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Abstract
Exploration under sparse rewards is a key challenge for multi-
agent reinforcement learning problems. One possible solution
to this issue is to exploit inherent task structures for an accel-
eration of exploration. In this paper, we present a novel explo-
ration approach, which encodes a special structural prior on
the reward function into exploration, for sparse-reward multi-
agent tasks. Specifically, a novel entropic exploration objec-
tive which encodes the structural prior is proposed to acceler-
ate the discovery of rewards. By maximizing the lower bound
of this objective, we then propose an algorithm with mod-
erate computational cost, which can be applied to practical
tasks. Under the sparse-reward setting, we show that the pro-
posed algorithm significantly outperforms the state-of-the-art
algorithms in the multiple-particle environment, the Google
Research Football and StarCraft II micromanagement tasks.
To the best of our knowledge, on some hard tasks (such as
27m vs 30m) which have relatively larger number of agents
and need non-trivial strategies to defeat enemies, our method
is the first to learn winning strategies under the sparse-reward
setting.

Introduction
Multi-agent reinforcement learning (MARL) is an increas-
ingly important field. Many real-world problems (Swamy
et al. 2020; Bazzan 2009) are naturally modelled using
MARL technology. Recently, many works (Rashid et al.
2018; Lowe et al. 2017) have been proposed to address
MARL problems. Although these works have made signif-
icant progress, they all focus on dense-reward multi-agent
scenarios. However, in many real-world scenarios, rewards
extrinsic to agents are extremely sparse (Pathak et al. 2017).

In this paper, we focus on exploration in sparse-reward
multi-agent scenarios. Although classical exploration tech-
niques such as count-based methods (Bellemare et al. 2016)
perform well in single agent scenarios, recent studies (Ma-
hajan et al. 2019; Liu et al. 2021) show that these techniques
that strive to uniformly visit all states are no longer tractable
in MARL. The reason is that the size of the state space grows
exponentially with respect to the number of agents, which
makes it extremely challenging to identify states worthy of
being explored (Wang et al. 2019; Liu et al. 2021).

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Previous work (Liu et al. 2021) has shown that exploiting
structural prior on the reward function in multi-agent sce-
narios is a promising way to alleviate the exploration issue
in MARL. In this paper, we focus on a special structural
prior on the reward function in multi-agent tasks. The struc-
tural prior is that while the state space grows exponentially,
the reward function typically depends on a small subset of
the state space, i.e., sub-state space. This special structural
prior is a common one, and widely exists in many multi-
agent cooperation scenarios. For example, in real-world traf-
fic light control scenario (Wei et al. 2018), as the number
of traffic lights increases, the full-state space becomes very
large, but the reward function only depends on the average
waiting time of the vehicles, which is a small subset of the
full-state space. In the academic field, there are also many
such scenarios. For instance, in a multi-agent football task,
the reward only relies on the position of the ball, or in a
multi-agent fighting task, the reward is determined only by
the health of enemies. Obviously, in these tasks, rewards are
only associated with a subset of the full-state space, and ex-
ploring in this sub-state space enables to learn the whole task
more efficiently.

In this work, we study how to effectively encode the struc-
tural prior into exploration, when specific domain knowl-
edge is lacking. That is, we do not know which specific sub-
space the reward function depends on. While previous work
has tackled the same problem (Liu et al. 2021), their method
only works well for few tasks and follows a different explo-
ration paradigm. We give a detailed comparison in Sec. .

Our basic idea is inspired by the principle of optimism in
the face of uncertainty, which plays the central role in ex-
ploration methods in many fields (Strehl and Littman 2008).
In single-agent RL, to identify states worthy of being ex-
plored, previous works (Bellemare et al. 2016; Burda et al.
2019b) assume that states with higher uncertainty are wor-
thy of being explored and encourage agents to visit these
states. Our approach extends this idea to sub-state space
level. Since we do not know which specific sub-state space
the reward function depends on, we assume that a sub-state
space with higher uncertainty is more likely to be relevant to
the reward function. Intuitively, an under-explored sub-state
space has a higher uncertainty. Based on the idea, we pro-
pose the Subspace-Aware Multi-agent Exploration (SAME)
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Figure 1: Normalized sample use by different methods with respect to SAME (smaller values are better). SAME consistently
achieves a better sample efficiency compared to all other baselines. Infinity means that the method fails to achieve a success
rate above 40% at a given step. Details for baselines are described in Sec. .

approach. SAME uses a novel entropic exploration objective
in sub-state spaces to encourage agents to pay more attention
to exploring sub-state spaces with higher uncertainty.

