa′ |−f ′⟩

}
12: break
13: return θ

every predicate f such that f = f [ϱk], and every parameter
of f is also a parameter of a, as shown in Alg. 3.

Example We again provide an example about how our ap-
proach works on the lifted domain in Fig. 2. We will focus on
illustrating the computation of conflicts, which is the major
difference from the algorithm for the grounded setting. On
the first iteration, the oracle will compute θ1 = {⟨Fa2

|pf ⟩}
with f = P (v1|t) as the conflict. The reason for this is that
the proposition P (o1) is an unsatisfied one in the action a2,
and a2 is obtained from grounding a2 by substituting v1 with
o1. Notably, ⟨Fa1

|+f ′⟩ with f ′ = P (v|t) is not in the conflict
because a1 is grounded to a1 by the substitution function ϱ
with ϱ(v) = o2, and f ′[ϱ] ̸= P (o1).

On the second iteration, the first inapplicable action is a3
whose precondition has two unsatisfied propositions P (o1)
and P (o2). The conflict can again be computed based on any
of these two propositions. Here, we assume that the compu-
tation is based on P (o1). Thus,

{
⟨Fa3
|pf2⟩, ⟨Fa2

|+f1⟩
}

is the
conflict computed by the oracle in which f2 = P (v2|t) and
f1 = P (v1|t). In particular, ⟨Fa2

|+f1⟩ is in the conflict be-
cause the variable substitution function ϱ which grounds a2
to a2 satisfies that f1[ϱ] = P (o1). The algorithm will call a
MHS solver to find a diagnosis candidate and start the next
iteration until a solution is found.

Lifted Domains with Negative Preconditions
Having discussed how to repair a grounded and a lifted do-
main, we turn to consider a more complicated case which
is to repair a lifted domain with negative preconditions. A
lifted planning problem with negative preconditions Π =
(P,A, α,O, sI , g) is identical to a normal lifted problem
defined in the previous section except that the function α
now maps every action schema a ∈ A to a tuple: α(a) =
(prec+(a), prec−(a), eff +(a), eff −(a)) ∈ 2P×2P×2P×
2P where prec+(a) and prec−(a) are called the positive and
the negative precondition of a. Grounding an action schema

A1(o1, o2)

a1

L(o1) Q(o2)
A2(o1, o2)

a2

¬P (o1)

Q(o2)

P (o2)
A1(o1, o2)

a1

L(o1) Q(o2)
A3(o1, o2)

a3

P (o1)

P (o2)

L(o2)

sI g

A1(v1|t, v2|t)

a1

L(v1|t) Q(v2|t)
A2(v1|t, v2|t)

a2

¬P (v1|t)

Q(v2|t)

P (v2|t)
A3(v1|t, v2|t)

a3

P (v2|t)

P (v1|t)

L(v1|t)

Action Schemas

v1 7→ o1
v2 7→ o2

v1 7→ o1
v2 7→ o2

v1 7→ o2
v2 7→ o1

Figure 3: An example of a lifted domain with negative pre-
conditions. sI = {L(o1)} and g = {L(o2)}.

with negative preconditions is again to replace each variable
with an object of a respective type. Given an action schema
a and a variable substitution function ϱ, the action a with
a = a[ϱ] is applicable in a state s iff for every f ∈ prec+(a),
f [ϱ] ∈ s, and for every q ∈ prec−(a), q[ϱ] /∈ s.

Extended Atomic Repairs
Repairing a lifted domain with negative preconditions would
require more atomic repairs. In particular, a predicate might
need to be added to the negative effects of an action schema
or removed from its positive effects in order to satisfy a neg-
ative precondition. More specifically, for each action schema
a = A(v1|t1 , · · · , vn|tn), we define three extra sets of re-
pairs, Np

a, N+
a , and N−

a , as follows.
• Np

a = {⟨Na|pf ⟩ | f ∈ prec−(a)}
• N+

a =
{
⟨Na|+f ⟩

∣∣ f ∈ eff +(a)
}

• N−
a =

{
⟨Na|−f ⟩

∣∣∣∣ f = P (vi1 |ti1 , · · · , vij |tij ),
1 ≤ k ≤ j, ik ∈ {1, · · · , n}

}
Intuitively, each repair ⟨Na|pf ⟩ is to remove a predicate from
the negative precondition of a, ⟨Na|+f ⟩ is to remove a pred-
icate from the positive effects of a, and ⟨Na|−f ⟩ is to add a
predicate to its negative effects. Notably, like adding a predi-
cate to an action schema’s positive effects, a predicate can be
added to its negative effects if every parameter of the pred-
icate is also a parameter of the action. Consequently, in re-
pairing a lifted domain with negative preconditions, the set
Ra of all atomic repairs targeted at an action schema a is
thus Fa ∪Np

a ∪N+
a ∪N−

a where Fa is the set of all atomic
repairs targeted at a in repairing a domain without negative
preconditions, and the set RΠ of all repairs allowed in re-
pairing a domain with negative precondition is

⋃
a∈A Ra.

