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Abstract

This study proposed a novel reward-based negotiating agent
strategy using an issue-based represented deep policy net-
work. We compared the negotiation strategies with reinforce-
ment learning (RL) by the tournaments toward heuristics-
based champion agents in multi-issue negotiation. A bilateral
multi-issue negotiation in which the two agents exchange of-
fers in turn was considered. Existing RL architectures for a
negotiation strategy incorporate rich utility function that pro-
vides concrete information even though the rewards of RL are
considered as generalized signals in practice. Additionally, in
existing reinforcement learning architectures for negotiation
strategies, both the issue-based representations of the negotia-
tion problems and the policy network to improve the scalabil-
ity of negotiation domains are yet to be considered. This study
proposed a novel reward-based negotiation strategy through
deep RL by considering an issue-based represented deep pol-
icy network for multi-issue negotiation. Comparative studies
analyzed the significant properties of negotiation strategies
with RL. The results revealed that the policy-based learning
agents with issue-based representations achieved comparable
or higher utility than the state-of-the-art baselines with RL
and heuristics, especially in the large-sized domains. Addi-
tionally, negotiation strategies with RL based on the policy
network can achieve agreements by effectively using each
step.

Introduction
Negotiation is essential for establishing cooperation and col-
laborations in multi-agent systems. Automated negotiation
has been used in various fields, including game theory, ar-
tificial intelligence, and social sciences (Kraus 2001; Jen-
nings et al. 2001; Fatima, Kraus, and Wooldridge 2014).
These negotiation agents are used to assist humans in var-
ious critical tasks. These strategies are applied to collabo-
rate in common real-world cases, such as e-markets (Bagga
et al. 2021) and cooperative behavior among robots (Inot-
sume et al. 2020). In the future, automated negotiators can
support trades among companies in the real world and be
used to construct effective and flexible supply chain net-
works (Mohammad et al. 2019). Therefore, the development
of automated negotiating agents for is critical.

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Agent strategies utilizing reinforcement learning (RL)
have attracted considerable research attention in bilateral
multi-issue negotiation because of their ability to adapt to
various scenarios and opponents (Bakker et al. 2019; Bagga
et al. 2020). According to existing RL research, the reward
is sufficient to drive behavior that exhibits abilities studied
in natural and artificial intelligence, including knowledge,
learning, perception, social intelligence, language, general-
ization and imitation (Silver et al. 2021). Existing studies
on negotiation architecture using RL incorporate the utility
function that is rich and provides concrete information. The
rewards of RL are considered as more generalized signals in
practice. Thus, when the utility of agents is uncertain or or-
dinal, the reward-based negotiating agent strategy using RL
is acceptable. This study focused on reward-based negotia-
tion agent strategies by applying an end-to-end RL model
without the heuristic components requiring expert knowl-
edge, experiments, or utility functions (Baarslag et al. 2014).
Thus, acceptance and bidding strategies can be learned with-
out decoupling the negotiation strategy and concrete utility
information.

Versatile negotiating agent strategy (VeNAS) through
deep RL (Takahashi et al. 2022) is a data-driven negotia-
tion strategy in which the reward function is defined by the
utility function. However, the limitation of VeNAS is that
the performance under the negotiation with large-sized do-
mains decreases with the increase in the size of the output
space. This phenomenon can be attributed to the fact that
most learned negotiation strategies based on VeNAS cannot
reach an agreement with the opponents in the training phase.
Furthermore, the properties of the reward-based negotiation
strategy are yet to be comprehensively investigated.

This study proposed a reward-based negotiating agent
strategy through a multi-issue policy network. The policy
network, which is a fairly neural network (NN) architecture,
was trained to predict the optimal policy in policy-based
RL without incorporating utility functions. The character-
istics of multi-issue negotiation domains were considered to
improve scalability to the domain size. Comparative stud-
ies have analyzed the significant properties of negotiation
strategies with RL. We detailed that policy-based learning
agents with issue-based representations achieve comparable
or higher utility than the state-of-the-art baselines with RL
and heuristics in large-sized domains.
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The contributions of this study are as follows:

• A novel reward-based learning agent architecture was
proposed. This strategy is an end-to-end deep RL in
which the input is the opponent’s offer and output is the
next action of the agent, including accepting or offering
the bid in a bilateral multi-issue negotiation, not incorpo-
rating the utility function.