However, the proposed objective is sensitive to the num-
ber of agents, and needs to estimate state distribution in-
duced by agents in high-dimensional sub-state spaces. These
computational issues make it difficult to be applied to practi-
cal tasks. To this end, we propose an algorithm to encourage
agents to improve the lower bound of the proposed objective.
In this way, the computational cost with respect to the num-
ber of agents grows linearly rather than exponentially, and
we only need to estimate the distribution in one-dimensional
sub-state spaces which is relatively easy to achieve.

We evaluate SAME on three challenging environments:
a discrete version of the multiple-particle environment
(MPE) (Wang et al. 2019), the Google Research Football
(GRF) (Kurach et al. 2020) and StarCraft II microman-
agement (SMAC) (Samvelyan et al. 2019). In all experi-
ments, we consider the sparse-reward setting. This means
that agents get rewards only when they complete a given
task. We show that SAME significantly outperforms the
state-of-the-art baselines on almost all tasks (RQ1 in Sec. ).
Fig 1 shows normalized sample size to achieve a success
rate above 40% with respect to SAME. Moreover, to our
best knowledge, on some tasks with relatively larger number
of agents such as 27m vs 30m, SAME is the first to learn
winning strategies under the sparse-reward setting. During
the experiments, we observe (RQ2 in Sec. ) that SAME
shows consistently strong performance on tasks with differ-
ent number of agents, which confirms that our algorithm is
relatively robust to the number of agents. We also observe
(RQ4 in Sec. ) that compared to classical count-based ex-
ploration methods, SAME exhibits better coverage of states
with rewards under the reward-free setting.

In summary, we make the following contributions: (i)
We propose a new exploration approach which exploits the
structural prior that the reward function typically depends
on a small subset of the state space in multi-agent tasks;
(ii) Based on our approach, we propose an algorithm that
has moderate computational cost, and thus can be applied to
practical tasks; and (iii) We show that our algorithm signif-

icantly outperforms the state-of-the-art algorithms on three
challenging environments under the sparse-reward setting,
including MPE, GRF and SMAC.

Preliminaries
Multi-Agent Markov Decision Process
A cooperative multi-agent system is modelled as a multi-
agent Markov decision process (MDP). An n-agent MDP
is defined by a tuple (S,A,P,R,Z,O, n, γ,H). S is the
full-state space of the environment. A is the action space of
each agent. At each time step t, each agent’s policy πi, i ∈
N ≡ {1, . . . , n}, selects an action ait ∈ A. All selected ac-
tions form a joint action at ∈ An. The transition function
P : S × An → ∆(S) maps the current full-state st and
the joint action at to a distribution over the next full-state
st+1. All agents receive a collective reward rt ∈ R, accord-
ing to the reward function R : S × An → R. The objective
of all agents’ policies is to maximize the collective return∑H
t=0 γ

trt, where γ ∈ [0, 1] is the discount factor, H is the
horizon, and rt is the collective reward obtained at timestep
t. Each agent i observes local observation oit ∈ Z , according
to the observation functionO : S ×N → Z . All agents’ lo-
cal observations form a full observation ot. In this paper, we
follow the standard centralized training with decentralized
execution paradigm (CTDE) (Rashid et al. 2018).