Solving the Repair Problem
Let (Π, π) be a domain repair problem with negative precon-
ditions. We again want to find a cardinality-minimal diagno-
sis δ∗ from the set ∆ containing all repair sets δ that turn π
into a solution. Although one can easily notice that the dual
set Θ of ∆ is again the set of all repair sets θ whose com-
plement cannot turn π into a solution, Alg. 1 is not applica-
ble here because ∆ is not monotonic, and hence a diagnosis
δ ∈ ∆ does not have to be a hitting set of Θ.

Specifically, the reason causing ∆ not being monotonic is
the dependency between repairs introduced by the presence
of negative preconditions, that is, if some repair is applied,
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then another one must also be applied simultaneously. As a
consequence, for some diagnosis δ ∈ ∆, not all super sets
of δ are in ∆, but only some of them are.

In order to deal with the dependency and adapt the hitting
set based Alg. 1, we introduce conditional conflicts which
generalizes conflicts. A conditional conflict is a pair (φ, θ)
each of which is a subset of RΠ. The interpretation of it is
that if all repairs in φ are applied to Π, then at least one
repair (which could be anyone) in θ should also be applied
in order to turn π into a solution. In particular, a conflict θ is
a special conditional conflict (∅, θ) which means that if no
repairs have been applied, then at least one repair in θ shall
be applied to Π. Given a set Θ of conditional conflicts, a set
of repairs δ hits Θ if for any (φ, θ) ∈ Θ, if φ ⊆ δ or φ = ∅,
then δ ∩ θ ̸= ∅. In other words, for some (φ′, θ′) ∈ Θ, if
φ′ ̸= ∅ and φ′ ⊈ δ, then it is allowed that δ ∩ θ′ = ∅.

The advantage of adapting the notion of conditional con-
flicts is that every diagnosis δ ∈ ∆ is now a hitting set of the
set Θ∗ of all conditional conflicts, which follows trivially
from the definition of conditional conflicts. Henceforth, we
can again exploit Alg. 1 if we have the procedure for extract-
ing a conditional conflict (φ, θ) ∈ Θ∗ given a set of repair
κ /∈ ∆ such that θ ∩ κ = ∅.

Given a set of repairs κ /∈ ∆, the procedure for comput-
ing such a conditional conflict is again based upon a set θ
of repairs at least one of which is required to turn a proposi-
tion f in the precondition (either positive or negative) of an
action aj in π from being unsatisfied into being satisfied in
Π′ with Π ⇒κ Π′. Concretely, we first let φ = ∅. If there
exist no repairs in θ that undo a repair in κ, then (∅, θ) is
the conditional conflict. Otherwise, for any repair τ ∈ θ that
undoes a repair τ ′ ∈ κ, τ is removed from θ and τ ′ is added
to φ, and the conditional conflict is (φ, θ). In particular, by τ
undoing τ ′, we mean that the consequence of applying τ ′ is
eliminated by applying τ . E.g., ⟨Fa|+f ⟩ undoes ⟨Na|+f ⟩ be-
cause the latter one removes f from the positive effects of a
but the former one adds it back.

This procedure ensures that (φ, θ) ∈ Θ∗. To prove this,
we first consider the case where φ = ∅. This implies that
none of the repairs in θ undo a repair in κ. It follows that the
proposition f in the precondition of aj in π is also unsatis-
fied in Π. Thus, at least one repair in θ shall be applied to Π
in order to satisfy f . Thus, (∅, θ) is a conditional conflict. On
the other hand, if φ ̸= ∅, it means that f is initially satisfied
in Π, but it then becomes unsatisfied after applying the re-
pairs in φ to Π. This is equivalent to saying that if all repairs
in φ are applied to Π, then at least one repair in θ shall also
be applied, which thus makes the pair a conditional conflict.

