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Abstract

For many applications of Markov Decision Processes (MDPs),
the transition function cannot be specified exactly. Bayes-
Adaptive MDPs (BAMDPs) extend MDPs to consider tran-
sition probabilities governed by latent parameters. To act op-
timally in BAMDPs, one must maintain a belief distribution
over the latent parameters. Typically, this distribution is de-
scribed by a set of sample (particle) MDPs, and associated
weights which represent the likelihood of a sample MDP being
the true underlying MDP. However, as the number of dimen-
sions of the latent parameter space increases, the number of
sample MDPs required to sufficiently represent the belief dis-
tribution grows exponentially. Thus, maintaining an accurate
belief in the form of a set of sample MDPs over complex latent
spaces is computationally intensive, which in turn affects the
performance of planning for these models. In this paper, we
propose an alternative approach for maintaining the belief over
the latent parameters. We consider a class of BAMDPs where
the transition probabilities can be expressed in closed form as
a polynomial of the latent parameters, and outline a method
to maintain a closed-form belief distribution for the latent
parameters which results in an accurate belief representation.
Furthermore, the closed-form representation does away with
the need to tune the number of sample MDPs required to repre-
sent the belief. We evaluate two domains and empirically show
that the polynomial, closed-form, belief representation results
in better plans than a sampling-based belief representation.

Introduction
Markov Decision Processes (MDPs) (Puterman 1994) are a
common framework for sequential decision-making under
uncertainty. In this paper, we consider an agent acting in
an environment where the parameters governing the under-
lying MDP model are unknown. In such environments, the
agent must reason over the uncertainty in the parameters,
and balance exploration of the environment with gathering
reward. An example of this is a robot planning over a domain
with unknown weather conditions. As the robot interacts
with the environment, the observations made by the robot
can be used by it to plan for future steps. Bayes-Adaptive
MDPs (BAMDPs) (Duff 2002) are used to model such prob-
lems in a way that allows for optimally trading off exploration
and exploitation.
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In BAMDPs, latent parameters are used to represent un-
known dynamics that influence the transition probabilities.
Therefore, the state space of the original MDP is augmented
by a posterior distribution which represents the belief over
the true value of the latent parameters. As transitions are
observed, the posterior distribution over the latent parame-
ters is refined. By reasoning about the information currently
known about the MDP in the form of the posterior, BAMDPs
provide an elegant and optimal solution to the exploration-
exploitation trade-off. Specifically, solving the BAMDP opti-
mally results in the optimal behaviour in expectation under
the initial belief. One challenge in developing algorithms for
BAMDPs is the need to accurately maintain the posterior.
There are several methods to do so, depending on the class
of BAMDP needed to be solved.

In a BAMDP where every transition probability is inde-
pendent, each transition probability is a latent parameter. The
posterior distribution over the latent parameters is represented
by a set of Dirichlet distributions, where each distribution rep-
resents the transition function from a state-action pair. This
allows us to maintain an exact closed-form representation of
the posterior distribution. However, for many problems, the
transitions cannot be assumed to be independent of each other.
In such problems, the posterior distribution of the BAMDP
can be approximated by a discrete set of particles, i.e. a set
of sampled MDPs plus a categorical distribution over the
samples (Guez et al. 2014). This method relies on the MDP
samples providing adequate coverage of the space of possible
parameters. As the number of latent parameters increases,
so does the dimensionality of the belief distribution over the
parameters. Thus, the number of samples must increase expo-
nentially to represent the posterior over the belief accurately.
This causes scalability issues, which in turn limits the ability
to effectively plan for BAMDPs with realistic latent spaces.

In this paper, we present a new class of BAMDPs, hidden
parameter polynomial MDPs (HP2-MDP). In a HP2-MDP,
the transition probabilities are defined by polynomial func-
tions of the latent parameters. MDPs where the transitions are
described by polynomial functions are traditionally used in
probabilistic model checking for parameter synthesis, where
the variables of the polynomials are assumed to be known and
controllable (Junges et al. 2018). We re-frame these models
such that the variables represent latent aspects of the envi-
ronment that can be estimated during execution. This allows
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for an exact closed-form representation of the belief over
the latent variables, whilst also enabling the specification
of dependencies between transitions. The closed-form be-
lief representation can accurately deal with high-dimensional
latent parameter spaces, resulting in better action selection.
Furthermore, our method removes the need for hand-tuning
the number of samples used to represent the belief.