Exploration from Sub-state Space
Formally, given an K-dimensional state space S , the sub-
state space SK associated with a set K is defined as:

SK = {projK(s) : ∀s ∈ S}
where projK(s) = (se)e∈K restricts the space to elements
e in set K, i.e., e ∈ K. Here, se is the e-th component
of the full-state s, and K is a set from the power set of
{1, · · · ,K}, i.e., K ∈ P ({1, · · · ,K}), where P denotes
the power set. For a state distribution dπ induced by a policy
π (Hazan et al. 2019; Zhang et al. 2021a; Lee et al. 2019),
the entropy of dπ over SK is denoted by H(dπ,SK) =
−Es∼dπ log dπ(s,SK). We then use Ee to denote a one-
dimensional sub-state space which only contains the e-th
component of the full-state s, i.e., |K| = 1.
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Method
In this paper, we aim to alleviate the exploration issue in
sparse-reward multi-agent tasks by exploiting the structural
prior that the reward function typically depends on a small
subset of the state space (i.e., sub-state space) in multi-agent
tasks. In this section, we will discuss how to encode this
prior into exploration so that agents learn the whole task
more efficiently. An overview of the proposed approach is
given in Fig. 2.

Exploration in Sub-state Spaces
One possible solution to encode the structural prior into ex-
ploration is to directly use classical exploration techniques
in sub-state spaces. For example, if we use provably effi-
cient maximum state entropy exploration methods (Hazan
et al. 2019) in sub-state spaces, then we get the vanilla ex-
ploration objective

Jvan(π) =
∑

K∈P ({1,··· ,K})

H (dπ,SK) . (1)

According to (Hazan et al. 2019; Zhang et al. 2021a), the
bonus bvan

sub(st,at, st+1) derived from Eq. 1 with respect to
dπ is

bvan
sub =

∑
K∈P ({1,··· ,K})

(
− log dπ (st+1,SK)− 1

)
. (2)

Eq. 2 gives agents a higher bonus when agents visit a state
that is less frequently visited in sub-state spaces. In this way,
agents will be encouraged to keep exploring various sub-
state spaces.

The main issue in Eq. 2 is that it gives the same weight
to each sub-state space. This leads to agents having no bias
for different sub-state spaces. Our aim is to find rewards
quickly, rather than visiting all sub-state spaces uniformly.
Therefore, a smarter approach is to make agents pay more
attention to sub-state spaces that are relevant to rewards.
However, accurately identifying which sub-state spaces are
relevant to rewards requires domain knowledge, which is
often difficult to obtain. In the absence of domain knowl-
edge, inspired by the optimism principle in the face of uncer-
tainty (Strehl and Littman 2008), we hypothesize that sub-
state spaces with higher uncertainty (i.e., unfamiliar sub-
state spaces) are more likely to be relevant to rewards. In
other words, we give higher weights for sub-state spaces
with higher uncertainty. In this paper, the uncertainty is de-
fined as U(dπ,SK) = log|SK|

H(dπ,SK) . Intuitively, a fully explored
sub-state space has lower uncertainty. Formally, we use the
new weighted objective to encourage exploration

Jwt(π) =
∑

K∈P ({1,··· ,K})

log
(

1 +
1

U (dπ,SK)

)
. (3)

Similar to Eq. 1, agents also need to increase H(dπ,SK)
to maximize the exploration objective. However, in Eq. 3,
increments of the entropy H(dπ,SK) of different sub-state
spaces have different effects on the objective. To show this
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Figure 2: Overview of the proposed approach.

more clearly, we derive the bonus bwt
sub(st,at, st+1) from

Eq. 3 with respect to dπ

bwt
sub =

∑
K∈P ({1,··· ,K})

1(
1 + 1

U(dπ,SK)

)
log|SK|︸ ︷︷ ︸

(1)

×
(
− log dπ (st+1,SK)− 1

)
︸ ︷︷ ︸

(2)

. (4)

The form of bwt
sub(st,at, st+1) clearly shows how it dif-

fers from Eq. 2. The first term weights sub-state spaces, and
assigns higher values to sub-state spaces with higher un-
certainty. This encourages agents to pay more attention to
sub-state spaces with higher uncertainty. The second term
is same as Eq. 2 and assigns higher values to states which
are less frequently visited in the sub-state space level. The
combination of these two terms achieves our goal. That is
to make agents pay more attention to exploring sub-state
spaces with higher uncertainty.

