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Abstract

A key challenge in federated learning (FL) is the statis-
tical heterogeneity that impairs the generalization of the
global model on each client. To address this, we propose a
method Federated learning with Adaptive Local Aggregation
(FedALA) by capturing the desired information in the global
model for client models in personalized FL. The key compo-
nent of FedALA is an Adaptive Local Aggregation (ALA)
module, which can adaptively aggregate the downloaded
global model and local model towards the local objective on
each client to initialize the local model before training in each
iteration. To evaluate the effectiveness of FedALA, we con-
duct extensive experiments with five benchmark datasets in
computer vision and natural language processing domains.
FedALA outperforms eleven state-of-the-art baselines by up
to 3.27% in test accuracy. Furthermore, we also apply ALA
module to other federated learning methods and achieve up
to 24.19% improvement in test accuracy. Code is available at
https://github.com/TsingZ0/FedALA.

Introduction
Federated learning (FL) can leverage distributed user data
while preserving privacy by iteratively downloading mod-
els, training models locally on the clients, uploading models,
and aggregating models on the server. A key challenge in
FL is statistical heterogeneity, e.g., the not independent and
identically distributed (Non-IID) and unbalanced data across
clients. This kind of data makes it hard to obtain a global
model that generalizes to each client (McMahan et al. 2017;
Reisizadeh et al. 2020; T Dinh, Tran, and Nguyen 2020).

Personalized FL (pFL) methods have been proposed to
tackle statistical heterogeneity in FL. Unlike traditional FL
that seeks a high-quality global model via distributed train-
ing across clients, e.g., FedAvg (McMahan et al. 2017), pFL
methods are proposed to prioritize the training of a local
model for each client. Recent pFL studies on model aggrega-
tion on the server can be classified into three categories: (1)
methods that learn a single global model and fine-tune it, in-
cluding Per-FedAvg (Fallah, Mokhtari, and Ozdaglar 2020)
and FedRep (Collins et al. 2021), (2) methods that learn ad-
ditional personalized models, including pFedMe (T Dinh,
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Tran, and Nguyen 2020) and Ditto (Li et al. 2021a), and (3)
methods that learn local models with personalized (local)
aggregation, including FedAMP (Huang et al. 2021), Fed-
PHP (Li et al. 2021b), FedFomo (Zhang et al. 2020), AP-
PLE (Luo and Wu 2021) and PartialFed (Sun et al. 2021).

pFL methods in Category (1) and (2) take all the infor-
mation in the global model for local initialization, i.e., ini-
tializing the local model before local training in each iter-
ation. However, only the desired information that improves
the quality of the local model is beneficial for the client. The
global model has poor generalization ability since it has de-
sired and undesired information for an individual client si-
multaneously. Thus, pFL methods in Category (3) intend to
capture the desired information in the global model through
personalized aggregation.

However, pFL methods in Category (3) still have short-
comings. FedAMP/FedPHP performs personalized aggre-
gation on the server/clients without considering the local
objective. FedFomo/APPLE downloads other client models
and locally aggregates them with the approximated/learned
aggregating weights on each client. All the parameters in one
client model are assigned with the same weight, i.e., model-
level weight. Besides, downloading client models among
clients causes high communication overhead in each iter-
ation and also has privacy concerns since the data from
other clients can be recovered through these client mod-
els (Zhu, Liu, and Han 2019). In addition, FedFomo/AP-
PLE also requires feeding data forward in the downloaded
client models to obtain the aggregating weights, which intro-
duces additional computation overhead. PartialFed locally
learns aggregation strategies to select the parameters in the
global model or the local model. Still, the layer-level and
binary selection cannot precisely capture the desired infor-
mation in the global model. Furthermore, PartialFed uses
non-overlapping samples to learn the local model and the
strategy, so it can hardly learn a strategy that fully satisfies
the local objective. Due to the significant modification of
the learning process in FedAvg, the personalized aggrega-
tion process in these methods cannot be directly applied to
most existing FL methods.

