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Abstract

We propose a novel complete algorithm for multi-agent
pathfinding (MAPF) called lazy constraints addition search
for MAPF (LaCAM). MAPF is a problem of finding collision-
free paths for multiple agents on graphs and is the foundation
of multi-robot coordination. LaCAM uses a two-level search
to find solutions quickly, even with hundreds of agents or
more. At the low-level, it searches constraints about agents’
locations. At the high-level, it searches a sequence of all
agents’ locations, following the constraints specified by the
low-level. Our exhaustive experiments reveal that LaCAM
is comparable to or outperforms state-of-the-art sub-optimal
MAPF algorithms in a variety of scenarios, regarding success
rate, planning time, and solution quality of sum-of-costs.

1 Introduction
The multi-agent pathfinding (MAPF) problem (Stern et al.
2019) aims to assign collision-free paths on graphs to each
agent, which is the foundation of multi-robot coordination.
In MAPF applications such as fleet operations in automated
warehouses (Wurman, D’Andrea, and Mountz 2008), it is
necessary to solve MAPF with thousands of agents in a real-
time manner.

In general, the design of MAPF algorithms needs to con-
sider a trade-off between quality and speed. From the qual-
ity side, solving MAPF optimally is NP-hard in various cri-
teria (Yu and LaValle 2013). Although many effective op-
timal algorithms have been developed, it is still challeng-
ing to handle a few hundred of agents in real-time (i.e.,
short timeframes in this context) even with state-of-the-art
methods (Li et al. 2021b; Lam et al. 2022). From the speed
side, sub-optimal algorithms can quickly solve large MAPF
instances while compromising solution quality. However,
in real-time applications (i.e., scenarios with deadlines for
planning time in this context) or in instances with mas-
sive agents such that optimal algorithms never handle, there
is no choice but to use sub-optimal algorithms. In addi-
tion, recently proposed frameworks can effectively refine the
quality of known MAPF solutions (Okumura, Tamura, and
Défago 2021; Li et al. 2021a). Consequently, the develop-
ment of quick sub-optimal algorithms has practical value.
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To this end, this paper proposes a novel algorithm called
lazy constraints addition search for MAPF (LaCAM). From
the theoretical side, LaCAM is complete. It returns a so-
lution for solvable instances, otherwise reports the non-
existence. From the empirical side, we demonstrate that La-
CAM can solve a variety of MAPF instances in a very short
time, including instances with large maps (e.g., 1491× 656
four-connected grid), instances with massive agents (e.g.,
10, 000), or dense situations. For instance, LaCAM solved
all instances with 400 agents on a 32×32 grid with 20% ob-
stacles from the MAPF benchmark (Stern et al. 2019), with
a median runtime of 1 s. In contrast, baseline sub-optimal
MAPF algorithms (Silver 2005; Standley 2010; Okumura
et al. 2022; Li, Ruml, and Koenig 2021; Li et al. 2022)
mostly failed to solve the instances with the timeout of 30 s.

LaCAM has an easily extensible structure, which com-
prises a two-level search. At the high-level, it searches a se-
quence of configurations, where a configuration is a tuple
of locations for all agents. At the low-level, it searches con-
straints that specify which agents go where in the next con-
figuration. Successors at the high-level (i.e., configurations)
are generated in a lazy manner while following constraints
from the low-level, leading to a dramatic reduction of the
search effort. Similar to the popular CBS algorithm (Sharon
et al. 2015), due to its simplicity, we consider that LaCAM
can apply to many domains not limited to MAPF such as
multi-robot motion planning (Solis et al. 2021).

Throughout the paper, we focus on sub-optimal LaCAM.
The discussion of optimal LaCAM appears at the end, to-
gether with a qualitative discussion of why LaCAM is quick.
In what follows, we present problem formulation, the algo-
rithm, evaluation, and related work in order. The supplemen-
tary material is available on https://kei18.github.io/lacam.

2 Preliminaries
Problem Definition An MAPF instance is defined by a
graph G = (V,E), a set of agents A = {1, . . . , n}, a tuple of
distinct starts S = (s1, . . . , sn) and goals G = (g1, . . . , gn),
where si, gi ∈ V .