However, there are two computational issues in Eq. 4. The
first issue is that bwt

sub is sensitive to the number of agents.
For a task with N agents and each agent has M attributes,
its full-state space has N × M dimensions, and all possi-
ble sub-state spaces are 2N×M . This makes it impractical to
consider all sub-state spaces when N is large. The second
issue is that estimating dπ(st+1,SK) in a high-dimensional
sub-state space is non-trivial (Liu and Abbeel 2021). To al-
leviate the above computational issues, we consider a lower
bound of the objective Jwt(π), which only considers one-
dimensional sub-state spaces. Concretely, the lower bound
is defined as (see Appendix for proof)

Ĵwt(π) =

K∑
e=1

log
(

1 +
1

U(dπ, Ee)

)
≤ Jwt(π). (5)

In this way, we only need to consider N × M sub-state
spaces instead of 2N×M sub-state spaces. Moreover, since
we only consider one-dimensional sub-state spaces, it is easy
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Figure 3: Comparison of our approach against baseline algorithms on MPE.

to estimate dπ(st+1, Ee). For example, we can discretize
each dimension of the state space. Similar as Eq. 4, the
bonus derived from the lower bound is

b̂wt
sub =

K∑
e=1

1(
1 + 1

U(dπ,Ee)

)
log|Ee|

(
−log dπ(st+1, Ee)−1

)
.

(6)

Combing with Full-state Space Bonus
Only relying on b̂wt

sub to encourage exploration will make
agents’ behaviors lack guidance from the full-state space as-
pect, resulting in ignoring novel states in the full-state space
level. In this paper, we use easy-to-implement count-based
bonus as our bfull = 1/

√
Ntot(st+1), where Ntot stands for

a state count. Now that we know how to calculate bfull and
b̂wt

sub respectively. The remaining problem is choosing an ap-
propriate way to combine them. In high-level, we use the
addition operation that is widely used in the literature (Zha
et al. 2020; Wang et al. 2019) to combine bfull and b̂wt

sub. But,
before performing the addition operation, bfull is also used
as the coefficient of b̂wt

sub. This is to ensure the final bonus
btot is asymptotically consistent (Zhang et al. 2021b), which
means that the bonus will go to zero after enough explo-
ration. Without asymptotically consistent, the optimal policy
will be altered by the exploration bonus.

To discourage agents from visiting repeated states in an
episode, we adopt local restrictions (Zhang et al. 2021b) for
bfull and define a weakened local restriction for b̂wt

sub

m
(e)
sub(st,at, st+1) = 1

(
(st+1)e 6= (st)e

)
. (7)

When the e-th dimension of state st+1 is different from the
e-th dimension of state st, m

(e)
sub(st,at, st+1) is 1, otherwise

it is 0. For bfull, we use the local restriction directly

mfull(st,at, st+1) = 1
(
Nep(st+1) = 0

)
(8)

where Nep stands for an episodic state count and is reset ev-
ery episode. When the state st+1 has not been visited before
in this episode, 1(Nep(st+1) = 0) is 1, otherwise it is 0. Fi-
nally, the exploration bonus btot(st,at, st+1) is

btot =
mfull√

Ntot(st+1)

(
1 + β

K∑
e=1

m
(e)
sub(

1 + 1
U(dπ,Ee)

)
log|Ee|

×
(
− log dπ(st+1, Ee)− 1

))
(9)

where β is a hyper-parameter. Our work guides exploration
according to the exploration bonus btot. Therefore, agents re-
ceive an augmented reward which is the weighted sum of the
task reward r and the exploration bonus btot at each timestep,
r̂ = r+w1btot, where w1 is the hyper-parameter to trade off
exploration and exploitation.

Implementation
In this section, we discuss some important details about the
implementation. To calculate b̂wt

sub, we need to estimate |Ee|,
H(dπ, Ee), and dπ(st+1, Ee). We use Êe which is observed
from data to approximate Ee. For instance, if we observe Ee
takes values 1, 2, 3, then |Êe| = 3. We use empirical counts
to estimate dπ(st+1, Ee) and H(dπ, Ee). To calculate b̂wt

sub in
the continuous state space (such as SMAC and GRF), we
discretize each dimension of the state space into B equally
spaced atomic states. Better state discretization techniques,
such as hash-based counting (Tang et al. 2017), might lead
to better performance, but we find that this simple approach
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Figure 4: Results for the sparse-reward version of SMAC after training 2 million time steps. The proposed algorithm signifi-
cantly outperforms all baseline algorithms.