To precisely capture the desired information in the down-
loaded global model for each client without additional
communication overhead in each iteration, we propose a
novel pFL method Federated learning with Adaptive Local
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Figure 1: Local learning process on client i in the t-th itera-
tion. Specifically, client i downloads the global model from
the server, locally aggregates it with the old local model by
ALA module for local initialization, trains the local model,
and finally uploads the trained local model to the server.

Aggregation (FedALA) to adaptively aggregates the down-
loaded global model and local model towards the local ob-
jective for local initialization. FedALA only downloads one
global model and uploads one local model on each client
with the same communication overhead as in FedAvg, which
also has fewer privacy concerns and is more communication-
efficient than FedFomo and APPLE. By adaptively learning
real-value and element-wise aggregation weights towards
the local objective on the full local dataset, FedALA can
capture the desired information in the global model at the
element level, which is more precise than the binary and
layer-wise weight learning in PartialFed. Since the lower
layers in a deep neural network (DNN) learn more generic
information than the higher layers (Yosinski et al. 2014;
LeCun, Bengio, and Hinton 2015), we can further reduce
the computation overhead by only applying Adaptive Local
Aggregation (ALA) module on the higher layers. The whole
local learning process is shown in Figure 1.

To evaluate the effectiveness of FedALA, we conduct
extensive experiments on five benchmark datasets. Re-
sults show that FedALA outperforms eleven state-of-the-art
(SOTA) methods. Besides, we apply the ALA module to the
traditional FL methods and pFL methods to improve their
performance. To sum up, our contributions are as follows.

• We propose a novel pFL method FedALA that adaptively
aggregates the global model and local model towards the
local objective to capture the desired information from
the global model in an element-wise manner.

• We empirically show the effectiveness of FedALA,
which outperforms eleven SOTA methods by up to
3.27% in test accuracy without additional communica-
tion overhead in each iteration.

• Attributed to the minor modification of FL process, the
ALA module in FedALA can be directly applied to ex-
isting FL methods to enhance their performance by up to
24.19% in test accuracy on Cifar100.

Related Work
Traditional Federated Learning
The widely known traditional FL method FedAvg (McMa-
han et al. 2017) learns a single global model for all clients

by aggregating their local models. However, it often suffers
in statistically heterogeneous settings, e.g., FL with Non-
IID and unbalanced data (Kairouz et al. 2019; Zhao et al.
2018). To address this issue, FedProx (Li et al. 2020) im-
proves the stability of the FL process through a proximal
term. To counteract the bias introduced by the Non-IID data,
FAVOR (Wang et al. 2020a) selects a subset of clients based
on deep Q-learning (Van Hasselt, Guez, and Silver 2016)
at each iteration. By generating the global model layer-
wise, FedMA (Wang et al. 2020b) can adapt to statistical
heterogeneity with the matched averaging approach. How-
ever, with statistical heterogeneity in FL, it is hard to ob-
tain a single global model which generalizes well to each
client (Kairouz et al. 2019; Huang et al. 2021; T Dinh, Tran,
and Nguyen 2020).