We empirically show, in two domains, that incorpo-
rating the belief representation of HP2-MDP in typical
BAMDP solvers, such as Bayes-adaptive Monte-Carlo plan-
ning (BAMCP) (Guez, Silver, and Dayan 2012), yields im-
provement in planning performance. The first domain is a
benchmark problem proposed in the original BAMCP paper.
The second, more realistic, domain uses data from forecast
ocean currents to simulate a problem where an ocean glider
is planning a route to a goal location.

Related Work
MDPs with Hidden Factors Markov decision pro-
cesses (MDPs) have been used in planning under uncer-
tainty (Mausam and Kolobov 2012) to help agents make
optimal action choices. When MDPs are used to describe
a system, we assume that the state is fully observable to
the agent. However, this assumption cannot be satisfied in
cases where the sensors used to determine the state are un-
reliable (Kaelbling, Littman, and Cassandra 1998; Hsiao,
Kaelbling, and Lozano-Perez 2007), or the states are depen-
dent on unknown factors, such as a human’s likelihood to
assist a robot (Nanavati et al. 2021; Costen et al. 2022). Par-
tially Observable MDPs (POMDPs) (Kaelbling, Littman, and
Cassandra 1998), and specialisations thereof are typically
used to describe such systems.

In POMDPs, the state space is hidden from the agent. The
agent receives stochastic observations, which are used to
maintain a belief distribution over the hidden state space. The
posterior over the belief can be updated to reflect hidden state
transitions, which can be used in scenarios such as tracking
the location of a human through observations made from an
unreliable sensor in an autonomous driving setting (Wray,
Witwicki, and Zilberstein 2017). The belief distribution is
updated by reasoning over the hidden state transitions and the
stochastic observations. This can be difficult, as the hidden
state is dynamic, and thus hard to keep track of through
stochastic observations.

Hidden Goal MDPs (Fern et al. 2014) and POMDP-
lite (Chen et al. 2016) attempt to simplify the problem by
splitting the state space into a static hidden state space and
a stochastic observable state space. The hidden state is un-
known at the start of the run, and the agent updates their
belief over the hidden states as observable state transitions
occur. As the hidden state is fixed, the agent does not have to
reason over hidden state transitions, reducing the complexity.
Each hidden state corresponds to an MDP, and the hidden
goal MDPs and POMDP-lites can be framed as a problem
where the agent is planning over a set of MDPs, where the
true MDP is unknown.

Similarly, robust MDPs (Tamar, Mannor, and Xu 2014)
and contextual MDPs (Hallak, Di Castro, and Mannor 2015)
represents an MDP governed by uncertain parameters, which

are a member of a known set. While the robust MDP solvers
attempt to plan for the worst-case scenario, contextual MDP
solvers aim to minimise the regret; the gap between the cu-
mulative reward collected by the agent, and the cumulative
reward the agent would have collected if they knew the true
parameters (Rigter, Lacerda, and Hawes 2021a). However,
this assumes that the system can be represented as a discrete
set of MDPs.

Doshi-Velez and Konidaris (2016) present a Hidden Param-
eter MDP, where the transitions are functions governed by
latent parameters. By approximating the transition functions
to Gaussian processes, they outline a method of maintaining
a belief over the latent parameters.

Bayes-Adaptive MDPs BAMDPs allow the agent to rea-
son over a continuous set of MDPs the system might be
in (Duff 2002; Guez, Silver, and Dayan 2012). This is done
by parameterising the transition probabilities with a set of
continuous parameters, which can more accurately reflect a
real system. However, many approaches discretise the param-
eter space (Nanavati et al. 2021) to reduce the complexity of
the problem. In other approaches where transition probabili-
ties are assumed to be independent, every transition probabil-
ity is represented as a latent parameter (Rigter, Lacerda, and
Hawes 2021b; Grover, Basu, and Dimitrakakis 2020).

In general BAMDPs, the belief over the latent parame-
ters is typically approximated through sampling-based meth-
ods (Guez et al. 2014). This allows us to solve BAMDPs
where there is dependence between transitions. In cases
where the transitions are assumed to be independent, an exact
form of the belief can be maintained. In such BAMDPs, the
probability distribution over the parameters is represented by
Dirichlet distributions. As transitions occur, these Dirichlet
distributions are updated. While we can maintain an exact
form of the belief distribution for such BAMDPs, we are
unable to describe more complex relationships between the
transition probabilities.