The remaining question is how to obtain the repair set θ in
repairing domains with negative preconditions which makes
the proposition f in the precondition of the action aj be sat-
isfied. One can easily observe that if f ∈ prec+(aj), then
the procedure for this is identical to the one in repairing a
domain without negative preconditions. On the other hand,
if f ∈ prec−(aj), we find the action ai in π with the largest
index i such that 1 ≤ i < j and f ∈ eff +(ai). The two re-
pairs ⟨Na1

|pf1⟩ and ⟨Na2
|+f2⟩ are added to θ with ai = a1[ϱi],

aj = a2[ϱj ], and f = f1[ϱi] = f2[ϱj ] for some variable sub-

stitution functions ϱi and ϱj , action schemas a1 and a2, and
predicates f1 and f2. Then, for each k from j − 1 to i + 1
in decreasing order, ⟨Na|−f ⟩ is added to θ if ak = a[ϱk] and
f = f [ϱk] for some variable substitution function ϱk, and
every parameter of f is also a parameter of a. If ⟨Na|−f ⟩ al-
ready undoes a repair in the current candidate, we stop the
procedure without proceeding to the next k. Alg. 4 shows the
complete procedure for computing a conditional conflict.

Additionally, in order to employ Alg. 1 here, we also need
an operator which computes a hitting set for a set of condi-
tional conflicts. Fortunately, such an algorithm is also well-
developed, e.g., see the work by Struss and Dressler (1989)

Example We provide an example of how conditional con-
flicts are computed by the oracle. For this, consider the lifted
domain repair problem with negative preconditions shown in
Fig. 3. On the first iteration,

{
⟨Fa3
|pf2⟩, ⟨Fa1

|+f1⟩, ⟨Fa2
|+f1⟩

}
will be computed as the unconditional conflict where f1 =
P (v1|t) and f2 = P (v2|t). For the purpose of demonstra-
tion, we assume that the MHS solver chooses

{
⟨Fa1 |+f1⟩

}
as

the candidate on this iteration.
On the next iteration, the action a2 will then become in-

applicable with the proposition P (o1) in its negative pre-
condition being unsatisfied. The repair set for resolving this
problem is

{
⟨Na2

|pf1⟩, ⟨Na1
|−f1⟩

}
with f1 = P (v1|t). Since

⟨Na1
|−f1⟩ undoes ⟨Fa1

|+f1⟩, the oracle thus produces the con-
ditional conflict (

{
⟨Fa1 |+f1⟩

}
,
{
⟨Na1 |+f1⟩

}
). The remaining

part of the algorithm works in the same way as in the lifted
case without negative preconditions.

Domains with Multiple Problem Instances
Thus far, we only consider repairing a flawed (lifted) domain
on which only one planning problem instance Π is defined.
However, in practice, multiple planning problem instances
can be defined on the same domain. Thus, in this section,
we consider the problem of repairing a lifted domain which
is associated with multiple tasks.

More specifically, the configuration of the problem is as
follows: Given a lifted domainD = (P,A, α), a set of plan-
ning problems Ψ = {Π1, · · · ,Πn} each of which is defined
on D, i.e., Πi = (D, T i) with T i = (Oi, s

I
i , gi) for each

1 ≤ i ≤ n, and a set of plans {π1, · · · , πn}, our goal is to
repair the domain D such that πi is a solution to Πi for each
1 ≤ i ≤ n. In particular, the domain D has both positive
and negative preconditions, and the set of all atomic repairs
R is identical to RΠ for the case where only one problem Π
is considered. We are again interested in finding a minimal
repair set that turns each πi into a solution to Πi.

Suppose ∆ is the set of all repair sets that turn each πi

(1 ≤ i ≤ n) into a solution to Πi, and Θ is the set of all
conditional conflicts (φ, θ) such that if any repair in φ is ap-
plied, then at least one in θ should also be applied to turn
every πi into a solution. Unsurprisingly, we again exploit
Alg. 1 to find a minimal diagnosis δ∗ ∈ ∆ that hits every
conditional conflict in Θ. The core of designing the proce-
dure for extracting a conditional conflict given a repair set
κ /∈ ∆ is the fact that for each 1 ≤ i ≤ n, every condi-
tional conflict for (Πi, πi) is also in Θ. Thus, in each iter-
ation in Alg. 1, instead of extracting only one conditional
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Algorithm 4 Computing a conditional conflict.
Input: A diagnosis candidate κ

A domain repair problem (Π, π)
Output: A conditional conflict (φ, θ)

1: Π⇒κ Π′ ▷ Apply κ to the domain of Π
2: Find the first inapplicable action aj in π with an unsat-

isfied precondition f in the domain of Π′

3: Find an a ∈ A and an f ∈ P with a[ϱ] = aj and f [ϱ] =
f for some ϱ

4: ▷ Define some notations for convenience
5: if f ∈ prec+(aj) then
6: C← F; s1 ← +; s2 ← −
7: else C← N; s1 ← −; s2 ← +
8: θ ← {⟨Ca|pf ⟩}; φ← ∅
9: for i← j − 1 to 1 do

