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Abstract
Altruistic punishment (or punishment) has been extensively
shown as an important mechanism for promoting coopera-
tion in human societies. In AI, the emergence of punishment
has received much recent interest. In this paper, we contribute
with a novel evolutionary game theoretic model to study the
impacts of environmental feedback. Whereas a population of
agents plays public goods games, there exists a third-party
population whose payoffs depend not only on whether to pun-
ish or not, but also on the state of the environment (e.g., how
cooperative the agents in a social dilemma are). Focusing on
one-shot public goods games, we show that environmental
feedback, by itself, can lead to the emergence of punishment.
We analyze the co-evolution of punishment and cooperation,
and derive conditions for their co-presence, co-dominance
and co-extinction. Moreover, we show that the system can
exhibit bistability as well as cyclic dynamics. Our findings
provide a new explanation for the emergence of punishment.
On the other hand, our results also alert the need for careful
design of implementing punishment in multi-agent systems,
as the resulting evolutionary dynamics can be somewhat com-
plex.

Introduction
Altruistic punishment (or punishment) has been proved to be
an important mechanism for promoting cooperation in hu-
man societies as well as in AI systems (Dreber et al. 2008;
Bou, López-Sánchez, and Rodrı́guez-Aguilar 2006). Labo-
ratory and field data show that human subjects across dif-
ferent cultures are eager to punish non-cooperators in so-
cial dilemma games even if this incurs a cost (Fehr and
Gächter 2002). In AI, punishment has also gained much
interest (Morris-Martin, De Vos, and Padget 2019; Giar-
dini et al. 2014; Pereira et al. 2017). On one hand, pun-
ishment is a conceptually appealing tool to promote coop-
erative behaviours and to enforce norm compliance among
self-regarding agents (Mahmoud et al. 2015; Villatoro et al.
2011). On the other hand, it has been implemented in var-
ious multi-agent systems, such as e-marketplace (Liu et al.
2016), online virtual agent societies (Savarimuthu, Padget,
and Purvis 2013), and smart grids (Du et al. 2021); this ren-
ders the study of punishment to be of practical interest.

*These authors contributed equally.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Although common in both human societies and AI
systems, punishment, by itself, creates an evolutionary
puzzle—how punishment could possibly emerge given that
punishment is costly (i.e. punishing others generally incurs a
cost to punishers themselves). To address this puzzle, a num-
ber of models that leverage reciprocity (Raihani and Bshary
2015; Helbing et al. 2010; Nowak 2006), voluntary partici-
pation (Semmann, Krambeck, and Milinski 2003), and prior
commitment (Han, Pereira, and Lenaerts 2017; Han 2016)
have been proposed to account for the emergence of punish-
ment. However, these models typically assume that environ-
mental feedback does not exist, let alone influence punish-
ment; put differently, whether to punish or not is indepen-
dent of the state of the endogenous environment.

Different from the absence of environmental feedback in
most existing models, real-world systems, however, often
feature environmental feedback (Tilman, Plotkin, and Akçay
2020; Weitz et al. 2016): while strategic decisions of indi-
viduals may change the environment, the environment may
the other way around shape their decision making. For ex-
ample, while global climate change is under the influence of
whether nations ratify an (e.g., Paris) agreement and be fined
when failing to meet the goals, long-term ecological dam-
age may conversely alter their strategic incentives (Tilman,
Plotkin, and Akçay 2020). Likewise, as the well-known bro-
ken window experiments (Zimbardo 1969) hint, any visible
sign of disorder (e.g., norm violation, anti-social behaviours)
which goes untended encourages further disorder; this may,
in turn, silence social punishment (e.g., anger, social exclu-
sion) in the environment (Wanders et al. 2021). Examples
from these diverse fields suggest that the effect of environ-
mental feedback on punishment is non-trivial and perhaps
crucial under some scenarios as they may fundamentally
change dynamical predictions. This drives our motivating
questions:

Can environmental feedback, by itself, lead to the emer-
gence of punishment in absence of any other mechanisms
previously studied? Under what conditions does environ-
mental feedback promote or preclude punishment? How
much does environmental feedback affect the interplay be-
tween punishment and cooperation?