Figure 5: Comparison of our approach against baseline algorithms on Google Research Football.

is sufficient. In the continuous state space, we ignore mfull

and use an alternate formula to calculatem(e)
sub = ‖(st+1)e−

(st)e‖. We use RND (Burda et al. 2019b) to calculate bfull in
the continuous state space.

Experiments

The experiments are designed to answer the following re-
search questions: RQ1: how is SAME compared with the
state-of-the-art exploration algorithms on benchmark multi-
agent environments in the sparse-reward setting (Sec )?
RQ2: How will SAME perform in tasks with more agents
(Sec )? RQ3: how important each component is in SAME
(Sec )? RQ4: how will SAME explore environments (Sec )?
All experiments run with five random seeds. Details for en-
vironments and training are given in Appendix.

Experiments on Standard Multi-agent Tasks
To study RQ1, we evaluate SAME on three challenging en-
vironments: (1) a discrete version of the multiple-particle
environment (MPE) (Liu et al. 2021); (2) the StarCraft II mi-
cromanagement (SMAC) (Samvelyan et al. 2019); and (3)
the Google Research Football (GRF) (Kurach et al. 2020).
In all environments, we consider the sparse-reward setting.

Experimental Setup. In MPE, following previous
works (Wang et al. 2019; Liu et al. 2021), we consider
four standard tasks: Push Box, Pass, Secret Room
and Island. We also consider more challenging tasks
Large Push Box and Large Pass. To evaluate our al-
gorithm on environments with continuous state space, we
consider six standard tasks in SMAC: 3m, 2m vs 1z,
3s vs 5z, 5m vs 6m, 10m vs 11m and 27m vs 30m.
We consider the sparse reward setting, which means agents
see a reward of +1 only when all enemies are taken
care of. In GRF (Kurach et al. 2020), following pre-
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Figure 6: Ablation study for SAME. Without sub-state space level bonus, the performance drops significantly in all tasks. This
confirms the importance of our sub-state space bonus.

Figure 7: We show the percentage of each one-dimensional sub-state space’s bonus in the overall exploration bonus in
Secret Room (left), 5m vs 6m (middle) and counterattack hard (right). Larger values mean more attention. Each
cell in last two figures represents a one-dimensional sub-state space, such as the health of agent 1. The values of all cells in a
figure add up to one.

vious work (Chenghao et al. 2021), we consider three
tasks: 3 vs 1 with keeper, counterattack easy
and counterattack hard. In GRF tasks, only scoring
leads to rewards.

Baselines. We consider several baselines: QMIX (Rashid
et al. 2018) is a popular value-based method for MARL;
COUNT includes a count-based bonus on top of QMIX;
CMAE (Liu et al. 2021) learns an exploration policy by
selecting goals from many restricted spaces; EITI and
EDTI (Wang et al. 2019) capture the influence of one
agent’s behaviors on others; EMC (Zheng et al. 2021) uses
prediction errors of individual Q-values as intrinsic rewards
for coordinated exploration; CDS (Chenghao et al. 2021)
introduces diversity in both optimization and representa-
tion to encourage extensive exploration. In SMAC and GRF,
the count-based bonus and our bfull are approximated by
RND (Burda et al. 2019b).

Results on MPE. We first compare SAME with base-
lines on MPE tasks. The training curves are included in
Fig. 3. The results of CMAE are obtained using the pub-
licly available code released by the authors. EITI and EDTI,
which need to learn dynamics, both fail in all tasks. As
we expected, COUNT which combines with a count-based
exploration bonus can solve easy tasks, but does not per-
form well on hard tasks. On simple tasks, CMAE can learn
winning strategies but the performance is unstable, while

on difficult tasks CAME fails. We think this is mainly be-
cause CMAE ignores the full-state information and its multi-
stage paradigm. Our algorithm shows amazing sample effi-
ciency on all tasks. Specifically, only SAME is able to solve
Large Pass. On Pass and Large Push Box, SAME
explores faster than all baselines.