Given an MAPF instance, let πi[t] ∈ V denote the lo-
cation of an agent i at discrete time t ∈ N≥0. At each
timestep t, i can move to an adjacent vertex, or can stay at its
current vertex, i.e., πi[t+1] ∈ neigh(πi[t])∪{πi[t]}, where
neigh(v) is the set of vertices adjacent to v ∈ V . Agents
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Figure 1: Running example of LaCAM. Orange arrows represent the search progress order. Selected and searched low-level
nodes are filled with black and gray, respectively. Constraints are shown by blue-colored arrows.

must avoid two types of conflicts: 1) vertex conflict: πi[t] =
πj [t], and, 2) swap conflict: πi[t] = πj [t+ 1] ∧ πi[t+ 1] =
πj [t]. A set of paths is conflict-free when no conflicts exist.

A solution to MAPF is a set of conflict-free paths
{π1, . . . , πn} such that all agents reach their goals at a cer-
tain timestep T ∈ N≥0. More precisely, the problem assigns
a path πi = (πi[0], πi[1], . . . , πi[T ]) to each agent such that
πi[0] = si, πi[T ] = gi, and is conflict-free.

This paper considers a sum-of-costs (SOC) metric to rate
solution quality:

∑
i∈A Ti, where Ti ≤ T is the earliest

timestep such that πi[Ti] = πi[Ti + 1] = . . . = πi[T ] = gi.

Notations We use S[k] to denote the k-th element of the
sequence S, where the index starts at one. ∆ is the maxi-
mum degree of the graph. A configuration refers to a tuple
of locations for all agents, e.g., the start and goal configura-
tions are S and G, respectively. Two configurations X and Y
are connected when {(X[1], Y [1]), . . . , (X[n], Y [n])} con-
stitutes a set of conflict-free paths. For convenience, we use
⊥ as an “undefined” or “not found” sign.

3 Algorithm
This section first presents the concept of LaCAM, followed
by the pseudocode and implementation details.

3.1 Concept
LaCAM is a two-level search. At the high-level, it explores
a sequence of configurations; each search node corresponds
to one configuration. For each high-level node, it also per-
forms a low-level search that creates constraints. A con-
straint specifies which agent is where in the next configu-
ration. The low-level search proceeds lazily, creating a min-
imal successor each time the corresponding high-level node
is invoked. Figure 1 presents an illustration of LaCAM. The
example MAPF instance is depicted on the left upper side.
The following part explains the figure step by step.

High-Level Search As in general search schemes, La-
CAM progresses by updating an Open list that stores the

high-level nodes. Open is implemented by data structures
of stack, queue, or priority queue. We use the stack through-
out the paper. Thus, LaCAM is explained as a depth-first
search style. The first row of Fig. 1 shows Open . For each
search iteration, LaCAM selects one node from Open . Dif-
ferent from general search schemes, LaCAM does not im-
mediately discard the selected node, as explained after three
paragraphs.

Low-Level Search Each high-level node comprises a con-
figuration and a constraint tree. The constraint tree gradu-
ally grows each time invoking the high-level node; this is the
low-level search of LaCAM. Throughout the paper, we use
a breadth-first search for the low-level. The middle row of
Fig. 1 visualizes this step. Each node of the constraint tree
has a constraint, except for the root node. For instance, in
the first column, the root node has two successors: ‘1a’ and
‘1b.’ This means that agent-1 must go to vertex-a or vertex-b
in the next configuration. Successors of the low-level search
are created by two steps: 1) Select an agent i. Let v be the
vertex of i in the configuration. 2) Create successors that
specifies i is on u ∈ neigh(v) or v. The agent is selected
so that each path from each low-level node to the root does
not contain duplicated agents. Therefore, those paths specify
constraints for several agents. In addition, no successors are
created when the depth of the node is beyond |A| because
constraints have been assigned for all agents.

Configuration Generation Once both the high- and low-
level nodes are specified, a new configuration is generated.
The new one must satisfy the constraints of the low-level
node, which are specified by a path to the root node. Exclud-
ing that, any connected configuration from the original con-
figuration can be generated. We complement how to generate
new configurations following constraints later in Sec. 3.3,
but for now, regard this as a black-box function. The gener-
ation step is visualized in the third row of Fig. 1. According
to the new configuration, a new high-level node is created.
For instance, at the end of the first column of Fig. 1, a new
configuration (b, c) is generated and inserted to Open .
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Discarding High-Level Nodes When finished searching
all low-level nodes, the corresponding high-level node has
been generating all configurations connected to its configu-
ration. Therefore, this high-level node is discarded.