To address these questions, we propose a novel model
based on evolutionary game theory. We focus on the one-
shot public goods game (PGG) with third-party punish-
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ment. More specifically, there co-exist a game-playing pop-
ulation and a third-party population. For every time step,
anonymous agents in the game-playing population are ran-
domly drawn to play a PGG game and choose to cooper-
ate or not. In the meantime, the third-party agents oversee
the game plays and can choose to punish non-cooperators
with a cost. One-shot PGG is a widely adopted strategic in-
teraction framework for social dilemmas, and also arguably
stands for the most challenging benchmark for punishment
as well as cooperation to emerge (Archetti and Scheuring
2012). Third-party punishment, which can promote coopera-
tion by allowing third-party agents to punish defectors (Fehr
and Fischbacher 2004), brings the question of why punish-
ment can emerge when bearing the invariable cost.

Different from prior studies on PPG with third-party pun-
ishment, we consider the effects of environmental feedback
on third-party agents and that such effects jointly depend (i)
on the amount of cooperation in the environment, and (ii) on
the endogenous incentives for punishment in the environ-
ment. Intuitively, in a cooperative environment, third-party
agents are incentivized to punish non-cooperative behaviors
if they exist, as sustaining cooperation requires only few ef-
forts. On the other hand, the strength of such incentives gen-
erally varies in different environments; for example, experi-
mental works have shown that there are marked differences
in the willingness to engage in costly punishment across dif-
ficult cultures (Henrich et al. 2006; Herrmann, Thoni, and
Gachter 2008).

We analyze the effects of environmental feedback on pun-
ishment and on the interplay between punishment and coop-
eration, assuming that the system evolves according to the
replicator dynamics in evolutionary game theory. We pro-
vide an affirmative answer to our key motivating question —
environmental feedback, which is beyond the scope of pre-
vious mechanisms, provides a pathway to achieve the emer-
gence of punishment. Moreover, we show that under the sole
influence of environmental feedback, punishment and co-
operation generally co-emerge. In particular, it is possible
that a system will always eventually evolve into the state of
complete punishment (all third-party agents choosing pun-
ishment) and complete cooperation (all game players choos-
ing cooperation), regardless of its initial state (Theorem 1).
Complete punishment, which represents the most stringent
punishment system, however, is not a necessary condition
for complete cooperation (Theorem 2). Conversely, com-
plete cooperation will never occur in absence of punishment,
whereas cooperation will never go extinct as long as there
still exists punishment (Theorem 3). It is also interesting
to note that taking into account environmental feedback ex-
pands the suite of dynamical possibilities in the co-evolution
of punishment and cooperation. We showcase that it is pos-
sible for the phenomena of bistability and cyclic dynam-
ics exist and analyze their conditions (Theorems 5 and 6).
From the perspective of system design, this alerts the need
for careful design of multi-agent sanctioning systems as the
arising evolutionary dynamics can be somewhat complex.
Last but not least, we corroborate our theoretical findings
with numerical simulations on finite populations that evolve
according to the Fermi process.

Our key contributions are summarized as follows.
• We propose a novel evolutionary game theoretic frame-

work to model the effects of environmental feedback.
• We show that environmental feedback, by itself, can lead

to the emergence of punishment. This paves a new way
to understand the source of punishment.

• We analyze the co-evolution of punishment and cooper-
ation, deriving the conditions for their co-presence, co-
dominance and co-extinction along with the conditions
for bistability and persistent cycles.

In the following, we discuss related work in Section 2.
We present our evolutionary game theoretic model that takes
into account environmental feedback in Section 3. In Sec-
tion 4, we analyze the resulting evolutionary dynamics. We
conclude this paper and discuss directions for future work in
Section 5. The numerical simulations on finite populations
and detailed proofs of our theoretical claims are presented
in the supplementary1 due to the lack of space.