Polynomial MDPs In polynomial Markov Chains (MCs)
and MDPs (Winkler et al. 2019), the transition function is
expressed as a polynomial function of a set of parameters.
This enables adding dependencies between transitions.These
polynomial MDPs have been widely used in the verifica-
tion community to express spaces of possible behaviour
(Hahn, Han, and Zhang 2011a). They have been used in
probabilistic model checking to provide formal guarantees
on the reachability of goals over the parameter space (Junges
et al. 2018; Hahn, Han, and Zhang 2011b). In the verifica-
tion problem, we check whether a known sub-space of the
parameter space for the polynomial MDP can satisfy a given
specification. Other works consider the parameter synthesis
problem (Junges et al. 2019), where they aim to partition
the parameter space into regions where the specification is
satisfied or not. Both the verification and synthesis problems
assume that the true values of the parameters are known, or
within a given bound. In this work, we re-frame the polyno-
mial MDP as a BAMDP, where the parameters are hidden,
and we must maintain and reason over a posterior probability
distribution over their true value.
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Preliminaries
In this paper, we consider stochastic shortest path (SSP)
MDPs (Mausam and Kolobov 2012), where the objective
is to minimise the expected cumulative cost to reach a set
of goal states. This is done to match the domains used for
empirical evaluation. However, the approach presented here
is independent of the objective and can be applied to reward
maximisation problems straightforwardly. Thus, we will refer
to the model simply as an MDP.

When an MDP’s transition dynamics is governed by a set
of latent parameters, Θ, a BAMDP can be used to repre-
sent the world. Consider a MDP with an uncertain transition
functionM = ⟨S, s0, A, {Tθ}θ∈Θ, C,G⟩, where S is a set
of states; s0 ∈ S is the initial state; A is a set of actions;
{Tθ}θ∈Θ is a set of possible transition functions, governed
by a set of latent parameters in Θ; C : S × A → R≥0

is a cost function; and G ⊂ S is a set of goal states. The
parameter space is Θ = RN , i.e. the latent parameters are
N -dimensional vectors, and θ defines a possible transition
function Tθ : S×A×S → [0, 1] which gives the probability
of transitioning to s′ given that a was executed at s and the
parameter values are θ, i.e., Tθ(s, a, s

′) = P (s′ | s, a, θ).
We assume a prior distribution P0(θ) over the parameter
space. The agent maintains a posterior distribution, or be-
lief, over Θ at each timestep t, Pt(θ). This is determined by
the observed history, ht = s0a0s1a1 · · · at−1st using Bayes’
rule, Pt(θ) = P (θ|ht) ∝ P (ht|θ)P0(θ). A BAMDP factors
the history into the state space, and explicitly models how the
transition probabilities change with the history of the agent.

Definition 1 (BAMDP) A BAMDP is defined by the tuple,
⟨S+, s+0 , A, T+, C+, G+⟩, where:

• S+ = S ×H, whereH is the set of all histories;
• s+0 = (s0, h0), where h0 = s0 is the initial history;
• A is the set of actions;
• T+((s, ht), a, (s

′, htas
′)) =

∫
θ∈Θ

Tθ(s, a, s
′)Pt(θ)dθ is

the transition function, where Pt(θ) ∝ P (ht|θ)P0(θ);
• C+((s, ht), a) = C(s, a) is the cost function;
• G+ = {(s, h) ∈ S+ | s ∈ G} is the set of goal states.

Although the state-history pairs in S+ are redundant be-
cause the current state can be extracted from the history, we
use the (s, h) notation for clarity as in (Guez, Silver, and
Dayan 2012). The goal of the BAMDP is defined as min-
imising the expected cumulative cost to reach a state in G+.
Therefore, setting V π∗

(s, ht) = 0 for all (s, ht) ∈ G+, the
optimal policy selects the action that minimises the value
function according to:

V π∗
(s, ht) = argmin

a∈A
C(s, a)+∫

θ∈Θ

∑
s′∈S

P (θ|ht)Tθ(s, a, s
′) · V π∗

(s′, htas
′)dθ.

(1)

To solve the BAMDP via value iteration, the posterior distri-
bution P (θ|ht) for every history ht ∈ H must be computed,
which quickly becomes computationally infeasible. There-
fore, BAMDPs are typically solved using a sample-based
solver, such as BAMCP (Guez, Silver, and Dayan 2012).