Example LaCAM continues the above search operations
until finding the goal configuration G. Once G is found, it is
trivial to obtain a solution by backtracking high-level nodes.
We next describe Fig. 1 in detail step by step of columns.
1. Initially, Open contains only a high-level node for the

start configuration S . At the low-level, two successors
are created. In this step, any agent can be selected; we
choose agent-1. Next, LaCAM generates a configuration
connected to the original one (a, c). Since the target low-
level node is the root, there is no constraint. Assume that
a new configuration (b, c) is generated. Then, the corre-
sponding new high-level node is inserted into Open .

2. The high-level node generated in the previous iteration is
selected. At the low-level, we again choose agent-1. This
time, LaCAM generates four successors: ‘1a’, ‘1b,’ ‘1c,’
and ‘1d.’ We add them to the low-level tree in order of
‘1b,’ ‘1c,’ ‘1d,’ and ‘1a’ to make the example interesting.
Assume that the same configuration (b, c) is generated.
Then, a high-level node is not created since the generated
configuration has already appeared in the search.

3. The same high-level node is selected as the previous it-
eration. The low-level search generates two nodes for
agent-2: ‘2b’ and ‘2c.’ This time, the configuration gen-
eration must follow the constraint of ‘1b.’ Consequently,
the same configuration (b, c) is generated and no new
high-level node is created.

4. According to the selected low-level node, it is impossible
to generate a connected configuration due to conflicts;
this iteration skips the creation of a high-level node.

5. The constraint makes agent-1 move to vertex-d. Then, a
new configuration (d, b) is generated. The corresponding
high-level node is created and inserted into Open .

6. The high-level node for (d, b) is selected, and then, a new
configuration (b, a) is generated. The search can find the
goal configuration in the next iteration.

3.2 Pseudocode
Algorithm 1 shows an example implementation of LaCAM.
In the pseudocode, N and C correspond to high- and low-
level nodes, respectively. The low-level search uses queue
(tree) because it is breadth-first. Several details are below.

Configuration Generation This is performed by a black-
box function get new config [Line 14]. The function returns
a configuration connected to a configuration of a high-level
node, following constraints specified by a low-level node. It
returns ⊥ when failing to generate such configurations (e.g.,
the fourth column of Fig. 1). Note that, at the bottom of the
low-level tree, all agents have constraints. Therefore, exactly
one configuration is specified without freedom.

High-Level Node Management To manage already
known configurations, Alg. 1 uses an Explored table that
takes a configuration as a key and stores a high-level node.

Algorithm 1: LaCAM

input: MAPF instance (S: starts, G: goals)
output: solution or NO SOLUTION
preface: Cinit := ⟨ parent : ⊥,who : ⊥,where : ⊥ ⟩

1: initialize Open , Explored ▷ Open: stack
2: Ninit ← ⟨config : S, tree : J Cinit K, ▷ tree : queue

order : get init order(), parent : ⊥⟩
3: Open.push(Ninit); Explored [S] = Ninit
4: while Open ̸= ∅ do
5: N ← Open.top()
6: if N .config = G then return backtrack(N )
7: if N .tree = ∅ then Open.pop(); continue
8: C ← N .tree.pop()
9: if depth(C) ≤ |A| then

10: i← N .order [depth(C)]; v ← N .config [i]
11: for u ∈ neigh(v) ∪ {v} do
12: Cnew ← ⟨ parent : C,who : i,where : u ⟩
13: N .tree.push(Cnew)
14: Qnew ← get new config(N , C)
15: if Qnew = ⊥ then continue
16: if Explored [Qnew] ̸= ⊥ then continue
17: Nnew ← ⟨config : Qnew, tree : J Cinit K,

order : get order(Qnew,N ), parent : N⟩
18: Open.push(Nnew); Explored [Qnew] = Nnew
19: return NO SOLUTION

Low-Level Agent Selection To generate low-level search
trees, a high-level node includes order , an enumeration of
all agents sorted by specific criteria, specified by two func-
tions get init order [Line 2] and get order [Line 17]. The
agent is selected following order and depth of the low-level
search tree (starting at one; obtained by a function depth)
[Line 10]. Doing so ensures that each path of the constraint
tree has no duplicate agents.