• The Markov decision process (MDP) and multi-issue
policy network model were defined for bilateral nego-
tiations. Issue-based state and action representations are
key for achieving the multi-issue policy network model.

• The significant properties of negotiation strategies were
clarified with deep RL by performing comparative ex-
periments. The proposed policy-based learning agents
with issue-based representations achieved comparable
or higher individual utility, agreement rates, and social
welfare than the state-of-the-art baselines with RL and
heuristics. In negotiation strategies with RL based on the
policy network, agreements are achieved using drastic
small number of steps and improving step efficiency.

Related Work
Automated negotiation strategies have attracted consider-
able research attention. Motivated by the challenges of bilat-
eral negotiations between automated agents, the automated
negotiating agents competition (ANAC) was organized in
2010 (Baarslag et al. 2015). The evolution of strategies and
critical factors for developing the competition have been
proved by analyzing the results from the ANAC.

This model identified three components that constitute
a negotiation strategy, namely the bidding strategy, oppo-
nent model, and acceptance strategy (Baarslag et al. 2014).
In this architecture, the negotiation performance of select-
ing advanced BOA techniques were compared to provide an
overview of the factors influencing the final performance.
Particularly, well-performing opponent modeling techniques
have attracted considerable attention in the field (Baarslag
et al. 2016). Moreover, effective strategies can be achieved
by combining the modules of superior agent’s strategies
in competitions, depending on the opponent’s strategies
and negotiation environments. Several sophisticated existing
agent strategies comprise a fixed set of modules. Therefore,
studies on negotiation strategies that focus on the modules
are crucial.

Studies have focused on the divided component parts of
automated negotiating strategies, including primary bidding,
acceptance, and opponent modeling. Effective strategies can
be achieved by combining the modules of top agents’ strate-
gies in these competitions, depending on the opponents’
strategies and negotiation environments. Several sophisti-
cated agents’ strategies that currently exist comprise a fixed
set of modules (Ilany and Gal 2016; Kawata and Fujita
2019). Sengupta et al. (Sengupta, Mohammad, and Nakadai
2021) proposed a mechanism for selecting effective strate-
gies using maximum entropy RL by using a deep-learning-
based opponent classifier.

Negotiation strategies have been used in the RL approach
of Q-learning for bidding (Bakker et al. 2019), and deep Q-

learning (DQN) was used for acceptance (Razeghi, Yavus,
and Aydoğan 2020). These studies have focused on esti-
mating the threshold target utility for bidding and accep-
tance, that is, on the divided parts of negotiating strategies.
Bagga et al. (Bagga et al. 2020) used a deep deterministic
policy gradient algorithm to negotiate with multiple sellers
concurrently in electronic markets. However, their motiva-
tion differed considerably from the reward-based negotiat-
ing agent strategies using RL; their learning model included
neither bidding nor only packaged actions for concurrent ne-
gotiations. Additionally, these models incorporate the utility
function that is rich and contains certain information for the
negotiation in learning the negotiation actions (bidding, ac-
ceptance, and opponent modeling).