Personalized Federated Learning
Recently, personalization has attracted much attention for
tackling statistical heterogeneity in FL (Kairouz et al. 2019).
We consider the following three categories of pFL methods
that focus on aggregating models on the server:
(1) Methods that learn a single global model and fine-
tune it. Per-FedAvg (Fallah, Mokhtari, and Ozdaglar 2020)
considers the global model as an initial shared model based
on MAML (Finn, Abbeel, and Levine 2017). By perform-
ing a few additional training steps locally, all the clients
can easily fine-tune the reasonable initial shared model. Fe-
dRep (Collins et al. 2021) splits the backbone into a global
model (representation) and a client-specific head and fine-
tunes the head locally to achieve personalization.
(2) Methods that learn additional personalized models.
pFedMe(T Dinh, Tran, and Nguyen 2020) learns an addi-
tional personalized model for each client with Moreau en-
velopes. In Ditto (Li et al. 2021a), each client learns its ad-
ditional personalized model with a proximal term to fetch
information from the downloaded global model.
(3) Methods that learn local models with personal-
ized (local) aggregation. To further capture the person-
alization, recent methods try to generate client-specific
models through personalized aggregation. For example,
FedAMP (Huang et al. 2021) generates an aggregated model
for an individual client by the attention-inducing function
and personalized aggregation. To utilize the historical lo-
cal model, FedPHP (Li et al. 2021b) locally aggregates the
global model and local model with the rule-based moving
average and a pre-defined weight (hyperparameter). Fed-
Fomo (Zhang et al. 2020) focuses on aggregating other client
models locally for local initialization in each iteration and
approximates the client-specific weights for aggregation us-
ing the local models from other clients. Similar to FedFomo,
APPLE (Luo and Wu 2021) also aggregates client models
locally but learns the weights instead of approximation and
performs the local aggregation in each training batch rather
than just local initialization. FedAMP and APPLE are pro-
posed for the cross-silo FL setting, which require all clients
to join each iteration. By learning the binary and layer-level
aggregation strategy for each client, PartialFed (Sun et al.
2021) selects the parameters in the global model or the local
model to construct the new local model in each batch.
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Our FedALA belongs to Category (3) but is more pre-
cise and requires less communication cost than FedFomo
and APPLE. The fine-grained ALA in FedALA can element-
wisely aggregate the global model and local model to adapt
to the local objective on each client for local initialization.
As FedALA only modifies the local initialization in FL, it
can be applied to existing FL methods to improve their per-
formance without modifying other learning processes.

Method
Problem Statement
Suppose we have N clients with their private training data
D1, . . . , DN , respectively. These datasets are heterogeneous
(Non-IID and unbalanced). Specifically, D1, . . . , DN are
sampled from N distinct distributions and have different
sizes. With the help of a central server, our goal is to col-
laboratively learn individual local models Θ̂1, . . . , Θ̂N using
D1, . . . , DN for each client, without exchanging the private
data. The objective is to minimize the global objective and
obtain the reasonable local models

{Θ̂1, . . . , Θ̂N} = argmin G(L1, . . . ,LN ), (1)

where Li = L(Θ̂i, Di; Θ), ∀i ∈ [N ] and L(·) is the loss
function. Θ is the global model, which brings external infor-
mation to client i. Typically, G(·) is set to

∑N
i=1 kiLi, where

ki = |Di|/
∑N

j=1 |Dj | and |Di| is the amount of local data
samples on client i.

Adaptive Local Aggregation (ALA)
The server generates a global model by aggregating trained
client models in heterogeneous settings, but this global
model generalizes poorly on each client. To address this
problem, we propose a pFL method FedALA with a fine-
grained ALA module that element-wisely aggregates the
global model and local model to adapt to the local objective.
We show the learning process in ALA in Figure 2.

+ ⊙

Local model
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Figure 2: The learning process in ALA. LA denotes “local
aggregation”. Here, we consider a five-layer model and set
p = 3. The lighter the color, the larger the value.

In traditional FL (e.g., FedAvg), after the server sends the
old global model Θt−1 to client i in iteration t, Θt−1 over-
writes the old local model Θt−1

i to obtain the initialized lo-
cal model Θ̂t

i for local model training, i.e., Θ̂t
i := Θt−1.

In FedALA, we element-wisely aggregate the global model

and local model instead of overwriting. Formally,

Θ̂t
i := Θt−1

i ⊙Wi,1 +Θt−1 ⊙Wi,2,

s.t. wq
1 + wq

2 = 1, ∀ valid q
(2)

where ⊙ is a Hadamard product and wq
1 and wq

2 are the q-th
parameters in the aggregating weights Wi,1 and Wi,2, re-
spectively. For overwriting, ∀ valid q, wq

1 ≡ 0 and wq
2 ≡ 1.

However, it is hard to learn Wi,1 and Wi,2 with the con-
straint through the gradient-based learning method. Thus,
we combine Wi,1 and Wi,2 by viewing Equation (2) as:

Θ̂t
i := Θt−1

i + (Θt−1 −Θt−1
i )⊙Wi, (3)

where we call the term (Θt−1 − Θt−1
i ) as the “update”. In-

spired by the previous methods (Courbariaux et al. 2016;
Luo et al. 2018), we utilize element-wise weight clipping
σ(w) = max(0,min(1, w)) for regularization (Arjovsky,
Chintala, and Bottou 2017) and let w ∈ [0, 1], ∀w ∈Wi.