Algorithm 1: Bayes-Adaptive Monte Carlo Planning

1: Function{Run}{P0(θ), s0, ⟨S,A, {Tθ}θ∈Θ, C,G⟩}
2: t← 0
3: h0 ← s0
4: while st /∈ G do
5: at ← Search(Pt(θ), st)
6: st+1 ← execute action at and observe outcome.
7: Pt+1(θ)← UpdateBelief(Pt(θ), at, st+1)
8: t← t+ 1
9: end while

10: Function{Search}{Pt(θ), st}
11: repeat
12: θsample ∼ Pt(θ).
13: Simulate(st, Tθsample)
14: until Timeout()
15: return argmaxa Q(st, a)

The BAMCP algorithm is adapted from Monte-Carlo Tree
Search (MCTS) (Kocsis and Szepesvári 2006), and is based
on running trials from the root node to estimate the values of
the available actions. Each trial simulates a run through the
model and records the cost collected. The average cost over
the trials is used to estimate the value of each state-action
pair. As the number of trials increases, the estimated values
converges towards the true value. The BAMCP algorithm is
outlined in Algorithm 1. It is an online algorithm where a
search procedure (line 5) is interleaved with action execution
and updating of the belief over the parameters given the ob-
served action outcomes (line 6 and 7). The search procedure
is based on sampling a possible parameter instantiation from
the belief distribution, and then simulating a run according
to the corresponding transition function, repeating this pro-
cess until a user-defined timeout (lines 11–14). A key part
of BAMCP is maintaining and updating the belief given the
online observations.

We now identify the two classes of BAMDPs considered
more often. For these classes, the posterior over the belief is
maintained using distinct methods.

BAMDP-L The simplest form of a BAMDP, presented
in (Duff 2002; Ross et al. 2011), considers the case where
the transition functions are independent. We refer to this as
BAMDP-L, since the latent parameters are the local transition
probabilities, and there are no global parameter dependen-
cies. The posterior for a BAMDP-L can be represented one
Dirichlet distribution per transition. These distributions are
updated as transition outcomes are observed, and are used
for the sampling step in line 12 of Algorithm 1. Thus, for a
BAMDP-L, we can maintain a closed-form distribution for
the posterior distribution in the BAMCP algorithm. However,
the strong assumptions over transition independence make
this model inapplicable to many relevant problem domains.

BAMDP-G In BAMDP-Gs, the transition probabilities are
functions of global latent parameters. In this case, it is often
necessary to approximate the belief. A typical method for
this is particle-based, where the posterior over the belief is
described by a set of M sample MDPs (Guez et al. 2014).
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Each MDP has a weight describing the likelihood of it being
the true description of the domain. At the start of a run,
we sample M times from the prior belief P0(θ) to get a
set of parameter instantiations, U = {θ1, · · · , θM}. These
sampled parameter values are used to generate a set of MDPs,
UMDP = {M1, · · · ,MM}, with the transition function
ofMk equal to Tθk . Each MDPMk is a particle with an
associated weight function wk : H → R>0 which represents
how probableMk is, given an observed history. We initialise
wk(h0) = 1

M ∀k ∈ {1, · · · ,M}. These weights are then
updated using Bayes’ rule as the agent observes state-action
transitions, via

wk(has
′) ∝ Tθk(s, a, s′) · wk(h). (2)

However, the accuracy of the representation using particles
is dependent on M , as this affects how well the parameter
space is covered: as the number of parameters increases, the
value of M required to accurately represent the belief grows
exponentially. In this work, we tackle this issue by proposing
a class for which we can maintain a closed-form representa-
tion of the belief for a set of global latent parameters.

HP2-MDP
We consider an MDP where the transition probabilities can
be expressed by a polynomial of a set of global parameters,
which are unknown to the agent.

Definition 2 (HP2-MDP) A hidden parameter poly-
nomial MDP (HP2-MDP) is defined by the tuple
⟨S, s0, A,Θ, P0(θ), TΘ, C,G⟩, where:

• S, s0 and A are the set of states, initial state and set of
actions, respectively;

• Θ ⊆ [0, 1]N is the parameter space of a set of N
global parameters. We denote elements of Θ as θ =
(θ1, · · · , θN );

• P0(θ) is the prior belief over Θ. P0(θ) ∈ Pol(Θ), i.e., it
is a polynomial function over Θ;

• TΘ : S × A × S → Pol(Θ) is the (polynomial) set of
possible transition functions;

• C : S ×A→ R is the cost function and G ⊂ S is the set
of goal states.