Negotiation Environment
A bilateral multi-issue negotiation with two agents, A and
B, was assumed for a negotiation domain D, which defines
a set of issues I = {I1, I2, . . . , In} and possible values
Vi = {vi1, vi2, . . . , viki

}, where n is the number of issues,
and ki is the number of values for issue Ii. A set of values se-
lected for each issue is referred to as an outcome. Each agent
proposes a bid during a negotiation. Here, Ω is the set of all
possible outcomes, and it is a common knowledge shared
among all agents in a negotiation session. Every agent has a
unique preference profile that represents its own preferences
for outcome ω ∈ Ω. The utility of an outcome is defined by
a utility function U(·), which is normalized to a real number
in the range [0, 1]. The utility function of each agent is not
shared with other agents

A negotiation session has a timeline t, represented as a
real number in the range [0, T ], where T is a deadline. Here,
t = 0 refers to the starting time of a negotiation, and t =
T represents the deadline. In turn-based games, the game
flow is categorized into defined parts, namely steps or turns.
When a player takes an action, the number of steps/turns
increases by one. When every player takes their steps/turns,
the round is over, and the number of rounds is increased by
one.

Alternating Offers Protocol. The interaction between ne-
gotiating parties is regulated by negotiation protocol P ,
which defines a set of rules that formalize how and when
proposals can be exchanged. Here, P is agreed before
the agents start negotiation. The alternating offers protocol
(AOP), which is a bilateral negotiation protocol(Rubinstein
1982), was considered. In AOP, the negotiating parties ex-
change offers in turns and each agent has three possible ac-
tions as follows: Accept, Offer, EndNegotiation. If the ac-
tion is an Offer, agent X is subsequently asked to deter-
mine its next action; the agents continue to take turns into
the next round. If it is not an Offer, the negotiation is over.
The final score is determined for each agent when an offer
ω is accepted by the opponent at time t; each agent obtains
U(ω). When the action is returned as an EndNegotiation,
each agent obtains 0. If a negotiation is not concluded within
the deadline (t = T ), each agent obtains 01.

1In this study, the reservation value is assumed as 0
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Figure 1: Reward-based negotiating agent strategy. The in-
put of the learnable agent is the bid that is vectorized by
one-hot encoding for each issue and time defined as states.
The nodes of the output layer are allocated vectorized bids
grouping as multi-issue for offer, acceptance, and value.
The hidden layer consists of an end-to-end learning model
based on a policy network. Unlike the existing utility-based
method in the bottom figure, users are not required to pre-
pare a utility function, generate a bid by the argmax opera-
tion on the utility function, or make an agreement decision.
Modeling of the utility of the opponent is not required. Have
the agents learn through trial and error the policies that will
lead to an excellent final point of agreement.

Reward-Based Negotiating Agent Strategy
Figure 1 illustrates the proposed RL architecture through
a multi-issue policy network and compares existing utility-
based methods. The environment includes the history of the
bids exchanged between the agent and the opponent. The
opponent has its utility function and strategy; however, these
are unknown to the agent. Therefore, the proposed learning
agent does not include them as the input, reward, and body
of the agent. To avoid information loss of the domain and
use the raw bid directly as the state, the bid is vectorized
by one-hot encoding for each issue. The nodes of the input
layer are allocated as vectorized bids and time defined as
states. The nodes of the output layer are allocated vectorized
bids grouping as multi-issue for offer, acceptance, and value.
A part of the hidden layer consists of an end-to-end learning
model based on a policy network.

Compared with previous studies((Bagga et al. 2020) etc.),
the action at of the proposed architecture covers all nego-

tiation actions (Offer and Accept). The input is the bid that
is not the bid’s utility calculated by the utility function; the
output is the negotiation action, including the offer and its
bid and acceptance. The body of the agent does not include
its own utility function for learning the negotiation strategy,
in which the proposed architecture utilizes its own utility
function to obtain the reward only. Therefore, the proposed
architecture achieves comprehensive agent’s architecture in
a learning framework, which is end-to-end RL for the nego-
tiating the strategy of the agent.