Results on SMAC. Next, we evaluate our algorithm in
more challenging tasks with continuous state space. The
training curves are included in Fig. 4. Since CMAE does
not provide an implementation on SMAC, we get the re-
sults of CAME from the original paper (Liu et al. 2021). As
shown in Fig. 4, QMIX which relies on random exploration
and CDS which introduces diversity do not learn a winning
strategy in all tasks. RND and EMC can solve tasks with
fewer agents, such as 3m and 2m vs 1z tasks. However, as
we expected, they both fail in tasks with more agents. In
contrast, our SAME works well in all tasks. Concretely, our
algorithm is more efficient than all baselines on tasks with
fewer agents. More importantly, our algorithm also achieves
strong performance when the number of agents increases,
such as 3s vs 5z and 5m vs 6m.

Results on GRF. Next, we evaluate our algo-
rithm on three challenging Google Research Football
(GRF) offensive scenarios: 3 vs 1 with keeper,
counterattack easy and counterattack hard.
In GRF, all experiments follow the training settings of
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Figure 8: t-SNE plot of states randomly sampled from
the 1M steps training without the extrinsic reward in
Secret Room (left) and 5m vs 6m (right). States with re-
wards are collected by other agents are trained with the ex-
trinsic reward.

CDS (Chenghao et al. 2021), except that all experiments use
TD(λ) to speed up training. The training curves are reported
in Fig. 5. We observe that, as the difficulty of the task
increases, the advantages of our algorithm become more
obvious. On easy tasks, our algorithm slightly outperforms
the current state-of-the-art algorithm CDS, but on harder
tasks, our algorithm significantly outperforms all baselines.

More Agents. To study RQ2, we consider tasks with
more agents. Concretely, we consider 10m vs 11m with
21 agents, and 27m vs 30m with 57 agents. Obviously,
CMAE (Liu et al. 2021) is unable to be applied to these
tasks because the number of agents is so large. Since our
algorithm only needs to consider K one-dimensional sub-
state spaces, it can be easily applied to these complex tasks.
As shown in Fig. 4, SAME can still learn winning strate-
gies. To our knowledge, SAME is the first to learn winning
strategies in these tasks under the sparse-reward setting.

Discussion. Through extensive experiments on three chal-
lenging standard multi-agent environments, we make two
observations. First, the results support the view of previous
work (Mahajan et al. 2019; Liu et al. 2021) that conven-
tional exploration strategies in single agent scenarios, such
as COUNT and RND, are no longer tractable in multi-agent
scenarios. Second, our algorithm demonstrates superior per-
formance in all tasks, confirming that it is feasible to acceler-
ate the discovery of rewards by encoding the structural prior
on the reward function into exploration.

Ablations and Analysis
To study RQ3, we perform ablation studies on our algo-
rithm. To confirm the effectiveness of the sub-state space
bonus, we first report the performance by setting the sub-
state space bonus to a constant 1 (’Ours w/o sub-state space
bonus’). As shown in Fig. 6, without the sub-state space
bonus, the performance drops significantly. This confirms
the importance of our sub-state space bonus. Then, we ver-
ify if our bonus bwt

sub in Eq. 6 is better than bvan
sub. As we ex-

pected, the performance trained with bvan
sub (’Ours w/ vanilla

sub-state space bonus’) drops significantly. This confirms
the importance of the first term in Eq. 6. Last, by comparing
the performance with only full-state space bonus, and the

performance with full-state space bonus and local restric-
tions (’Ours w/o sub-state space bonus’), we observe that
local restrictions are beneficial for exploration.

Exploration Behavior Analysis. To study RQ4, we
report the percentage of each one-dimensional sub-state
space’s bonus in the overall exploration bonus during 500K
steps training in Fig 7. Larger values mean more attention.
That is, exploration behaviors of agents are mainly guided
by bonuses which are from sub-state spaces with high val-
ues. As we expected, our algorithm has a clear preference
for different sub-state spaces. For example, our algorithm
pays more attention to x-coordinates of agents and states of
doors in Secret Room. In this task, agents need to enter
the correct room by switching states of doors. Therefore,
paying more attention to the states of doors helps to solve
the task. In 5m vs 6m, our algorithm focuses on the weapon
cooldown of agents, agents‘ health and enemies’ health. In
this task, the goal is to take care of all enemies. Thence,
focusing more on these sub-state spaces obviously helps
agents to find rewards faster. Overall, sub-state spaces that
our algorithm focuses on can help agents to find rewards.
This is consistent with our motivation.