To be well-formed, the transition functions of a HP2-MDP
must be valid probability distributions over the set of states,
i.e., for all s ∈ S and a ∈ A that can be executed in s:∑

s′∈S

TΘ(s, a, s
′)(θ) = 1 ∀θ ∈ Θ. (3)

While the BAMDP has a parameter space of Θ = RN , in the
HP2-MDP, the parameter space is restricted to Θ ⊆ [0, 1]N .
This change in parameter space is required to maintain a
closed-form distribution, to confine the possible parameter
values to a fixed range. In the case of a parameter with a
range outside of [0, 1], the parameter can be scaled to fit
the above constraint. Thus, in HP2-MDPs, we consider a
bounded parameter set, for which Equation 3 imposes valid-
ity constraints. We cover the case where a) the parameters
are independent of each other, and b) when the parameters

follow
∑N

i=1 θi = 1. For each case, we will provide an exam-
ple illustrating when these constraints would be used. Other
linear constraints generated by Equation 3 can be computed
by combining the methods used in the cases outlined above.
We give an example of this by showing that BAMCP-L is a
type of HPP-MDP.

Independent Global Parameters
We consider a HP2-MDPM, where the latent parameters
θ = (θ1, . . . , θN ) are independent. We start with an example
of such a case.

Example 1 Consider an underwater glider planning a route
from a start location to a finish location in the sea. The
longitudinal and latitudinal velocity of the water at each
location is known, but the effect of these on the glider’s
movement is unknown. We assume a linear relationship be-
tween the water’s speed and the effect on the glider, and
the effect of the longitudinal and latitudinal water veloc-
ity are respectively expressed by θh and θv. The effect of
the longitudinal and latitudinal water velocity is indepen-
dent, where the longitudinal water velocity will only affect
the glider’s movement in the east-west direction, and the
latitudinal water velocity will only affect the glider in the
north-south direction. For example, a point in the sea may
have a longitudinal water velocity of −0.3ms−1, and a
latitudinal water velocity of 0.6ms−1. If the agent chose
the action to travel west, the outcome probabilities would
become the following: Pstationary = 0.3θh · (1 − 0.6θv),
Pwest = (1 − 0.3θh) · (1 − 0.6θv), Pnorth = 0.3θh · 0.6θv
and Pnorth−west = (1− 0.3θh) · 0.6θv . The sum of the prob-
ability of these 4 outcomes is equal to 1 regardless of the
values of θh and θv , thus both parameters can independently
range from 0 to 1.

Closed-Form Belief Update The posterior belief after tran-
sitioning from state-action pair s, a to state s′ follows Bayes’
rule:

Pt+1(θ | st, at, st+1) =

Pt(θ)TΘ(st, at, st+1)(θ)∫
θ′∈Θ

Pt(θ′)TΘ(st, at, st+1)(θ′)dθ′
.

(4)

Assuming the prior belief, Pt(θ), to be polynomial, we
have that Pt(θ)TΘ(st, at, st+1)(θ) is a polynomial. Thus, we

can consider its expansion into J terms,
∑J

j=1 βj

∏N
i=1 θ

aj
i

i ,
where βj is the coefficient of the j-th term, and aji is the order
of θi in the j-th term. In the independent global parameter
case, the valid parameter space is a hyper-cube, where each
parameter is in [0, 1]. Therefore, the denominator can be
expressed as:∫ 1

0

· · ·
∫ 1

0

J∑
j=1

βj

N∏
i=1

θ′i
aj
i dθ′ =

J∑
j=1

βj

N∏
i=1

1

aji + 1
. (5)

From this, the posterior belief can be written as:

Pt+1(θ) =

∑J
j=1 βj

∏N
i=1 θi

aj
i∑J

j=1 βj

∏N
i=1(a

j
i + 1)−1

(6)
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Figure 1: HP2-MDP example with dependent parameters.

Since P0(θ) is polynomial by definition, a simple induction
argument yields that, for independent parameter sets, Pt+1(θ)
is a polynomial of the form stated in Equation 6.

Global Parameters Bound by the Standard Simplex

In some scenarios, there will be dependencies between the
latent parameters. The example below illustrates this.

Example 2 Consider a robot planning a route over a do-
main with unknown weather conditions. We have three MDPs,
shown on the left in Figure 1, respectively describing the
motion of the robot in dry, wet and frozen weather condi-
tions. The underlying true MDP is a combination of the three
MDPs, depending on the wetness and the temperature of the
domain. Each MDP contributes a different proportion to the
true MDP, which is represented by weights θD, θW and θF .
In the true MDP, the transition probability from state A to
state B would be PT

AB = PD
AB · θD +PW

AB · θW +PF
AB · θF .