10: Find an a′ ∈ A with a′[ϱ′] = ai for some ϱ′

11: for all ⟨Ca′ |s1f ′ ⟩ ∈ Cs1
a′ do

12: if ⟨Ca′ |s1f ′ ⟩ undoes an x ∈ κ then
13: φ← φ ∪ {⟨Ca′ |s1f ′ ⟩}
14: else θ ← θ ∪ {⟨Ca′ |s1f ′ ⟩}
15: if ∃f ′ ∈ eff s2(a′) : f ′[ϱ] = f then
16: if ⟨Ca′ |s2f ′ ⟩ undoes an x ∈ κ then
17: φ← φ ∪ {⟨Ca′ |s2f ′ ⟩} break
18: else θ ← θ ∪ {⟨Ca′ |s2f ′ ⟩} break
19: if |φ| > 0 then break
20: return (φ, θ)

conflict provided the repair set κ, we compute one θi for
each (Πi, πi), 1 ≤ i ≤ n, and add it to the collections of
known conditional conflicts. The minimal hitting set of the
collection is thus the cardinality-minimal diagnosis.

Experimental Results
Now we present our experimental results (Lin, Grastien, and
Bercher 2023) which characterize the efficiency of our ap-
proach. The experiments ran on an Intel Xeon processor with
16GB memory, and the indicator of the efficiency is the run-
time for repairing flawed domains.

To our best knowledge, there existed no benchmark sets
of flawed planning domains before the experiment was done.
Thus, we had to create our own for the experiment. In partic-
ular, we created two benchmark sets1. The first benchmark
set G1 contains flawed domains each of which is associated
with one planning problem, and each domain in the second
one G2 corresponds to multiple problem instances.

Both benchmark sets were created on top of the fast-
downward (FD) problem suite2. We created one solution
πi per task T i using FD. For benchmark set G1, we se-
lected 10%, 30%, or 50% of the respective domain’s ac-
tion schemas and introduced a single error to them, by either
adding an additional precondition or effect (randomly posi-
tive or negative) or removing an effect. This gives three sets
of n pairs consisting of a flawed domain and its plan. For the

1https://github.com/Songtuan-Lin/repairing-benchmarks
2https://github.com/aibasel/downward-benchmarks

Figure 4: Runtime in seconds for solving each domain repair
problem instance against the respective plan length.

Figure 5: Runtime for repairing each domain against the
number of tasks associated with it.

benchmark set G2 we did the same, only that each of the n
pairs in the three sets shares the same domain, as we don’t
change the action schemas per plan in each set (i.e., 10%,
30%, or 50%), but just once for the domain (recall that the n
problem instances share the same domain). Both G1 and G2
contain 38 domains, and there are 5460 instances (pairs of a
flawed domain and a plan) in G1 and 243 instances (pairs of
a flawed domain and a set of plans) in G2.

Fig. 4 depicts the runtime for each instance against the
respective plan length for G1. The x-coordinate of a point
indicates the runtime, and the y-coordinate is the respective
plan length. The figure respectively shows the runtime for
instances with 10%, 30%, and 50% errors. One can observe
that all instances were solved in half a second except one
which needs more than one second, and unsurprisingly, run-
time grows with plan length in general.

The experimental results on G2 are shown in Fig. 5, which
depicts the runtime for repairing each domain against the
number of tasks (plans) associated with it. Domains with
different error rates are again shown separately. The runtime
for solving instances in G2 is longer on average than those in
G1, which is unsurprising due to the larger problem sizes.

We believe that the experimental results show that our ap-
proach is efficient enough to be deployed in practice. The
number of errors we introduced is larger than what we ex-
pect would happen in practice. The average length of plans
in G1 and the average number of tasks associated with do-
mains in G2 are also significantly larger than a domain mod-
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eler could provide (see Fig. 4 and 5), whereas our approach
can still solve them effectively. This means that our method
can provide repair suggestions to a user almost instantly – as
it would be required once being deployed in practice.

Lastly, we briefly discuss the quality of the repairs found
by our approach. On G1, 72.63% of the returned repairs re-
cover an error, and this number on G2 is 76.43%. However,
we did not consider these numbers as an indicator of our ap-
proach. In fact, we argue that the notion of quality of repairs
does not coincide with modeling assistance. More specifi-
cally, we could evaluate the “quality” of the repairs in our
experiments only because we know in advance what errors
are introduced to the domains. This is however not the case
for practical modeling assistance scenarios where errors are
introduced accidentally. In other words, the domain mod-
eler does not know what are the errors in the domain. Con-
sequently, the domain modeler can only decide whether a
repair is preferred but cannot justify whether it is correct.