Since the lower layers in the DNN learn more general in-
formation than the higher layers (Yosinski et al. 2014; Zhu,
Hong, and Zhou 2021), the client desires most of the infor-
mation in the lower layers of the global model. To reduce
computation overhead, we introduce a hyperparameter p to
control the range of ALA by applying it on p higher lay-
ers and overwriting the parameters in the lower layers like
FedAvg for local initialization:

Θ̂t
i := Θt−1

i + (Θt−1 −Θt−1
i )⊙ [1|Θi|−p;W p

i ], (4)

where |Θi| is the number of layers (or blocks) in Θt−1
i and

1|Θi|−p has the same shape of the lower layers in Θt−1
i . The

elements in 1|Θi|−p are ones (constants). The weight W p
i has

the same shape as the remaining p higher layers.
We initialize the value of each element in W p

i to one in
the beginning and learn W p

i based on old W p
i in each itera-

tion. To further reduce computation overhead, we randomly
sample s% of Di in iteration t and denote it as Ds,t

i . Client i
trains W p

i through the gradient-based learning method:

W p
i ←W p

i − η∇Wp
i
L(Θ̂t

i, D
s,t
i ; Θt−1), (5)

where η is the learning rate for weight learning. We freeze
other trainable parameters in ALA, including the entire
global model and entire local model. After local initializa-
tion, client i performs local model training as in FedAvg.

We can significantly reduce the number of the trainable
parameters in ALA by choosing a small p with negligible
performance decline. We show the details in Section . Be-
sides, we observe that once we train W p

i to converge in the
second iteration (initial stage), it hardly changes in the sub-
sequent iterations, as shown in Figure 3. In other words, W p

i
can be reused. Similar to APPLE and PartialFed, we train
only one epoch for W p

i when t > 2 to adapt to the chang-
ing model parameters. Note that ALA is meaningless and
deactivated in the first iteration since Θ0 = Θ0

i , ∀i ∈ [N ].
Algorithm 1 presents the overall FL process in FedALA.

Analysis of ALA
We omit σ(·) and set p = |Θi| here for simplicity without
affecting the analysis. According to Equation (4) and Equa-
tion (5), we have ∇Wi

Lt
i = η(Θt−1 − Θt−1

i ) ⊙ ∇Θ̂i
Lt
i,
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Algorithm 1: FedALA
Input: N clients, ρ: client joining ratio, L: loss function,

Θ0: initial global model, α: local learning rate, η: the
learning rate in ALA, s%: the percent of local data in
ALA, p: the range of ALA, and σ(·): clip function.

Output: Reasonable local models Θ̂1, . . . , Θ̂N

1: Server sends Θ0 to all clients to initialize local models.
2: Clients initialize W p

i , ∀i ∈ [N ] to ones.
3: for iteration t = 1, . . . , T do
4: Server samples a subset It of clients according to ρ.
5: Server sends Θt−1 to |It| clients.
6: for Client i ∈ It in parallel do
7: Client i samples s% of local data. ▷ ALA
8: if t = 2 then ▷ Initial stage
9: while W p

i does not converge do
10: Client i trains W p

i by Equation (5).
11: Client i clips W p

i using σ(·).
12: else if t > 2 then
13: Client i trains W p

i by Equation (5).
14: Client i clips W p

i using σ(·).
15: Client i obtains Θ̂t

i by Equation (4).
16: Client i obtains Θt

i by ▷ Local model training
Θt

i ← Θ̂t
i − α∇Θ̂i

L(Θ̂t
i, Di; Θ

t−1).
17: Client i sends Θt

i to the server. ▷ Uploading
18: Server obtains Θt by Θt ←∑

i∈It
ki∑

j∈It kj
Θt

i.