MDP for Bilateral Multi-Issue Negotiation
To apply machine learning to negotiation agents using
direct negotiation bid data without exact utility function
and the historical data of the utility, an MDP was formu-
lated for bilateral multi-issue negotiations. A finite MDP is
provided as M = ⟨S,A,R, p(st+1|st, at), p(s0)⟩, where
S is the state space, A is the action space, R is the
set of rewards, p(st+1|st, at) is the transition function,
and p(s0) is the initial state distribution. The policy base
probability density function of the trajectory data on the
first-order MDP is given as p(s0, a0, · · · , aT , sT+1) =

p(s0)
∏T

t=0 p(st+1|st, at)πθ(at|st), where πθ(at|st) is the
policy function that generates the actions of agents. An AOP
is defined using a finite MDP as follows:
Time step t ∈ {0, 1, · · · , T}: Turn of negotiation from the

initial time to the negotiation deadline T .
State set of state st ∈ S: The agent’s offer ωt, opponent’s

offer ω′
t and accept signal η′t, and t/T .

Action set of action at ∈ A: The agent’s selected offer ωt

and accept signal ηt. The action space is proportional to
the domain size of the utility function.

Reward S × A → R: When the agent accepts, the agent
obtains the final utility value. Penalty −K is given when
the negotiation ends without reaching an agreement. Oth-
erwise, the reward is 0.

Policy function S ×A → [0, 1]: The policy function is de-
fined as πθ(at | st) := Pr(At = at | St = st, θt = θ).

Transition function S × S × A → [0, 1]: Transition
function is defined as p(st+1|st, at) := Pr(St+1 =
st+1|St = st, At = at).

History D = (ω0, ω
′
0, · · · , ωt, ω

′
t): The observable data

during a negotiation.
A method for learning the measure function and proposal for
an issue-based model is presented as follows:

Multi-Issue Policy Network and Learning
Policy Gradient Algorithms. Policy base objective func-
tion J(θ) to learn parameters θ is defined as follows:

J(θ) := Eπ

[
T∑

t=0

r(st, at)

∣∣∣∣∣S0 = s0, πθ

]
,

where, θ is updated by θt+1 = θt + α∇θJ(θ). By the pol-
icy gradient (PG) theorem(Sutton et al. 1999), the gradient
∇θJ(θ) is calculated semi-analytically as follows:

∇θJ(θ) = Eπ [∇θ lnπθ(a | s)Q(s, a)] .
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For one of the extensions of PG, we used the actor-critic
methods in which policy and value functions are trained si-
multaneously. A brief notation is as follows:

∇θJ(θ) := Eπ [∇θ lnπθ(a | s)Aϕ(s, a)] ,

Aϕ(s, a) := Qϕ(s, a)− Vϕ(s),

Qϕ(s, a) := Eπ [r(s, a) + Vϕ(s
′)|S0 = s,A0 = a] ,

Vϕ(s) := Eπ

[
T∑

t=0

r(st, at)

∣∣∣∣∣S0 = s

]
.

The Qϕ and Vϕ are approximated by the NN and opti-
mized to minimize the mean square error (MSE) from cu-
mulative rewards. Furthermore, proximal policy optimiza-
tion (PPO), which is a stable and well-known policy gra-
dient method, was applied to optimize learning parameters
(Schulman et al. 2017).

Multi-Issue Policy Network. A deep strategy network
model was proposed for combinatorial issue and shared poli-
cies were accepted as follows:

πθ(a|s) := πθA(aA|h(s))
In∏

i=I1

πθi(ai|h(s)),

where η ∼ πθA(aA|h(s)) is the accept strategy policy func-
tion that generates an accept signal η ∈ {0, 1}, viki

∼
πθi(ai|h(s)) is the issue Ii’s policy function that gener-
ates possible values. Here, viki

, and h(s) are feature and
hidden parameters to input policy functions. This study
was inspired by the action branching architecture (Tavakoli,
Pardo, and Kormushev 2018) and discrete and continuous
action approaches (Delalleau et al. 2019). PG loss func-
tions can be calculated independently, as in lnπθ(a|s) =

lnπθA(aA|h(s)) +
∑In

i=I1
lnπθi(ai|h(s)), and this corre-

sponds to scalable when applied to large issue spaces. The
details of the NN structure and the hyperparameter are pre-
sented in Table 1.