Related Work
Research on the emergence of punishment involves a signif-
icant literature (Fehr and Gächter 2002; Dreber et al. 2008;
Han 2016). A major approach is to leverage typical reci-
procity mechanisms (e.g., indirect reciprocity or reputation,
direct reciprocity, network reciprocity) (Raihani and Bshary
2015; Helbing et al. 2010; Campos et al. 2008), with few no-
table exceptions (Semmann, Krambeck, and Milinski 2003;
Han, Pereira, and Lenaerts 2017). Among these, prior works
typically assume that third-party punishment is invariably
costly and must co-exist with other mechanisms (Jordan,
McAuliffe, and Rand 2016; Mathew and Boyd 2011), such
as strong reciprocity (Fehr and Fischbacher 2004) and rep-
utation (Jordan et al. 2016). However, these works have
not considered nor analyzed the influence of environmen-
tal feedback. To our knowledge, our paper is the first work
that theoretically shows environmental feedback contributes
to the emergence of punishment.

On the other hand, the study of environmental feed-
back is not entirely new. In their pioneering work, Weitz et
al. (2016) propose a unified approach to analyzing feedback-
evolving games and show that environmental feedback
can cause an oscillatory tragedy of the commons. Tilman,
Plotkin and Akçay (2020) suggest that the joint dynamics
of strategies and the environment rely (i) on the incentives
for individuals to lead or follow behavioral changes, and
(ii) on the relative speed of environmental versus strategic
change. Levy and Griffiths (2021) propose a framework
where agents’ reward exogenously depend on the strategy
of others and the environment, enabling the emergence of
social norms. While environmental feedback has recently re-
ceived increasing interest, it has never been explored in the
co-presence with punishment.

Last but not least, it is important to note that punishment
has also been extensively studied in the literature of norma-
tive multi-agent systems (Lenaerts et al. 2015; Pereira et al.
2017; Bench-Capon and Modgil 2017; Santos et al. 2019;

1https://github.com/yt-songz/AAAI2023SI
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Pynadath and Marsella 2005; Koppol, Admoni, and Sim-
mons 2021; Mahmoud et al. 2012). These works typically
aim at using punishment to regulate individual and collec-
tive behaviors, formalizing different relevant aspects of these
mechanisms (e.g., norms and conventions) in a multi-agent
system. Our work complements these studies, addressing the
evolutionary puzzle of punishment and providing a new ex-
planation for the source of punishment.

An Evolutionary Game Theoretic Model
In this section, we recall public goods games and present
our evolutionary game theoretic model that characterizes en-
vironmental feedback in the context of third-party punish-
ment.

Public Goods Game
A public good is a common resource shared among in-
dividuals regardless of their contributions (Kollock 1998).
The management of these goods naturally results in a social
dilemma — whereas all individuals would be better off co-
operating (i.e. making joint contributions to a public pool),
each individual has an incentive to free-ride on the contri-
butions of others. Public Goods Games (PGG) is a typical
model for capturing this social dilemma.

In a standard PGG with G players, each agent has two
strategies: to cooperate (C) or to defect (D). Playing C results
in a contribution c to the public pool, while playing D means
a free rider and makes no contribution. After playing a PGG,
the total contributions in the public pool are multiplied by a
synergy factor r and are then equally distributed among the
G players. Let πC and πD denote the payoffs of cooperation
and defection, respectively. They are given by

πC = rc
nc

G
− c

πD = rc
nc

G

(1)

where nc is the number of cooperators. Evidently, defection
always yields a higher payoff for each individual. However,
the group’s total payoffs are maximized when every individ-
ual contributes to the public pool.

Population Setup and Punishment
In this paper, we consider two infinitely large, well-mixed,
anonymous agent populations: a game-playing population
and a third-party population. In the game-playing popula-
tion, for each time step, G agents are randomly chosen to
play a PGG. Note that agents generally do not meet with
the same opponents twice nor have prior knowledge (e.g.,
reputation) about other agents at a given time step. Hence,
this is PPG under one-shot setting (Archetti and Scheur-
ing 2012). In the third-party population, agents do not play
games against one another, nor directly participate in any
PGG in the game-playing population. Rather, for each time
step, G agents are randomly chosen from the third-party
population, and each of them oversees a player of the PGG
in the game-playing population.