19: return Θ̂1, . . . , Θ̂N

where Lt
i represents L(Θ̂t

i, D
s,t
i ; Θt−1). Based on Equa-

tion (4), we can view updating Wi as updating Θ̂t
i in ALA:

Θ̂t
i ← Θ̂t

i−η(Θt−1−Θt−1
i )⊙(Θt−1−Θt−1

i )⊙∇Θ̂i
Lt
i. (6)

The gradient ∇Θ̂i
Lt
i is element-wisely scaled in iteration t.

In contrast to local model training (or fine-tuning) that only
focuses on the local data, the whole process of updating in
Equation (6) can be aware of the generic information in the
global model. Across iterations, the dynamic term (Θt−1 −
Θt−1

i ) brings dynamic information for ALA to adapt to the
complex scenarios, although it is a constant in iteration t.

Experiments
Experimental Setup
In this section, we firstly compare FedALA with eleven
SOTA FL baselines including FedAvg (McMahan et al.
2017), FedProx (Li et al. 2020), Per-FedAvg (Fallah,
Mokhtari, and Ozdaglar 2020), FedRep (Collins et al. 2021),
pFedMe (T Dinh, Tran, and Nguyen 2020), Ditto (Li et al.
2021a), FedAMP (Huang et al. 2021), FedPHP (Li et al.
2021b), FedFomo (Zhang et al. 2020), APPLE (Luo and Wu
2021), and PartialFed (Sun et al. 2021). To show the supe-
riority of weight learning in FedALA over additional local
training steps, we also compare FedALA with FedAvg-C
and FedProx-C, which locally fine-tune the global model for
local initialization at each iteration. Then we apply ALA to
SOTA FL methods and show that ALA can improve them.
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Figure 3: The local loss on client #8 regarding weight learn-
ing epochs in ALA on MNIST and Cifar10. Here, we train
the weights for at least six epochs in each iteration. The de-
tails of the settings are described in Section .

We conduct extensive experiments in computer vision (CV)
and natural language processing (NLP) domains.

For the CV domain, we study the image classification
tasks with four widely used datasets including MNIST (Le-
Cun et al. 1998), Cifar10/100 (Krizhevsky and Geoffrey
2009) and Tiny-ImageNet (Chrabaszcz, Loshchilov, and
Hutter 2017) (100K images with 200 classes) using the 4-
layer CNN (McMahan et al. 2017). For the NLP domain,
we study the text classification tasks with AG News (Zhang,
Zhao, and LeCun 2015) and fastText (Joulin et al. 2017). To
evaluate the effectiveness of FedALA on a larger model, we
also use ResNet-18 (He et al. 2016) on Tiny-ImageNet. We
set the local learning rate to 0.005 for the 4-layer CNN (0.1
on MNIST following FedAvg) and 0.1 for both fastText and
ResNet-18. We set the batch size to 10 and the number of
local model training epochs to 1, following FedAvg. We run
all the tasks for 2000 iterations to make all the methods con-
verge empirically. Following pFedMe, we have 20 clients
and set ρ = 1 by default.

We simulate the heterogeneous settings with two widely
used scenarios. The first one is the pathological hetero-
geneous setting (McMahan et al. 2017; Shamsian et al.
2021), where we sample 2/2/10 classes for MNIST/Ci-
far10/Cifar100 from a total of 10/10/100 classes for each
client, with disjoint data samples. The second scenario is the
practical heterogeneous setting (Lin et al. 2020; Li, He, and
Song 2021), which is controlled by the Dirichlet distribu-
tion, denoted as Dir(β). The smaller the β is, the more het-
erogeneous the setting is. We set β = 0.1 for the default
heterogeneous setting (Lin et al. 2020; Wang et al. 2020c).

We use the same evaluation metrics as pFedMe, which
reports the test accuracy of the best single global model for
the traditional FL and the average test accuracy of the best
local models for pFL. To simulate the practical pFL setting,
we evaluate the learned model on the client side. 25% of the
local data forms the test dataset, and the remaining 75% data
is used for training. We run all the tasks five times and report
the mean and standard deviation.