The resulting HP2-MDP is shown on the right side of Figure
1. To ensure that the transition function of the HP2-MDP is
well-formed, the latent parameters must satisfy the validity
constraint θD + θW + θF = 1, i.e., the latent parameters
must lie in the standard 2-simplex.

Closed-Form Belief Update When the parameters inM
are of the form Θ = {(θ1, . . . , θn) ∈ [0, 1] |

∑N
i=1 θi = 1},

i.e., Θ is the standard (N − 1)-simplex, the denominator
in Equation 4 is a closed line integral around the standard
(N − 1)-simplex. This is known as Dirichlet’s integral on
the simplex, which can be expressed as (cf. Equation (2.1)
in (Gupta and Richards 2001)):∮

θ∈Θ

N∏
i=1

θai−1
i dθ =

∏N
i=1 Γ(ai)

Γ
(∑N

i=1 ai

) , (7)

where Γ(k) = (k − 1)! is the gamma function. Therefore,
the denominator of Equation 4 can be expressed as:∮

θ∈Θ

J∑
j=1

βj

N∏
i=1

θ′i
aj
i dθ′ =

J∑
j=1

βj ·
∏N

i=1 Γ(a
j
i + 1)

Γ
(∑N

i=1(a
j
i + 1)

) .
(8)

Thus, the posterior belief over the latent parameter is:

Pt+1(θ) =

J∑
j=1

βj

∏N
i=1 θi

aj
i

J∑
j=1

βj ·
N∏

i=1

Γ(aj
i+1)

Γ

(
N∑

i=1

(aj
i+1)

)
. (9)

Since the Γ function is polynomial, again a simple in-
duction argument yields that, for dependent parameter sets
bounded by the standard simplex, Pt+1(θ) is a polynomial
of the form stated in Equation 9.

BAMDP-L: A Special Case of HP2-MDP

Other linear relationships between the global parameters
can be expressed by applying a combination of Equations 5
and 7. For example, consider the case where every transi-
tion probability is independent, and thus each state-action-
state transition probability is defined as a latent parameter,
i.e., θ = {θsas′ ∈ [0, 1] | (s, a, s′) ∈ S × A × S}, with
TΘ(s, a, s

′)(θ) = θsas′ . The latent parameter set Θ must sat-
isfy the validity constraint, thus Θ = {θ |

∑
s′∈S θsas′ =

1 for all (s, a) ∈ S ×A}. When the prior belief distribution
over Θ is uniform, this is equivalent to BAMDP-L. Therefore,
BAMDP-L can be seen as a special case of HP2-MDP.

To see this, we first consider the posterior belief. Using
Equation 4 and the uniform prior, the posterior belief can be
expressed as:

Pt(θ) =
Pt(θ)TΘ(st−1, at−1, st)(θ)∫

θ′∈Θ

Pt−1(θ
′)TΘ(st−1, at−1, st)(θ

′)dθ′

=

P0(θ)
t−1∏
t′=0

TΘ(st′ , at′ , st′+1))(θ)∫
θ′∈Θ

Pt(θ
′)

t−1∏
t′=0

TΘ(st′ , at′ , st′+1)dθ
′

=

t−1∏
t′=0

θst′at′st′+1∫
θ′∈Θ

t−1∏
t′=0

θ′st′at′st′+1
dθ′

=

∏
(s,a,s′)∈
S×A×S

θsas′
αt
sas′

∫
θ′∈Θ

∏
(s,a,s′)∈
S×A×S

θ′sas′
αt
sas′ dθ′

,

(10)
where αt

sas′ is the number of times the transition from state-
action sa to new state s′ has occurred until time t. The de-
nominator of Equation 10 can be simplified to:∫

θ′∈Θ

∏
(s,a,s′)∈
S×A×S

θ′sas′
αt
sas′ dθ′ =

∏
(s,a)∈
S×A

∮
θsa.∈Θsa

∏
s′∈S

θ
αt
sas′

sas′ dθsa.,

(11)
where for every state-action pair (s, a), we integrate over
the standard simplex defined by Θsa = {θsa. ∈ [0, 1]|S| |∑

s′∈S θsas′ = 1}, with θsa. = {θsas′ ∈ [0, 1] | s′ ∈ S}.
We can use Equation 7 to express the denominator of the
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belief distribution as:

∏
(s,a)∈
S×A

∮
θsa.∈Θsa

∏
s′∈S

θ
αt
sas′

sas′ dθsa. =
∏

(s,a)∈
S×A

∏
s′∈S

Γ(αt
sas′ + 1)

Γ

( ∑
s′∈S

(αt
sas′ + 1)

) .