Specifically, before the PGG is played in the game-
playing population, each chosen third-party agent decides to

punish (P) or not (N). After the PGG is played, the chosen
third-party agents will execute their strategies decided prior
to the game play. Put differently, for each time step, there are
two stages: third-party agents choose to punish or not at the
first stage, and agents in the game-playing population play
the PGG actually at the second stage.

Punishment is costly. If a third-party agent decides to pun-
ish, the punisher needs to pay a cost α if the PPG player
whom it oversees defects. Meanwhile, such punishment will
take an effect and cause a fine β to the PPG player only if
the PPG player defects.

Environmental Feedback
We now extend the model with environmental feedback.
Note that typically, evolutionary game theoretic analysis as-
sumes that the nature of the strategic interaction is fixed in
time, or that it depends on the state of an independent, ex-
ogenous environment. This assumption has been critiqued
that there often exists co-evolution of the environment and
individual strategic decisions in many real-world systems
(Sigdel, Anand, and Bauch 2019; Hilbe et al. 2018). The
concept of environmental feedback, which is proposed to ad-
dress this limitation, features bi-direction feedback — while
the strategies of individuals may alter the state of the envi-
ronment, the evolution of the environment may conversely
feedback to change the incentive structure of strategic deci-
sions (Tilman, Plotkin, and Akçay 2020; Weitz et al. 2016).

In the context of punishment, evidently, whether third-
party agents punish or not will affect the endogenous envi-
ronment of PPG, as defectors will be fined if the third-party
agents choose to punish. Taking into account environmental
feedback, we consider that the endogenous environment of
PPG — how cooperative the players are — will conversely
influence the payoffs of third-party agents. Specifically, we
define the environmental payoff of punishment (or not) to be
sPC (or sNC), given that the game player whom it oversees
cooperates. Likewise, we define the environmental payoff of
punishment (or not) to be sPD (or sND), given that the game
player whom it oversees defects. We summarize the payoffs
of game players and third-party agents in each case as fol-
lows:

• the game-player cooperates and the third-party agent
punishes: πC = rcnc

G − c, πP = sPC

• the game-player cooperates and the third-party agent not
punish: πC = rcnc

G − c, πN = sNC

• the game-player defects and the third-party agent pun-
ishes: πD = rcnc

G −β , πP = sPD −α

• the game-player defects and the third-party agent not
punishes: πD = rcnc

G , πN = sND

Compared with Equation 1, the payoff of cooperation re-
mains unchanged even if third-party agents choose punish-
ment. On the other hand, the payoff of defection will be re-
duced by the fine β if third-party agents choose punishment.

We remark that we only require the values of
sPC,sNC,sPD,sND to be real values; in other words, the third-
party agents can receive negative environmental payoffs. It
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is interesting to note that the difference in these values char-
acterizes the endogenous incentive of punishment in the en-
vironment. To see this, let us define

δC := sPC − sNC, δD := sPD − sND. (2)
The value of δC measures the difference in environmental
payoff between punishment and non-punishment, when the
game player cooperates; put simply, it is the gain of pun-
ishment given cooperation. Intuitively, a positive value of
δC suggests that punishment is encouraged and more incen-
tivized in a cooperative environment. On the contrary, a neg-
ative value of δC suggests that punishment is discouraged in
a cooperative environment. The same reasoning can be ap-
plied to δD which represents the gain of punishment given
defection.

Replicator Dynamics
In this paper, we assume that the game-playing population
and the third-party population evolve according to the repli-
cator dynamics. The replicator dynamics is a widely used
model in evolutionary game theory to express how the fre-
quencies of strategies in a population evolve over time (Hof-
bauer, Sigmund et al. 1998). It is based on the basic idea that
the proportion of agents of a given strategy increases when
the strategy achieves expected payoffs higher than the aver-
age payoff, and decreases when achieving expected payoffs
lower than the average payoff. Formally, the replicator dy-
namics is given by the differential equation

ρ̇i = ρi(E[πi]− ∑
i∈{C,D,P,N}

ρiE[πi]), i ∈ {C,D,P,N} (3)

where ρi is the proportion of agents using strategy i and E[πi]
is the expected payoff of strategy i. Note that we have ρC +
ρD = 1 and ρP +ρN = 1 given our population setup.