Issue-Based State Representation. As a representation
of the general state representation vector, we define the func-
tion V ec(·), V ec(ωt, t) := (V ec(v1), · · · , V ec(vn), t/T ).

A concrete example of V ec(vi) is as follows: Categorical
v ∈ Vi is one-hot encoding (example, food), Ordinal v ∈ Vi

is normalization and standardization (example, price), Con-
tinuous v ∈ Vi is normalization and standardization (exam-
ple, time). In the future, the same mechanism can be used by
using human facial expressions or voice data by generating
features with the CNN or other methods.

Issue-Based Action Representation. To select action ω,
the RL architecture computes ωt = argmaxat

Q(st, at), or
samples by policy-method ωt ∼ πθ(at|st).

In the proposed method, the issue data structure was used
for action generation, ωt = (v1, · · · , vn). Offer is the tuple
of issues, and each value of issue is sampled from each pol-
icy model vi ∼ πθi(ai|h(s)). Additionally, this method can
be applied to various negotiation strategy models by apply-
ing softmax, if In is discrete, or Gaussian, if In is a con-
tinuous number. Therefore, handling numerous variables is
critical because of applications from a game-like evaluation
environment to a realistic negotiation domain.

Experiments and Evaluations
Some packages to realize the proposed idea are available;
the following evaluations were made by improving the pack-
age for NegMAS platform(Mohammad et al. 2019) and RL-
baselines(Raffin et al. 2021).

Negotiation Environment Settings
We focused on the essential repeated encounter bilateral
multi-issue negotiation of using the same domains and op-
ponents as those adopted for training. Numerous advanced
techniques beyond the scope of this study are required to im-
prove negotiation setting that involves working effectively
in a different domain and opponent from that of the training
(example, transfer-learning, meta-learning).

The deadline (T ) is set to 40 rounds, and in this setting,
the negotiation ends when both agents have each acted 40
times. This deadline is determined based on the settings in
existing reference (Bagga et al. 2020). If T is set as the con-
tinuous time or other values, all results are satisfactory by
running several iterations to obtain sufficient training.

Utility Function. In these experiments, the weighted-sum
utility function case that wi (

∑n
i=1 wi = 1.0) be the weight

of each issue Ii is considered. The weighted-sum utility
function is most popular settings in automated negotiation
(Baarslag et al. 2015). The utility U(·) of the outcome ω is
U(ω) =

∑n
i=1 wi·ei(ω), where ei(ω) is the evaluation value

of the option for issue Ii of ω, normalized to range[0, 1]. wi

and ei(·) are defined in the agent profile.

Domains. To prove that the proposed approach can be
trained in various negotiation domains, we consider domains
with comprehensive large sizes of outcome space |Ω| (from
10 to 104 domain sizes) and oppositions. The sizes and op-
positions of all domains are in Table 22.

Opponents. To detail the adaptability to various oppo-
nents, two types of the basic negotiating agents were con-
sidered based on the categorization of strategies (Faratin,
Sierra, and Jennings 1998) and the champions of the previ-
ous ANACs (AgentK, HardHeaded, Atlas3, and AgentGG).
The basic bidding strategies of the agents are three time-
dependent strategies (Boulware, Linear, and Conceder), and
two behavior-dependent strategies (Tit-For-Tat1 and Tit-For-
Tat2). Their acceptance condition is based on ACnext(ωt)
that it accepts the offer of the opponents when its utility is
higher than the utility of the counteroffer of the agents. We
selected suitable champions under defined negotiation envi-
ronments from the previous competitions, including the op-
ponent modeling and heuristic techniques.

Experimental Settings
The performance of the agents was scored by their obtained
utility under a deterministic policy and evaluated based on
the average scores, out of 100 negotiations. To stabilize
learning, we trained with 10 initial values and adopted the
learning that exhibited the best performance.