Theorem 1 (completeness). Algorithm 1 returns a solu-
tion for solvable MAPF instances; otherwise, it reports
NO SOLUTION.

Proof. A search space is finite. For the high-level, the num-
ber of configurations is O

(
|V ||A|). For the low-level, the

number of search iterations is upper bounded by 1 + ∆ +
∆2+. . .+∆|A| = O

(
∆|A|+1

)
. When the low-level search is

finished, the corresponding high-level node has been gener-
ating all configurations connected to its configuration. Con-
sequently, all reachable configurations from the start con-
figuration, defined by transitivity over connections of two
configurations, are examined, deriving the theorem.

3.3 Implementation Details
Configuration Generation The heart of LaCAM is how
to generate configurations following constraints [Line 14].
Ideally, this sub-procedure should be sufficiently quick and
generate a promising configuration to reach the goal con-
figuration. This can be realized by adapting existing MAPF
algorithms that can compute a partial solution, i.e., a set
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Time(ms) SOC Time(ms) SOC Time(ms) SOC Time(ms) SOC Time(ms) SOC Time(ms) SOC Solved
LaCAM(med) 0 19 17 47 173 190 0 66 34 1752 0 168 6/6LaCAM(worst) 0 41 31 70 208 254 0 68 124 2593 3 281
PP N/A N/A 0 32 N/A N/A N/A N/A N/A N/A N/A N/A 1/6
OD 0 31 0 47 30 191 0 22 5882 2269 27 129 6/6
PIBT N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 0/6
PIBT+ 0 55 0 54 0 227 0 52 N/A N/A 0 130 5/6
EECBS 1 16 1 32 N/A N/A 0 20 N/A N/A N/A N/A 3/6
LNS2 N/A N/A 0 32 N/A N/A 0 20 N/A N/A 160 80 3/6

A∗(SOC-optimal) 0 16 16 32 24 53 1 20 17752 121 391138 80 6/6

Table 1: Results of the small complicated instances.

of paths until a certain timestep. Regarding the target con-
figuration as a start configuration and producing a partial
solution by these algorithms, we can extract a configura-
tion at timestep one in the partial solution. For instance,
a naive approach is to adapt prioritized planning with a
limited planning horizon, such as windowed HCA∗ (Silver
2005) with single-step window size. A rolling horizon ap-
proach for lifelong MAPF (Li et al. 2021c) is also avail-
able to generate configurations. An aggressive approach is to
adapt PIBT (Okumura et al. 2022), a scalable MAPF algo-
rithm that repeats planning for one-timestep; we used PIBT
in the experiments. Those algorithms, originally developed
to solve MAPF, are available to create promising successors
in the high-level search of LaCAM.

Order of Agents In our implementation, the agent order
of the initial high-level node was in descending order of
the distance between the start and goal [Line 2], influenced
by commonly used heuristics of prioritized planning (Van
Den Berg and Overmars 2005). In other high-level nodes
[Line 17], we prioritized agents who are not on their goal,
aiming to create constraints for those agents earlier in the
low-level search. A tiebreak used the last arrival timestep of
agents in the high-level search so that agents who have been
apart from goals for a long time were prioritized, akin to
PIBT (Okumura et al. 2022).

Order of Low-Level Nodes As seen in Fig. 1, the order of
inserting low-level nodes affects search progress. We provi-
sionally made the order random. This part requires further
investigation in the future.

Reinsert High-Level Node Algorithm 1 takes a naive
depth-first search style. Instead, when finding an already
known configuration, we observed that reinserting the cor-
responding high-level node to Open [Line 16] can improve
solution quality. The reason is that repeatedly appearing con-
figurations in the search can be seen as a bottleneck; it makes
sense to advance the low-level search of the high-level node,

which is performed by the reinsert operation. Note that La-
CAM does not lose completeness with this modification.

4 Evaluation
This section evaluates LaCAM. Specifically, we show five
empirical results: 1) evaluation with small complicated
MAPF instances, 2) evaluation with the MAPF benchmark,
3) showing the current limitation of LaCAM using an adver-
sarial instance, 4) scalability test with up to 10,000 agents,
and 5) investigating other implementation designs.

4.1 Experimental Setup
Baselines We carefully selected the following six sub-
optimal MAPF algorithms as baselines.
• Prioritized Planning (PP) (Erdmann and Lozano-Perez

1987; Silver 2005) as a basic approach for MAPF. PP
used distance heuristics (Van Den Berg and Overmars
2005) for the planning order and A∗ (Hart, Nilsson, and
Raphael 1968) for single-agent pathfinding.