To calculate the expected payoff of cooperation, we ob-
serve that given the proportion of cooperators (denoted by
ρC), having m cooperators in a PPG follows a binomial dis-
tribution. Therefore, the expected payoff of cooperation is

E[πC] =
G−1

∑
m=0

(
G−1

m

)
ρ

m
C (1−ρC)

G−1−m(rc
m+1

G
− c)

=(G−1)ρC
rc
G

+(
rc
G

− c)

(4)

Likewise, the expected payoff of defection without punish-
ment is

E[πD]
′ =

G−1

∑
m=0

(
G−1

m

)
ρ

m
C (1−ρC)

G−1−mrc
m
G

=E[πC]− (
rc
G

− c)

(5)

and the expected payoff of defection with punishment is

E[πD] =E[πD]
′−βρP. (6)

Regarding the expected payoff of punishment or not, re-
call that the payoff of a third-party agent depends on its strat-
egy and on the strategy of the game player whom it oversees.
Thus, the expected payoffs are given by

E[πP] = ρCsPC +(1−ρC)sPD − (1−ρC)α,

E[πN ] = ρCsNC +(1−ρC)sND.
(7)

Overall, the system of differential equations that express
the evolutionary dynamics of the game-playing population
and the third-party population is

ρ̇C =ρC(1−ρC)(
rc
G

− c+βρP)

ρ̇P =ρP(1−ρP) [(sPC − sNC)ρC +(sPD − sND −α)(1−ρC)] .
(8)

Co-Evolution of Punishment and Cooperation
In this section, we present our study on the system evolu-
tion by analyzing the replicator dynamics presented in Equa-
tion (8). Throughout our analysis, we assume that r

G < 1
and rc

G − c + β > 0. The former is standard in theoretical
models for PPG (Archetti and Scheuring 2012). If r

G ≥ 1,
as shown in Equation (5), the expected payoff of coopera-
tion would be at least as high as that of defection, suggest-
ing that social dilemmas would no longer exist. Regarding
the latter, observe from Equation (6) that the difference in
the expected payoff between cooperation and defection is
E[πC]−E[πD] =

rc
G −c+βρP. Imagine that E[πC]−E[πD]≤

0 given ρP = 1. This means that even if all the third-party
agents punish, the expected payoff of defection would still
be higher than or equal to that of cooperation; in other
words, punishment has no effect on promoting cooperation.
Evidently, this assumption contradicts numerous empirical
findings. Hence, we assume that E[πC]−E[πD] > 0 given
ρP = 1, which leads to rc

G − c+β > 0.
To start with, we derive the equilibrium points (or states)

of the system based on the replicator dynamics (Equation
(8)). An equilibrium state should satisfy one of the five fol-
lowing cases:
• ρC = 0,ρP = 0, i.e. co-extinction of C and P,
• ρC = 0, ρP = 1, i.e. extinction of C but dominance of P,
• ρC = 1, ρP = 0, i.e. dominance of C but extinction of P,
• ρC = 1, ρP = 1, i.e. co-dominance of C and P,

• ρC = δD−α

δD−α−δC
, ρP = − 1

β
( rc

G − c), i.e. co-existence of C,
D, P, N,

where the last case exists if and only if δC ̸= δD −α and
r/G ≤ 1.

If a system starts at an equilibrium state, it will remain
there thereafter. Yet we are also interested in the system evo-
lution when it is off equilibrium. To see this, we analyze the
stability of these equilibrium points using Lyapunov’s indi-
rect method. We visualize a schematic representation of our
results in Figure 1. In the following subsections, we elabo-
rate on and discuss our key findings.

Co-Emergence of Punishment and Cooperation
We provide an affirmative answer to our key motivating
question “can environmental feedback, by itself, lead to the
emergence of punishment in absence of any other mech-
anism previously studied?” In the following theorem, we
show that even the state of complete punishment and com-
plete cooperation can be achieved.
Theorem 1 The equilibrium state ρP = 1,ρC = 1 is the
unique asymptotically stable state if δC > 0, δD > α > 0.
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Figure 1: A schematic representation of the co-evolution of
punishment and cooperation with environmental feedback.