2These negotiation domains are included in the negotiation plat-
form Genius (Lin et al. 2014).
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The code was implemented in Python 3.8 and run on 28
core CPUs with 128 GB of memory with Ubuntu Desktop
22.04 as the operating system. The total experimental pe-
riod was approximately three months because of the enor-
mous negotiation tournaments, including 7(domains) ×
9(oppositions) × 4(approaches) kinds of tournaments in
training and test phases.

Comparison. For implementing the proposed architec-
ture, the PPO was applied (Schulman et al. 2017). The PPO
is a typical policy gradient method for RL that alternates be-
tween sampling data through interaction with the environ-
ment. In the model, a surrogate objective function is opti-
mized using stochastic gradient ascent by enabling multiple
epochs of minibatch updates.

Reward-Based Models Utilizing RL

• MiPN: Proposed architecture including a multi-issue pol-
icy network with the PPO.

• PPO-VeNAS: The VeNAS including policy network not
considering the multi-issue action representations with
PPO. To measure the performance of VeNAS applying
the PPO, the VeNAS-agent was trained for utilizing the
PPO.

• VeNAS(DQN): The original VeNAS including Deep Q-
Network (DQN) not considering the multi-issue action
representations. To compare with the performance of Ve-
NAS applying the PPO, the VeNAS-agent was trained for
utilizing the DDQN.
Data or bid-based state: st :=

{
ωt−1, ω

′
t−1, ωt, ω

′
t, t/T

}
.

Utility-Based Models with the Domain Knowledge

• DRBOA: We developed DRBOA (deep RLBOA) based
on a state-of-the-art negotiation agent that utilizes RL
(Bakker et al. 2019). To reduce the difference of
the learning methods among architectures, the origi-
nal RLBOA-agent was developed to be trained by the
DDQN. The model trained with the DDQN outperformed
the original RLBOA with Q-learning. The acceptance
condition is based on ACnext(ωt) that it accepts the offer
of the opponents when its utility is higher than the utility
of the counteroffer of the agent.
Domain knowledge or utility-based state:
st :=

{
U(ωt−1), U(ω′

t−1), U(ωt), U(ω′
t), t/T

}
.

• Heuristics: This score is the baseline referring to the av-
erage of scores that each opponent agent negotiates with
other opponents except for itself.

Reward. In the experiments, the final utility values in
making agreements are used as the reward functions of
MiPN, PPO-VeNAS, VeNAS(DQN). When the agent ac-
cepts, r({..., ω′

t}, ηt+1) = U(ω′
t) is rewarded. When the op-

ponent accepts, r({..., ωt, η
′
t+1}, ωt) = U(ωt) is rewarded.

Penalty −K is given when the negotiation ends without
reaching an agreement. Otherwise, the reward is 0. K = 1
was set for failure to reach an agreement in the experiments.

Hyperparameter Value

Horizon (T) 2048
Adam stepsize 3× 10−4

Num. epochs 10
Minibatch size 64
Discount (γ) 0.99
GAE parameter (λ) 0.95
Clipping parameter (ϵ) 0.2
Feature Extractor Shared
Shared Network Flatten
Activation Function Tanh
Value fc layers [64, 64]
Policy fc layers [64, 64]
Policy Final Layer Issue-decoupled Softmax
Value Loss MSE
Policy Loss Multicategorical Cross Entropy
Optimizer Adam Optimizer

Table 1: Hyperparameters of the NN for training.

The body of the reward-based models (MiPN, PPO-
VeNAS, VeNAS(DQN)) does not include the utility func-
tion for learning the negotiation strategy. Their architectures
incorporate the utility function to obtain the reward only.
Therefore, reward functions of these models do not stick to
the utility function. The utility-based models should incor-
porate the utility function to work well. Therefore, the re-
ward functions of the reward-based models are used as the
utility function to evaluate the performances fairly in the ex-
periments.

Hyperparameters. The training period was 500,000
steps. As a policy network, a NN with two hidden layers
of 64 units, and a tanh function was used as the activation
function. The outputs are the probability of proposing the
value for each issue and the probability of accepting the of-
fer. The detailed hyperparameters are provided in Table 1.