To better understand exploration behaviors of our agents,
we use t-SNE (Van der Maaten and Hinton 2008) to vi-
sualize some visited states during 1M steps training with-
out the extrinsic reward. As shown in Fig. 8, we plot states
visited by our algorithm (orange), states visited by classi-
cal full-state space exploration (blue). We also plot states
with the extrinsic reward (green) that are collected by other
agents, which are trained with the extrinsic reward. We ob-
serve that some states visited by our algorithm overlap with
rewarded states in the reward-free setting. This indicates our
algorithm better covers states with rewards. This is expected
because our algorithm encodes a structural prior on the re-
ward function into exploration, whereas the full-state space
exploration only considers visitation counts.

Related Work
Many exploration techniques have been studied for single-
agent deep reinforcement learning problems. Among them,
two types of intrinsic reward methods are the most popular.
One type is count-based methods which encourage agents to
visit novel states (Strehl and Littman 2008; Bellemare et al.
2016). The other class of methods rely on prediction errors
for problems related to the agent’s transitions (Pathak et al.
2017; Burda et al. 2019a,b; Badia et al. 2020). However, di-
rectly applying these methods in MARL is impractical due
to large scale of exploration space.

Recently, exploration approaches designed for multi-
agent scenarios have been proposed. EITI and EDTI (Wang
et al. 2019) capture the influence of one agent’s behaviors
on others, and agents are encouraged to visit states that will
change other agents’ behaviors. More recently, EMC (Zheng
et al. 2021) uses prediction errors of individual Q-values as
intrinsic rewards for coordinated exploration. CDS (Cheng-
hao et al. 2021) maximizes the mutual information between
agents’ identities and their trajectories to encourage exten-
sive exploration and diverse individualized behaviors. How-
ever, these methods ignore the structure of the reward func-
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tion, resulting in inefficient explorations in complex envi-
ronments under the sparse-reward setting.

The most relevant work to our approach is CMAE (Liu
et al. 2021). Our approach differs from CMAE in the fol-
lowing two aspects. First, CMAE is a multi-stage method
that divides the whole training process into multiple stages
according to heuristic rules and has to retrain a new explo-
ration policy from scratch at each stage, which leads to in-
efficient exploration. In contrast, our approach follows the
bonus-based exploration paradigm and can be seamlessly
combined with existing methods (Rashid et al. 2018; Cheng-
hao et al. 2021). Second, CMAE is sensitive to the number
of agents. The reason is that CMAE needs to explicitly se-
lect a sub-state space to be explored, resulting in the need to
enumerate a large number of sub-state spaces. This makes
CAME difficult to be applied to tasks with larger number
of agents. In contrast, our algorithm has moderate computa-
tional cost, and is insensitive to the number of agents.

Conclusion
In this paper, we aim to alleviate the exploration issue in
sparse-reward MARL tasks by exploiting the structural prior
that the reward function typically depends on a small subset
of the state space. To encode the structural prior into ex-
ploration, we propose a new exploration objective in sub-
state spaces. Moreover, based on the objective, we pro-
pose an algorithm with moderate computational cost, which
can be applied to practical tasks. We evaluate our algo-
rithm on three challenging exploration environments under
the sparse-reward setting. Results show that our algorithm
pushes forward state-of-the-art. Moreover, on some hard
tasks, our algorithm can still learn winning strategies, while
other algorithms fail. One limitation of the current work is
that it is based on the CTDE framework, which assumes that
the global state is available at training. Although CTDE is
currently the most popular framework, the global state is dif-
ficult to obtain in real-world scenarios. In addition, in many
scenarios the information of other agents is not available due
to privacy issues. These problems have inspired recent stud-
ies about decentralized training. In the future, we hope to
extend our core idea to the decentralized training setting.
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