This theorem makes it clear that given positive values of
δC and δD −α , the system will always evolve into the state
in which all the third-party agents implement punishment
and all the game players cooperate, regardless of initial con-
ditions. Note that this condition makes no assumption that
punishment should be rewarding (the environmental payoffs
of punishment or not can be negative). Rather, it requires (i)
that the environmental payoff of punishment is always bet-
ter than that of non-punishment (δC,δD > 0), and (ii) that
if game players defect, the environmental payoff of punish-
ment is sufficiently better than that of non-punishment so
that the gain of punishment can offset the cost (δD > α).

The rationale behind this theorem can be explained as fol-
lows. As punishment is always more incentivized in the en-
vironment (δC,δD > 0) and its gain can even offset its cost
(δD > α), intuitively, punishment will dominate the third-
party population. The increase in the amount of punish-
ment will, in turn, significantly decrease the payoff of de-
fection; consequently, cooperation will prevail and dominate
the game-playing population.

Intuitively, the result of Theorem 1 implies the most strin-
gent punishment system — if a defection occurs, the defec-
tor would be punished with absolute certainty (since all the
third-party agents are punishers). It is then natural to ask: to
achieve complete cooperation within the game-playing pop-
ulation, is it necessary to have punishment imposed with ab-
solute certainty? We show in the following theorem that this
is indeed unnecessary.

Theorem 2 There only exists a continuum of stable equilib-
rium state ρC = 1, ρP = x with x ∈ (− 1

β
( rc

G −c),1] if δC = 0,
δD > α > 0.

This theorem states that under the condition δC = 0,δD >
α > 0, the system will eventually evolve into a state in
which all the agents in the game-playing population coop-

Figure 2: Phase portrait with different values of δD − α ,
given δC = 0.

erate whereas a proportion of third-party agents actually do
not punish. Hence, complete punishment is not a necessary
condition for complete cooperation.

Compared to the condition of Theorem 1, Theorem 2 dif-
fers in a zero value of δC, i.e. third-party agents receive ex-
actly the same payoff by punishment and by non-punishment
if game players cooperate. Because of this difference, third-
party agents have no incentive to punish in a cooperative
environment, and punishment can flourish only if defection
exists. As a result, the amount of punishment will remain
unchanged once complete cooperation is reached.

In Figure 2, we visualize the phase portrait with different
values of δD −α given δC = 0. We gradually increase the
value of δD −α from 0.02 to 5. The trajectories that start
with the same initial state ρC = 0.9,ρP = 0.2 are marked
in red. Comparing Figure 2 (a-d), although converging to a
similar state eventually, these trajectories are very distinct.
A high value of δD −α , which represents a strong incentive
of punishment in a non-cooperative environment, leads to
an abrupt change in the amount of punishment. On the other
hand, with a small value of δD −α , the amount of punish-
ment slowly evolves most of the time.

Putting Theorems 1 and 2 together, we observe the fol-
lowing corollary about complete cooperation.

Corollary 1 Complete cooperation ρC = 1 will be always
achieved regardless of initial system states if δC ≥ 0,δD >
α > 0.

The above results have shown that complete cooperation
is bound to occur under certain conditions of environmental
feedback. Theorem 2 even suggests that a significant propor-
tion of punishers suffices to achieve complete cooperation.
Naturally, one may ask: taking one step further, can com-
plete cooperation be achieved in absence of punishment? In
the following theorem, We show that this is impossible.

Theorem 3 The equilibrium states ρC = 1,ρP = 0, and
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Figure 3: Region of attraction to the equilibrium states (ρC = 0,ρP = 0) and (ρC = 1,ρP = 1) given different values of δC > 0
and δD −α < 0. In (a)-(c), δC = 0.2, and in (d)-(f), δD −α =−0.2.

Figure 4: Illustration of cyclic dynamics. Panel (a) depicts a phase portrait given δC = −0.2 and δD −α = 0.2. Panels (b) and
(c) depict the dynamics of strategy frequency and payoff, respectively, corresponding to the cycle that marked in red in panel
(a).