(12)
Thus, the posterior belief over the latent parameter is:

Pt(θ) =

∏
(s,a,s′)∈S×A×S

θsas′
αt

sas′

∏
(s,a)∈S×A

∏
s′∈S

Γ(αt
sas′+1)

Γ

( ∑
s′∈S

(αt
sas′+1)

)
. (13)

This is equivalent to the posterior for a Dirichlet distribution
used to solve a BAMDP-L.

Sampling the Belief Distribution The closed form ex-
pression shown in Equation 6 and 9 allows us to maintain
an exact representation of the belief distribution for HP2-
MDPs where the transition probabilities are expressed as a
polynomial function of the global parameters. To solve a
HP2-MDP, we can use the BAMCP algorithm, where we
sample from the closed-form belief distribution at the root
node instead of sampling from a weighted set of sampled
MDPs. In HP2-MDP, the number of parameters defines the
number of dimensions of the space we sample from. At lower
dimensions, we analytically compute the cumulative density
function (CDF) of the posterior belief and sample from it to
produce a possible parameter instantiation. At higher dimen-
sions, we use a Markov Chain Monte-Carlo (MCMC) (Chib
and Greenberg 1995).

Belief Distribution Dimension Reduction As the steps
taken by the agent increase, the number of terms in the poly-
nomial representing the belief increases as well. For prob-
lems with large horizons, the belief distribution may gain
enough terms such that the MCMC algorithm becomes time-
consuming. To minimise the time taken to sample the belief
while maintaining an accurate representation, we apply di-
mension reduction to such problems.

After a fixed number of steps, we use ordinary least-
squares to fit our belief distribution to a polynomial of a
lower degree, which is then used to represent the belief pos-
terior. This enables the use HP2-MDP to represent domains
with large state spaces and sample from the belief accurately,
whilst bounding the size of its polynomial representation.

Experiments
We use BAMCP (Algorithm 1) and apply HP2-MDP,
BAMDP-G and a particle-filter-based belief representation
to two domains, showing empirically that HP2-MDP results
in better performance.

Algorithms
We apply the following algorithms for updating the belief:
HP2-MDP, as presented in Definition 2. We used dimension
reduction on the second domain. BAMCP-G, as presented
in Guez et al. (2014), which uses the approach described in

(a) Grid5 problem with an example transi-
tion. αi and βj are known to the agent.

(b) Latitudinal water velocity of the ocean for
SeaGrid. The white regions represent land.

Figure 2: Domains used in experiments.

BAMDP-G to maintain the belief. BAMCP-PF, where we
add noise into the samples when we update the posterior dis-
tribution. Similar to BAMCP-G, we sample the initial belief
to generate the initial set of particles, U = {M1, · · · ,MM}.
We assign a weight of wk(h0) =

1
M to particleMk. When

an action-state pair has been observed, the weights are up-
dated using Equation 2. Then, we use low-variance sampling
to select M samples from the updated distribution. We add a
small perturbation (E ∼ N (0, 0.01)) to the sample values to
allow the posterior distribution to explore the latent parame-
ter space. The new sampled M particles are given the same
weight of 1

M . Between each step, the algorithms sample the
belief and run simulations for time T .

Domains
Grid5 Guez, Silver, and Dayan (2012) considered a 5× 5
grid, where the only reward is located at the goal, directly
next to a reset square. If the agent enters the reset square, they
are sent to the start. The agent can take actions to navigate to
neighbouring squares, and each action has a small probability
of failure. The authors use Dirichlet distributions to model
the unknown state transition probabilities, i.e., the problem
is modelled as a BAMDP-L. Here, we modify it to introduce
dependencies between the transitions.

We consider a 5× 5 grid, as shown in Figure 2a. The tran-
sition probabilities of actions taken from the square at (i, j)
are determined by global latent parameters θ = (θ1, θ2), and
local known parameters {αi, βj}. Every step has a cost of 1,
and the run ends at the goal square. θ1 and θ2 both are in the
range [0, 1] and are independent from each other. The prior
distribution over the latent parameters is uniform.
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Algorithm HP2-MDP BAMCP-G BAMCP-PF
M − 100 200 300 400 500 100 200 300 400 500

Failure Rate 0.0 1.0 1.0 0.85 0.85 0.9 0.74 0.8 0.64 0.74 0.77
Mean Cost 17.6± 0.435 − − 58.7± 3.64 50.3± 3.53 37.5± 3.32 49.6± 2.64 55.2± 2.85 48.8± 2.52 44.1± 2.73 41.8± 2.71

Table 1: Results from 100 simulation conducted in the SeaGrid domain. The bold values indicate the best performance.