We implement FedALA using PyTorch-1.8 and run all
experiments on a server with two Intel Xeon Gold 6140
CPUs (36 cores), 128G memory, and eight NVIDIA 2080
Ti GPUs, running CentOS 7.8.
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Items p = 1 s = 80

s = 5 s = 10 s = 20 s = 40 s = 60 s = 80 s = 100 p = 6 p = 5 p = 4 p = 3 p = 2 p = 1

Acc. 39.53 40.62 40.02 40.23 41.11 41.94 42.11 41.71 41.54 41.62 41.86 42.47 41.94

Param. 0.005 11.182 11.172 11.024 10.499 8.399 0.005

Table 1: The test accuracy (%) and the number of trainable parameters (in millions) for ALA on TINY*.

Settings Pathological heterogeneous setting Practical heterogeneous setting

Methods MNIST Cifar10 Cifar100 Cifar10 Cifar100 TINY TINY* AG News

FedAvg 97.93±0.05 55.09±0.83 25.98±0.13 59.16±0.47 31.89±0.47 19.46±0.20 19.45±0.13 79.57±0.17
FedProx 98.01±0.09 55.06±0.75 25.94±0.16 59.21±0.40 31.99±0.41 19.37±0.22 19.27±0.23 79.35±0.23

FedAvg-C 99.79±0.00 92.13±0.03 66.17±0.03 90.34±0.01 51.80±0.02 30.67±0.08 36.94±0.10 95.89±0.25
FedProx-C 99.80±0.04 92.12±0.03 66.07±0.08 90.33±0.01 51.84±0.07 30.77±0.13 38.78±0.52 96.10±0.22

Per-FedAvg 99.63±0.02 89.63±0.23 56.80±0.26 87.74±0.19 44.28±0.33 25.07±0.07 21.81±0.54 93.27±0.25
FedRep 99.77±0.03 91.93±0.14 67.56±0.31 90.40±0.24 52.39±0.35 37.27±0.20 39.95±0.61 96.28±0.14
pFedMe 99.75±0.02 90.11±0.10 58.20±0.14 88.09±0.32 47.34±0.46 26.93±0.19 33.44±0.33 91.41±0.22
Ditto 99.81±0.00 92.39±0.06 67.23±0.07 90.59±0.01 52.87±0.64 32.15±0.04 35.92±0.43 95.45±0.17
FedAMP 99.76±0.02 90.79±0.16 64.34±0.37 88.70±0.18 47.69±0.49 27.99±0.11 29.11±0.15 94.18±0.09
FedPHP 99.73±0.00 90.01±0.00 63.09±0.04 88.92±0.02 50.52±0.16 35.69±3.26 29.90±0.51 94.38±0.12
FedFomo 99.83±0.00 91.85±0.02 62.49±0.22 88.06±0.02 45.39±0.45 26.33±0.22 26.84±0.11 95.84±0.15
APPLE 99.75±0.01 90.97±0.05 65.80±0.08 89.37±0.11 53.22±0.20 35.04±0.47 39.93±0.52 95.63±0.21
PartialFed 99.86±0.01 89.60±0.13 61.39±0.12 87.38±0.08 48.81±0.20 35.26±0.18 37.50±0.16 85.20±0.16

FedALA 99.88±0.01 92.44±0.02 67.83±0.06 90.67±0.03 55.92±0.03 40.54±0.02 41.94±0.05 96.52±0.08

Table 2: The test accuracy (%) in the pathological heterogeneous setting and practical heterogeneous setting.

Effect of Hyperparameters
Effect of s. From Table 1, high accuracy corresponds to
large s, where “TINY*” represents using ResNet-18 on
Tiny-ImageNet in the default heterogeneous setting. We
can balance the performance and the computational cost by
choosing a reasonable value for s. FedALA can also achieve
excellent performance with only 5% local data for ALA.
Since the improvement from s = 80 to s = 100 is negli-
gible, we set s = 80 for FedALA.