• A∗ with operator decomposition (OD) (Standley 2010)
as an adaptation of the general search scheme to MAPF.
We used a greedy search to obtain solutions as much as
possible (i.e., neglecting g-value of A∗). The heuristic
(i.e., h-value) was the sum of distance towards goals.

• PIBT (Okumura et al. 2022), which repeats one-timestep
planning to solve MAPF. We tested a vanilla PIBT be-
cause the LaCAM implementation used PIBT as a sub-
procedure (Sec. 3.3). To detect planning failure, we re-
garded that PIBT failed to solve an instance when it
reached pre-defined sufficiently large timesteps.

• PIBT+ (Okumura et al. 2022) as a state-of-the-art scal-
able MAPF solver, which uses PIBT until a certain
timestep. The rest of planning is performed by another
MAPF algorithm. The complement phase used a rule-
based solver, Push and Swap (Luna and Bekris 2011).

• EECBS (Li, Ruml, and Koenig 2021) as a state-of-the-
art search-based solver that bases on a celebrated MAPF
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Figure 2: Results of the MAPF benchmark. The number of vertices for each grid is shown with parentheses. ‘cost’ represents
SOC divided by the total distance of start-goal pairs,

∑
i∈A dist (si, gi), where dist (u, v) is the shortest path length from u ∈ V

to v ∈ V on the graph. This score works as the upper bound of sub-optimality, where the minimum is one. For ‘runtime’ and
‘cost,’ we show median scores of solved instances within each solver. We further show minimum and maximum scores using
semi-transparent regions. The success rate of LaCAM was based on the number of successful trials over total trials.

algorithm, CBS (Sharon et al. 2015). The sub-optimality
was set to five to find solutions as much as possible. In
Sec. 4.5, it was set to the default value (1.2) of the au-
thors’ implementation due to the better performance.

• MAPF-LNS2 (LNS2) (Li et al. 2022) as another excel-
lent MAPF solver based on large neighborhood search.

It is worth mentioning that PP, PIBT(+), EECBS, and
LNS2 are incomplete; they cannot detect unsolvable in-
stances, unlike LaCAM. For PIBT(+), EECBS, and LNS2,
we used the implementations coded by their respective au-

thors.1 For PP, we used an implementation included in (Oku-
mura et al. 2022). OD was own-coded in C++.

Evaluation Environment LaCAM was coded in C++,
available in the online supplementary material. The exper-
iments were run on a desktop PC with Intel Core i9-7960X
2.8GHz CPU and 64GB RAM. We performed a maxi-
mum of 32 different instances run in parallel using multi-
threading.

1The codes are available on https://github.com/{Kei18/pibt2,
Jiaoyang-Li/EECBS,Jiaoyang-Li/MAPF-LNS2}.
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4.2 Small Complicated Instances
First, we tested LaCAM with instances used in (Luna and
Bekris 2011), shown in Table 1. The runtime limit was 10 s.
Since our LaCAM implementation used non-determinism
(see Sec. 3.3), it was run five times for the same instance
while changing random seeds.

Table 1 summarizes the results. As reference records, we
also show SOC-optimal solutions obtained by a vanilla A∗,
ignoring the runtime limit. Although most baseline methods
failed several instances, LaCAM solved all the instances re-
gardless of random seeds, within reasonable timeframes. Re-
garding solution quality (i.e., SOC), LaCAM compromises
the quality compared to PP, EECBS, and LNS2. This is due
to the nature of LaCAM, which progresses the search with a
short planning horizon.

4.3 MAPF Benchmark
Next, we tested LaCAM using the MAPF benchmark (Stern
et al. 2019), which includes a set of four-connected grids and
start–goal pairs for agents. We selected twelve grids with
different portfolios (e.g., size, sparseness, and complexity).
For each grid, 25 “random scenarios” were used while in-
creasing the number of agents by 50 up to the maximum.
Therefore, identical instances were tried for the solvers in all
settings. The runtime limit was set to 30 s following (Stern
et al. 2019). LaCAM was run five times for each setting. For
reference, we report that A∗ used in Table 1 failed to solve
an instance with ten agents in random-32-32-20.