Experimental Results
Performance (Individual Utility). Table 2 and Fig-
ure 2(a) reveal the individual utilities toward nine opponents
among the state-of-the-art approaches with RL and Heuris-
tics under seven domains with various sizes and opposi-
tions. The RL-based approaches exhibit higher utilities than
Heuristics. Therefore, RL-based approaches can obtain the
strategy that is more adaptive to the environment than the
heuristic strategy. Especially, the agents trained by the pro-
posed architecture with a multi-issue policy network (MiPN)
achieve comparable or higher utilities than other approaches.
Thus, MiPN can learn and adapt various negotiation strate-
gies using the proposed learning architecture without de-
signing an effective strategy that considers the strategies and
domains of the opponents.

VeNAS(DQN) drastically decreased the individual util-
ities as the domain size was large because the several
trained agents using the DDQN could not achieve agree-
ments in large-sized domains. Without considering the pro-
posed multi-issue policy network, the scalability of the ar-
chitecture was not sufficient in large-sized domains.
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Figure 2: (a) Individual utility toward each opponent among five comparative approaches. (b) Number of steps toward each
opponent among five comparative approaches. (c) Step efficiency ((Individual utility)/(the number of steps)) toward each op-
ponent among five comparative approaches. (d) Social welfare toward each opponent among five comparative approaches. The
variance of the results is omitted because it was small.

DRBOA exhibited second- or third-highest utility because
the size of the state and action space of DRBOA were main-
tained constant by considering the utility function even when
the domain size increased, whereas VeNAS increased the
size of the state and action space when the domain size in-
creased.

The RL-based architectures exhibited weak performance
for AgentK and Hardheaded because AgentK exhibits ran-
domness and exploits specific opponents. Thus, these archi-
tectures cannot effectively address behaviors not observed in
the training phase. Additionally, Hardheaded does not con-
sider the risk of disagreements but continue to make a con-
cession considering the risk of disagreements.

Performance (Step Efficiency). Figure 2(b) and (c)
present the number of steps and the step efficiency toward
each opponent. MiPN and PPO-VeNAS exhibit higher step
efficiencies than other approaches because in these models,
reach agreements are achieved in shorter steps. This char-
acteristic is caused by the policy-based approach; therefore,
PPO-VeNAS tends to make agreements in less time. By con-
trast, MiPN ensures superior balances between the number
of steps and individual utilities than PPO-VeNAS. Com-
paring RL-based approaches with Heuristics, RL-based ap-
proaches except for VeNAS(DQN) can determine superior
agreements in the limited number of steps because Heuris-
tics extends the number of steps in the negotiation to ob-
tain more utility information of the opponent. However, RL-
based approaches lose utilities toward Boulware because
these methods make agreements in the shorter steps without
extending the negotiation steps.

Performance (Social Welfare). Figure 2(d) presents the
average social welfare toward each opponent. In addition to
selfishness, the cooperativeness of the strategy and sociabil-
ity can be evaluated. The results confirmed that the social
welfare of MiPN, PPO-VeNAS, and DRBOA are higher than
that of other approaches. Especially, MiPN and PPO-VeNAS
achieved the highest social welfare despite not considering
the social welfare in their architecture. By altering the re-
ward function to consider the opponent’s utility, a higher
social welfare can be obtained easily. DRBOA also obtains
the highest social welfare in the tournaments toward some
opponents because DRBOA considers the estimated oppo-
nent’s utilities in determining the next offer, unlike VeNAS
and MiPN.

Performance (Agreement Rate). The total agreement
rate of MiPN, PPO-VeNAS, VeNAS(DQN), Heuristics, and
DRBOA were 99.9%, 99.3%, 84.0%, 93.0%, 99.7%, respec-
tively. MiPN and PPO-VeNAS exhibited higher agreement
rates than Heuristics because they can make agreements
when the opponent’s behaviors have been observed in the
training phase. DRBOA can make agreements in most cases
because the opponent modeling is considered in determining
the next offer. By contrast, VeNAS(DQN) exhibits a lower
agreement rate because the scalability of DQN is not suffi-
cient in large domains.