Effect of p. By decreasing the hyperparameter p, we can
shrink the range of ALA with negligible accuracy decrease,
as shown in Table 1. When p decreases from 6 to 1, the
number of trainable parameters in ALA also decreases, es-
pecially from p = 2 to p = 1, as the last block in ResNet-18
contains most of the parameters (He et al. 2016). Although
FedALA performs the best when p = 2 here, we set p = 1
for ResNet-18 to reduce computation overhead. Similarly,
we also set p = 1 for the 4-layer CNN and fastText. This
also shows that the lower layers of the global model mostly
contain generic information which is desired by the client.

Performance Comparison and Analysis
Pathological heterogeneous setting. Clients are sepa-
rated into groups, which benefits the methods that measure
the similarity among clients, such as FedAMP. Even so, Ta-
ble 2 shows that FedALA outperforms all the baselines. Due
to the poor generalization ability of the global model, Fe-
dAvg and FedProx perform poorly in this setting.

pFL methods in Category (1). Compared to the traditional
FL methods, the personalized methods perform better. The
accuracy for Per-FedAvg is the lowest among these meth-
ods since it only finds an initial shared model corresponding
to the learning trends of all the clients, which may not cap-
ture the needs of an individual client. Fine-tuning the global
model in FedAvg-C/FedProx-C generates client-specific lo-
cal models, which improves the accuracy for FedAvg/Fed-
Prox. However, fine-tuning only focuses on the local data
and cannot be aware of the generic information during local
training like FedALA. Although FedRep also fine-tunes the
head at each iteration, it freezes the downloaded representa-
tion part when fine-tuning and keeps most of the generic in-
formation in the global model, thus performing excellently.
However, the generic information of the head part is lost
without sharing the head among clients.
pFL methods in Category (2). Although both pFedMe and
Ditto use the proximal term to learn their additional person-
alized models, pFedMe learns the desired information from
the local model while Ditto learns it from the global model.
Thus, Ditto learns more generic information locally, and it
performs better. However, learning the personalized model
with the proximal term is an implicit way to extract the de-
sired information.
pFL methods in Category (3). Aggregating the models us-
ing the rule-based method is aimless in capturing the desired
information in the global model, so FedPHP performs worse
than FedRep and Ditto. The model-level personalized aggre-
gation in FedAMP, FedFomo, and APPLE, as well as the
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Computation Communication

Total time Time/iter. Param./iter.

FedAvg 365 min 1.59 min 2 ∗ Σ
FedProx 325 min 1.99 min 2 ∗ Σ
FedAvg-C 607 min 24.28 min 2 ∗ Σ
FedProx-C 711 min 28.44 min 2 ∗ Σ
Per-FedAvg 121 min 3.56 min 2 ∗ Σ
FedRep 471 min 4.09 min 2 ∗ αf ∗ Σ
pFedMe 1157 min 10.24 min 2 ∗ Σ
Ditto 318 min 11.78 min 2 ∗ Σ
FedAMP 92 min 1.53 min 2 ∗ Σ
FedPHP 264 min 4.06 min 2 ∗ Σ
FedFomo 193 min 2.72 min (1 +M) ∗ Σ
APPLE 132 min 2.93 min (1 +M) ∗ Σ
PartialFed 693 min 2.13 min 2 ∗ Σ
FedALA 7+116 min 1.93 min 2 ∗ Σ

Table 3: The computation overhead on TINY* and the com-
munication overhead (transmitted parameters per iteration).
Σ is the parameter amount in the backbone. αf (αf < 1)
is the ratio of the parameters of the feature extractor in the
backbone. M (M ≥ 1) is the number of the received client
models on each client in FedFomo and APPLE.

layer-level and binary selection in PartialFed, are imprecise,
which may introduce undesired information in the global
model to the local model. Furthermore, downloading mul-
tiple models on each client in each iteration has additional
communication costs for FedFomo and APPLE.

By adaptively learning the aggregating weights, FedALA
can explicitly capture the desired information precisely in
the global model to facilitate the local model training.

Practical heterogeneous setting. We add two additional
tasks using Tiny-ImageNet and one text classification task
on AG News in the default practical heterogeneous set-
ting. The results in the default heterogeneous setting with
Dir(0.1) are shown in Table 2, where “TINY” represents
using the 4-layer CNN on Tiny-ImageNet. FedALA is still
superior to other baselines, which achieves an accuracy of
3.27% higher than FedRep on TINY.