ρC = 0,ρP = 1 are always unstable.
We emphasize that the instability of these two equilib-

rium points stands, no matter what environmental feedback
and initial system states are. Therefore, this theorem indi-
cates that complete cooperation will never occur if there is
no punishment in the system; on the other hand, cooperation
will never become extinct as long as there still exists punish-
ment in the system. Put differently, through environmental
feedback, the emergence of cooperation is closely tied with
the emergence of punishment.

We evidence more on this close connection through envi-
ronmental feedback in the following theorem.
Theorem 4 It is possible for a system to rest in the co-
presence of punishment and cooperation, ρC > 0,ρP > 0, if
δC ≥ 0 (except δC = 0,δD = α) or δD > α > 0. Conversely,
the equilibrium state ρC = 0,ρP = 0 is the unique asymptot-
ically stable state if δC < 0, δD < α .

We remark that the condition for the co-presence of pun-
ishment and cooperation is not stringent, as it only requires
either a positive gain (δC) of punishment in a cooperative
environment, or a sufficiently high gain (δD) of punishment
in a non-cooperative environment which can offset the cost.

Richness in Evolutionary Dynamics: Bistability
and Persistent Cycles
We have shown that environmental feedback can cause the
co-emergence of punishment and cooperation. In this sub-
section, we show that environmental feedback also expands

the suite of dynamical possibilities. In particular, we observe
that bistability and persistent cycles are able to arise from
the system evolution, as a result of environmental feedback.
These phenomena are non-trivial, especially when taking
into account that our mechanism of environmental feedback
is not complex.

In the following theorem, we derive the conditions that
permit bistability.

Theorem 5 There co-exist two stable equilibrium states
ρC = 0,ρP = 0 and ρC = 1,ρP = 1, along with a saddle point
ρC = δD−α

δD−α−δC
, ρP =− 1

β
( rc

G − c) if δC > 0,δD < α,α > 0.

Here the saddle point is an interior fixed point represent-
ing that cooperation and defection co-exist in the game-
playing population, while punishment and non-punishment
also co-exist in the third-party population. This theorem
shows that given δC > 0 and δD < α , the system will rest in
either the state of complete cooperation and complete pun-
ishment or the state of complete defection and complete non-
punishment. Yet which particular state that a system will
eventually evolve into generally depends on the initial state.

We visualize the bistability phenomenon in Figure 3. In
particular, we color the region of attraction to the state
ρC = 0,ρP = 0 in red, and the counterpart to the state ρC =
1,ρP = 1 in blue. It is shown that as the values of δC and
δD increase, a larger range of initial system states will even-
tually converge to the state of co-dominance of punishment
and cooperation. This can be expected, since the increase
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in δC and δD indicates that agents are more incentivized to
punish.

Next, we turn to cyclic dynamics. The conditions that per-
mit persistent cycles are presented in the following theorem.

Theorem 6 All the boundary equilibrium states are unsta-
ble, the interior equilibrium states is neutrally stable, and
cyclic dynamics exist if δC < 0,δD > α > 0.

We visualize such cyclic dynamics in Figure 4. As shown
in the phase portrait (Figure 4 (a)), there exists numer-
ous clockwise cycles surrounding the neutrally stable point
ρC = δD−α

δD−α−δC
,ρP =− 1

β
( rc

G −c). Consider the cycle marked
in red. What happens in the system along this cycle is illus-
trated in Figure 4 (b). Clearly, the proportion of cooperators
and punishers persistently oscillate. Moreover, the trends of
change in the proportion of punishers (ρP) as well as in
the proportion of cooperators (ρC) are generally consistent,
though the change in ρC slightly lags behind.

Taking the system evolution shown in Figure 4 as an ex-
ample, we explain the cyclic dynamics as follows. Initially,
since there is a significant amount of punishment in the sys-
tem, which reduces the payoff of defection, the proportion
of cooperators increases. However, given a negative gain
of punishment in a cooperative environment (δC < 0), pun-
ishers receive less environmental payoff and hence the pro-
portion of punishers decreases. This further leads to an in-
crease in the proportion of defectors. As the gain of punish-
ment in a non-cooperative environment is sufficiently high
(δD > α > 0), punishment revives, which starts the next cy-
cle.