Discussion and Related Works
Lastly, we briefly review some works related to modeling as-
sistance. Planning.Domains (Muise 2016), MyPDDL (Stro-
bel and Kirsch 2020), Web Planner (Magnaguagno et al.
2020) and the VSCode PDDL plugin support a wide range of
features for writing and testing PDDL files, and itSIMPLE
(Vaquero et al. 2012) can automatically generate a PDDL
file from scratch from a UML diagram.

Apart from supporting modeling on the syntax level, tech-
niques have also been developed for more advanced model-
ing assistance. For instance, itSIMPLE also supports plan-
ning domain analysis done by analyzing the Petri Net ob-
tained from an input UML diagram. Hoffmann (2011) devel-
oped the tool Torchlight which detects whether local minima
exists in a planning task when employing the heuristic h+

(Hoffmann and Nebel 2001). Zhang and Muise (2020) stud-
ied an approach for detecting unusable actions in a planning
domain (which are usually caused by modeling errors). Both
Torchlight and action unusability detection have been incor-
porated into Planning.Domain as plugins.

Additionally, Sreedharan et al. (2020) studied how to deal
with an incorrect dialogue domain via techniques developed
for explainable AI planning (Chakraborti, Sreedharan, and
Kambhampati 2020), e.g., via model reconciliation (Sreed-
haran, Chakraborti, and Kambhampati 2021; Sreedharan,
Bercher, and Kambhampati 2022). Lindsay et al. (2020) pro-
posed an approach based upon machine learning which re-
fines an inaccurate hybrid domain model. Göbelbecker et al.
(2010) and Gragera, Garcı́a-Olaya, and Fernández (2022)
investigated approaches which turn an unsolvable planning
problem into a solvable one. Coulter et al. (2022) developed
an approach which can verify whether two planning prob-
lems have the same solution set and can identify actions that
cause the difference. This is particularly useful in educating
students how to model a domain. In that context, one might
provide a reference domain model and compare it against
another model created by a student, which can thus help the
student identify the errors in the created model.

Apart from works contributing directly to modeling as-
sistance, techniques from other disciplines can also be ex-

ploited to develop further tools for modeling assistance. One
such example, as mentioned early, is the field of diagnosis
on which we develop our approach. In our earlier work (Lin,
Grastien, and Bercher 2022), we have rigorously framed a
grounded domain repair problem without negative precon-
ditions as a diagnosis problem, providing an in-depth insight
into the connection between these two problems. Addition-
ally, Crow and Rushby (1991) and Stumptner and Wotawa
(1999) proposed to use diagnosis techniques to reconfigure
a system, which is an alternative view of the domain repair
problem. More importantly, many approaches proposed for
diagnosis can be exploited for modeling assistance, e.g., se-
quential diagnosis (Rodler 2020) where different diagnoses
are proposed in accordance with a user’s input.

Another related discipline is domain learning. The task of
domain learning is to learn a domain from scratch (or an in-
complete model). Domain learning systems usually rely on
different assumptions and restrictions. For instance, LOCM
(Cresswell, McCluskey, and West 2009; Cresswell and Gre-
gory 2011) assumes that the actions in the domain to be
learned can be divided into different sorts, and the actions
in the same sort behave identically, and PELA (Celorrio,
Fernández, and Borrajo 2008) requires a set of sound state
trajectories as input obtained by monitoring the execution of
a set of plans. For a more broadly review of techniques for
domain learning, we refer to the work by Arora et al. (2018).

In future works, we will incorporate more advanced diag-
nosis techniques and domain learning techniques into repair-
ing flawed domain models and modeling assistance. Further,
we have investigated the complexity of correcting a domain
by being given both a set of positive plans (which are sup-
posed to be solutions) and of negative plans (which are not
supposed to be solutions) (Lin and Bercher 2023), though
we did this only for hierarchical planning. We will extend
our approach to accept both positive and negative plans.

More importantly, we are planning to build an interactive
system based upon the presented approach which can repair
a flawed domain iteratively. On each iteration, the system
outputs a set of repairs (for the input flawed domain) by call-
ing our approach, and the user can decide which repairs are
preferred and forbid those that are not. The process contin-
ues until the user finds all preferred repairs.

Conclusion
We proposed a hitting-set based approach to repair a flawed
domain, which can be deployed for providing modeling as-
sistance. We are one of the first who developed a practical
method for this purpose. Our experimental results showed
that our approach is ready to be deployed in practice as it can
provide repair suggestions almost instantly. The efficiency
of our approach also indicates that it can be called iteratively
until all satisfactory repairs are found in which implausible
repairs are blocked at each iteration.
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