Figure 2 summarizes the results. In most scenarios, La-
CAM outperforms PP, OD, EECBS, and LNS2 in both
success rate and runtime, while compromising the solu-
tion quality. The runtime of LaCAM is comparable with
PIBT(+), furthermore, LaCAM outperforms a vanilla PIBT
in the success rate. The most competitive results with La-
CAM were scored by PIBT+. However, overall, the SOC
scores of LaCAM are better than those of PIBT+, especially
in dense situations. Furthermore, LaCAM solved challeng-
ing scenarios, such as random-32-32-20 with 400 agents,
where the baseline methods almost failed to solve. In sum-
mary, LaCAM can solve many instances within short time-
frames, with acceptable solution quality. Meanwhile, we
observed that LaCAM scored poor performance in several
grids, such as random-64-64-20 and warehouse-20-40-10-
2-1. We investigate this reason in the next.

4.4 Adversarial Instance
In the previous experiment, LaCAM quickly solved vari-
ous scenarios but scored poor performance in several grids.
Specifically, LaCAM solved all instances of warehouse-20-
40-10-2-2 while it failed frequently in warehouse-20-40-10-
2-1. The two maps differ in the width of corridors: the for-
mer is two while the latter is one. Therefore, we considered
the existence of narrow corridors such that two agents can-
not pass through could be a bottleneck of LaCAM.

For investigation, we prepared an adversarial instance for
LaCAM (see Table 2), where two pairwise agents need to
swap their locations in narrow corridors. We counted the
number of search iterations of the high-level search while

1
2

3
4

5
6

|A| search iteration

2 128
4 23,907
6 287,440

Table 2: LaCAM performance in an adversarial instance.
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Figure 3: Results with massive agents. The used map was
warehouse-20-40-10-2-2.

changing the number of agents (two: only agents-{1, 2} ap-
pear, four, and six). LaCAM solved all instances, however,
the search effort dramatically increases with more agents.
This is because, with more agents, the high-level search can
contain a huge number of slightly different configurations.
Those configurations differ only one or two agents differ in
their locations and disturb the progression of the search.

From this observation, we consider the poor performance
in several grids of Fig. 2 as follows. The LaCAM imple-
mentation used a depth-first search style, therefore, once a
configuration similar to Table 2 appears during the search,
resolving this configuration towards the goal configuration
requires significant search effort. Consequently, LaCAM
reaches a timeout. Overcoming this limitation is one promis-
ing future direction. One resolution might be developing a
better configuration generator other than PIBT.

4.5 Scalability Test
We evaluated the scalability of the number of agents, using
instances with up to 10, 000 agents in warehouse-20-40-10-
2-2. The runtime limit was set to 1000 s. OD was excluded
since it run out of memory. Figure 3 summarizes the result.
Only LaCAM solved all instances. Furthermore, the runtime
was in at most 30 s even with 10,000 agents, demonstrating
the excellent scalability of LaCAM.2

4.6 Design Choice of LaCAM
Finally, we investigated the design choice of LaCAM imple-
mentation. Specifically, we assessed two variants:

• DFS does not use the reinsert operation at the high-level.
• GREEDY uses another configuration generator instead

of PIBT, such that agents greedily determines the loca-

2We briefly report that LaCAM can be faster depending on
computational environments. As a pilot study, we tested the same
setting with a single-thread run in a laptop with Intel Core i9
2.3GHz CPU and 16GB RAM. Even with 10,000 agents, LaCAM
solved all instances at most in 10 s in the worst case.
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Figure 4: Results with different LaCAM designs. The used
map was random-32-32-20.

tion according to the priority order. This is equivalent to
prioritized planning with a single-step planning horizon.

Figure 4 shows the result in random-32-32-20. There are
two observations: 1) The reinsert operation improves the
SOC metric. 2) The choice of configuration generator sig-
nificantly affects the search as seen in that GREEDY failed
in most settings. Consequently, the excellent performance of
LaCAM in Fig. 2 relies on promising successor generation
at the high-level, which is done by PIBT.

5 Related Work
The multi-agent pathfinding (MAPF) problem (Stern et al.
2019) has been extensively studied since the 2010s. LaCAM
borrows several ideas from prior art. We here review the re-
lationship between LaCAM and existing MAPF algorithms.