Environmental Feedback of No Effect
In previous subsections, we generally considered that δC ̸=
0,δD ̸= α such that environmental feedback favors either
punishment or non-punishment. For comparison, in this sub-
section, we analyze the case that δC = 0,δD = α , suggesting
that environmental feedback takes no effect. We establish
the following result.

Theorem 7 Given that δC = 0,δD −α = 0. Over time, ρP
remains unchanged, and ρC converges to 1 if ρP > −( rc

G −
c)/β but to 0 if ρP <−( rc

G − c)/β .

Therefore, under this scenario, there will be no change in the
proportion of punishers, however, the initial proportion of
punishers determines whether complete cooperation or com-
plete defection occurs.

Conclusions
In this paper, we propose a novel evolutionary game the-
oretic framework to address the puzzle of the evolution of
punishment. Different from the traditional setting of one-
shot PGG, we consider two populations. Agents in a game-
playing population choose whether to cooperate with their
opponents, while agents in a third-party population choose
whether to punish the non-cooperators among the game
players. We consider that the decision of punishment or not
jointly depends on (i) the endogenous incentives for punish-
ment in the environment (characterized by δC and δD), and

(ii) on the amount of cooperation in the endogenous envi-
ronment, whereby the two populations can influence each
other.

We find that in absence of typical mechanisms previously
studied, environmental feedback can, by itself, establish
punishment and cooperation. Moreover, we find that with
environmental feedback, complete punishment is not neces-
sary to complete cooperation. On the other hand, complete
cooperation will never go extinct if there still exists punish-
ment in the system. We derive and analyze the conditions
under which punishment and cooperation will co-present,
co-dominate, or co-extinct. We notice that these conditions
are closely related to the values of δC and δD −α , where
δC and δD measure the gain of punishment in a cooperative
and non-cooperative environment, respectively, and α is the
cost of punishment. Interestingly, given certain conditions
of these values, the system will eventually evolve into the
states of bistability, oscillation, or monomorphic cooperat-
ing/defecting. Besides, through agent-based simulations, we
find that the co-dominance, bi-stability, oscillation of pun-
ishment and cooperation can be reproduced in small, finite
populations that evolve according to the Fermi process. The
simulation results and details are summarized in our supple-
mentary (the URL is provided in footnote 1).

To our knowledge, our paper is the first theoretical work
that studies the effects of environmental feedback on pun-
ishment. Our most important takeaway message is that envi-
ronmental feedback can promote the emergence of punish-
ment. This provides a new pathway to address the evolution-
ary puzzle of punishment. From the perspective of imple-
menting punishment in multi-agent systems, our results sug-
gest some new insights. Considering the possibility that the
environment can affect individual decision making sounds
intuitive though, the effects of environmental feedback on
punishment are non-trivial. Our analysis reveals that there
is great richness in the resulting evolutionary dynamics, and
particularly that persistent oscillation may potentially arise.
This discovery of somewhat complex phenomena alerts the
need for careful implementation of punishment, especially
when taking into account that our environmental feedback
mechanism is far from complex.

As future work, there are several interesting and fertile
avenues. In this paper, we focus on altruistic punishment;
however, previous studies have shown that the effectiveness
of altruistic punishment is not only challenged by second-
order free-riders (those who cooperate but do not punish)
but also by antisocial punishment. The existence of anti-
social punishment can destabilize altruistic punishment and
even preclude the co-emergence of cooperation and punish-
ment (Rand, Ohtsuki, and Nowak 2009; Rand et al. 2010).
Therefore, allowing the possibility of antisocial punishment,
whether and how environmental feedback still promotes the
emergence of punishment requires further investigations.
Moreover, as our framework can accommodate other social
dilemmas, it would be interesting to see if our theoretical
findings on public goods games can be carried over to those
scenarios. Last but not least, testing our findings in human
behavioural experiments would also be relevant and interest-
ing.
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