SeaGrid We consider the problem outlined in Example 1,
where a glider is planning a route from a start to a finish
location. The domain is a 17× 13 grid. The forecast for the
longitudinal and latitudinal velocity of the water is known
ahead of time, using data from Copernicus (2022). An ex-
ample of the vertical velocity is shown in Figure 2b. The
influence the horizontal and vertical water velocity will have
on the motion of the glider is described by the two latent
parameters, θ = (θh, θv). The prior over the θ is uniform.
The agent has an action choice of the cardinal directions and
the choice to do nothing. The choice of doing nothing may
result in the glider being pushed along by the water.

Results
Grid5 We tested the HP2-MDP without dimension reduc-
tion, BAMCP-G and BAMCP-PF algorithms on the Grid5
problem, and we set T to 20 seconds. We also varied the size
of the set of samples used to represent the posterior distribu-
tion, M , for BAMCP-G and -PF. Each algorithm was tested
on the domain 100 times, with the underlying “true” parame-
ters for each test sampled uniformly. We ran the simulations
on Linux OS with an Intel Core i9-11900H processor and
16GB of RAM.

The results are in Figure 3. The HP2-MDP algorithm does
not rely on sets of samples, thus the results do not vary
with M . The BAMCP-G and -PF algorithms are shown to per-
form worse at low values of M , as the particles are sparsely
distributed over the latent parameter space. As the value of
M increases, the posterior distribution is better represented,
and thus able to return actions closer to the optimal strategy.
However, at high values of M , the time taken to sample the
posterior distribution increases such that the number of trials
that can be completed until timeout is reduced. This leads to
the algorithm returning an action without converging to the
optimal policy, and thus higher costs.

We found that the BAMCP algorithms with particle-based
belief updates lead to higher costs than the HP2-MDP closed-
form updates, where we varied M between 10 and 200.
BAMCP-PF performed marginally better than the BAMCP-
G, as the particles were able to explore the parameter space.
The BAMCP-PF generally resulted in higher costs than the
HP2-MDP algorithm, except in the case where M = 150,
where the particle filter and the HP2-MDP algorithm per-
formed comparably. Both the BAMCP-G and -PF experience
high variability in performance as M is altered. To get the
best performance from these algorithms, the optimal value
of M must be explored. In comparison, as HP2-MDP is using
an exact form of the posterior distribution, there is no need
no fine-tuning needed.

SeaGrid We compared HP2-MDP to BAMCP-PF and
BAMCP-G with M = 100, 200, 300, 400 and 500. We ap-

Figure 3: Costs collected in the Grid5 domain

plied dimension reduction to HP2-MDP, where the highest
degree of the polynomial was fixed to 12. We increased the
number of particles used, as the transition probabilities were
more sensitive to variation in the parameter values. This
meant a slight deviation from the true parameter values would
result in significantly different transition probabilities. There-
fore, sample-based methods would struggle to fully capture
the true MDP without large values of M . We set T to 90
seconds and ran 100 simulations for each algorithm, again
with the underlying “true” parameters sampled uniformly.
We ran the trials on CentOS with an Intel Xeon Platinum
8268 CPU at 2.90 GHz Processor, with 16GB of RAM. We
applied a limit of 75 steps before halting the simulation due
to memory constraints for BAMCP-PF with M = 500. This
is reflected in the failure rate, shown in Table 1.

We found that HP2-MDP significantly outperforms the
particle-based approaches. We attribute this to the size of
the state space and the high dependence of the transition
probabilities on the latent parameters. This meant that for low
values of M , the samples were insufficient to cover the latent
parameter space, resulting in poor performance. This was
particularly pronounced in BAMCP-G, where the samples
were fixed at the start of a trial, and thus the performance was
heavily dependent on the existence of a sample similar to the
underlying MDP.

Conclusion
We have presented a new class for BAMDPs, HP2-MDP,
where the transitions are expressed as polynomial functions
of the latent parameters. HP2-MDP allows the posterior dis-
tribution over the latent parameters to be maintained in a
closed-form and exact representation. We have shown, in two
domains, that planning with the HP2-MDP closed-form pos-
terior distribution substantially outperforms the commonly
used approach of planning with a particle-based representa-
tion of the posterior distribution.
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