In general, MAPF algorithms are categorized into four:
1) Search-based approaches search solutions in a coupled
manner among agents (Standley 2010; Sharon et al. 2015).
2) Compiling-based approaches reduce MAPF to well-
known problems such as SAT (Surynek 2019; Lam et al.
2022). 3) Prioritized planning approaches sequentially plan
individual paths for agents in a decoupled manner (Erd-
mann and Lozano-Perez 1987; Silver 2005). 4) Rule-based
approaches make agents move step-by-step following ad-
hoc rules (Luna and Bekris 2011). LaCAM is search-based,
while the configuration generation is not limited to. Indeed,
PIBT (Okumura et al. 2022) used in the experiments is cate-
gorized into prioritized planning and rule-based approaches.

Popular MAPF algorithms use a two-level search (Sharon
et al. 2013, 2015; Surynek 2019; Lam et al. 2022). At the
high-level, these algorithms search negative constraints that
specify which agents cannot use where and when, while at
the low-level, they perform single-agent pathfinding follow-
ing constraints. LaCAM also relies on a two-level search,
however, constraints are addressed at the low-level. Fur-
thermore, our implementation uses positive constraints that
specify who to be where. Positive constraints are not new in
the literature; we can see an example in CBS (Li et al. 2019).
Note that LaCAM with negative constraints is possible to
implement, however, the search space for the low-level can
be dramatically larger than using positive ones.

Apart from two-level search, A∗ variants for MAPF have
been also developed (Standley 2010; Goldenberg et al. 2014;
Wagner and Choset 2015). In these studies, successors of
a search node are generated without aggressive coordina-
tion between agents beyond collision checking. In contrast,
LaCAM considers aggressive coordination when generating

successors at the high-level, which is incorporated by the use
of other MAPF algorithms as a configuration generator.

The manner of adding constraints is partially influenced
by A∗ with operator decomposition (Standley 2010). This
algorithm creates successor nodes that correspond to one ac-
tion of one agent, instead of actions for the entire agents.
LaCAM adds constraints in a similar scheme.

6 Conclusion and Discussion
This paper introduced LaCAM, a novel, complete, and quick
search-based MAPF algorithm. Our exhaustive experiments
reveal that LaCAM can solve various instances in a very
short time, even with complicated, dense, and challenging
scenarios that other state-of-the-art sub-optimal solvers can-
not handle. Furthermore, LaCAM is scalable; even with
10,000 agents, it solved instances in tens of seconds. In the
following, we list discussions and future directions.

Why is LaCAM quick? In general, the average branching
factor largely determines the search effort. A vanilla A∗ for
MAPF generates O(∆|A|) configurations from one search
node, which is intractable especially when |A| is large. In
contrast, each high-level node of LaCAM initially gener-
ates only one successor (i.e., configuration), and if neces-
sary, gradually generates other successors in a lazy manner.
This scheme virtually suppresses the branching factor of La-
CAM. If the generated successor is promising (i.e., closer
toward the goal configuration from the original), it can dra-
matically reduce the number of node generations. Promising
successors can be quickly obtained by techniques of recent
MAPF studies such as PIBT. This is a trick of quickness in
LaCAM. Although virtually reducing the branching factor
in A∗ for MAPF has been proposed (Standley 2010; Gold-
enberg et al. 2014; Wagner and Choset 2015), these studies
never achieve the dramatic reductions as LaCAM.

Optimal LaCAM This paper aimed at developing a quick
MAPF solver; we retain the discussion of optimality. Since
LaCAM is search-based, we consider that it is possible to de-
velop optimal LaCAM. Indeed, using a breadth-first search
style instead of a depth-first style can solve makespan-
optimal MAPF, where makespan is the maximum travel-
ing time of agents. We are also interested in developing an
asymptotically optimal version of LaCAM, that is, eventu-
ally converging to optima. This is a common approach in
motion planning algorithms (Karaman and Frazzoli 2011).
Since solving MAPF optimally is NP-hard (Yu and LaValle
2013), such asymptotically-optimal approaches are practi-
cal for massive instances. In the MAPF literature, such ap-
proaches have already appeared for other search-based algo-
rithms (Standley and Korf 2011; Cohen et al. 2018).

Improvements of Technical Components We investi-
gated the design choices of LaCAM in Sec. 4.6, while other
components should be further explored, such as how to add
effective constraints in the low-level search and how to de-
sign effective configuration generators. Those improvements
will overcome the current limitation as seen in Sec. 4.4.
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