Behavior. We qualitatively analyzed the behavior of
MiPN under the policies acquired though learning by ob-
serving their common behavior. Figure 3 shows typical ex-
amples of MiPN’s behavior. MiPN initially made offers with
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Laptop ItexvsCypress IS BT Acquisition Grocery thompson Car EnergySmall A
|Ω| ∝ |A| 10 102 102 103 103 104 104

Opposition Low High Low Low High Low High

Heuristics 0.842 0.528 0.843 0.756 0.537 0.741 0.508
DRBOA 0.883 0.662 0.869 0.837 0.704 0.822 0.610

VeNAS(DQN) 0.796 0.610 0.805 0.800 0.464 0.510 0.359
PPO-VeNAS 0.845 0.558 0.869 0.763 0.622 0.894 0.562

MiPN 0.848 0.699 0.874 0.851 0.746 0.944 0.738

Table 2: Domain size and average utility score. Our reward base MiPN is more advantageous for regions with larger domain
sizes. By averaging the opposing agents, the universal information of the learning method is considered for domain augmenta-
tion.

(a) Car-Boulware (b) Car-AgentGG

Figure 3: Typical examples of MiPN’s behavior. In the outcome spaces, the blue lines and circles indicate the agent’s behavior
and the green lines and triangles indicate the opponent’s behavior. In the time-util graph, the blue line represents the change in
the utility of the agent and the green line represents the change in the utility of the opponent as time increases. The vertical axis
of the upper time-util graph indicates the scores of the agent’s utility function, and the vertical axis of the lower time-util graph
indicates the scores of the opponent’s utility function.

high utility for the opponent, and gradually increased its
offers when the opponent made concessions. This behav-
ior is similar to exploring the acceptance threshold of the
opponent and functions as an opponent model. The utility
function of the opponent can be estimated because it makes
offers that have high utility for the opponent but are not
accepted. Their behavior can be adjusted considering their
opponents’ strategies. For example, it sticks to the negotia-
tion until just before the deadline if the opponent’s strategy
makes a concession just before the deadline (example, At-
las3 etc.). Conversely, it tries to accept the opponent’s of-
fer in the early stage if the opponent’s strategy is difficult
and will not make any concession (e.g. AgentGG and Hard-
headed etc.). MiPN can predict the opponents’ weights of
each issue (wi) correctly. It does not stick to the issue that
its own weight is not high and the opponent’s weight is high.
Thus, the better solutions are found by making a concession
effectively toward the issue that is critical for both sides.

Conclusion and Future Work
This study proposed a reward-based negotiating agent strat-
egy utilizing an issue-based represented deep policy net-

work. The reward-based negotiating agent strategy consid-
ers the rewards of RL as the generalized signals and does not
incorporate the utility function that is rich and concrete in-
formation in practice. MDP and multi-issue policy network
model including issue-based state and action representations
were defined for bilateral negotiations. The scalability of ne-
gotiation domains was improved by considering the charac-
teristics of multi-issue negotiation and policy-based learn-
ing. The experimental results revealed that the agent with the
multi-issue policy network achieved comparable or higher
utility than RL agents and champions with heuristics, es-
pecially in large-sized domains. Comparative experiments
clarified the significant properties of negotiation strategies
with RL that the negotiation strategies based on policy net-
work try to make agreements with high step efficiencies.

An elaborative reward function should be considered in
the future by considering some characteristics of negotia-
tions. Learning negotiation agents that can work effectively
in a different domain and with a different opponent from
the training should be studied. Other machine learning tech-
niques such as transfer-learning and meta-learning are re-
quired to solve this problem (Sengupta, Nakadai, and Mo-
hammad 2022).
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