In the practical heterogeneous setting, due to the com-
plex data distribution of each client, it is hard to mea-
sure the similarity among clients. Thus, FedAMP can not
precisely assign importance to the local models through
the attention-inducing function to generate aggregated mod-
els with personalized aggregation. After downloading the
global model/representation, Ditto and FedRep can capture
the generic information from it instead of measuring the sim-
ilarity among local models. In this way, they achieve excel-
lent performance in most of the tasks. The trainable weights
are more informative than the approximated one, so APPLE
performs better than FedFomo. Although FedPHP performs
well on TINY, the standard deviation is relatively high. Since
FedALA can adapt to the changing circumstances through
ALA, it still outperforms all the baselines in the practical set-

ting. If we reuse the aggregated weights learned in the initial
stage without adaptation, the accuracy drops to 33.81% on
TINY. Due to the fine-grained feature of ALA, it still outper-
forms Per-FedAvg, pFedMe, Ditto, FedAMP, and FedFomo.

Compared to the 4-layer CNN, ResNet-18 is a larger
backbone. With ResNet-18, most methods achieve a higher
accuracy, including FedALA. However, it is harder for
FedAMP to measure the model similarity, and the heuris-
tic local aggregation in FedPHP performs worse when using
ResNet-18. As we set p = 1, the number of trainable pa-
rameters in ALA is much less than that of ResNet-18, but
FedALA can still achieve superior performance.

Computation Overhead. We record the total time cost for
each method until convergence, as shown in Table 3. Ex-
cept for the 7 min cost in the initial stage, FedALA costs
1.93 min (similar to FedAvg) in each iteration. In other
words, ALA only costs additional 0.34 min for the great ac-
curacy improvement. However, FedAvg-C, FedProx-C, and
FedRep cost relatively more time than most of the methods
because of the fine-tuning for the entire local model (or only
the head). Due to the additional training steps for the per-
sonalized model, Ditto and pFedMe have the top computa-
tion overhead per iteration among SOTA methods. FedFomo
and APPLE feed data forward in the downloaded client-side
model to approximate aggregate weights and update directed
relation (DR) vectors, respectively, taking additional time.

Communication Overhead. We show the communica-
tion overhead for one client in one iteration in Table 3. The
communication overhead for most of the methods is the
same as FedAvg, which uploads and downloads only one
model. Since FedRep only transmits the representation and
keeps the head locally, it has less communication overhead.
FedFomo and APPLE require the highest communication
overhead, as they download M client models in each iter-
ation (Zhang et al. 2020; Luo and Wu 2021). To achieve the
results in Table 2, we set M = 20 for them.

Heterogeneity. To study the effectiveness of FedALA in
the settings with different degrees of heterogeneity, we vary
the β in Dir(β) on Tiny-ImageNet and AG News. The
smaller the β is, the more heterogeneous the setting is.
In Table 4, most of the pFL methods have better perfor-
mance in the more heterogeneous settings. However, except
for FedPHP, APPLE, PartialFed, and FedALA, these meth-
ods excessively focus on personalization but underestimate
the significance of the generic information. When the data
heterogeneity becomes moderate with Dir(0.5) for Tiny-
ImageNet, they perform worse than FedAvg.

Scalability. To show the scalability of FedALA, we con-
duct two experiments with 50 and 100 clients in the default
heterogeneous setting. In Table 4, most of the pFL meth-
ods degenerate greatly as the client amount increases to 100,
while FedALA drops less than 1% in accuracy. Since the
data amount on Cifar100 is constant, the data amount on the
client decreases with more clients. This aggravates the lack
of local data, so precisely capturing the desired information
in the global model becomes more critical.
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Heterogeneity Scalability Applicability of ALA

Datasets Tiny-ImageNet AG News Cifar100 Tiny-ImageNet Cifar100

Methods Dir(0.01) Dir(0.5) Dir(1) 50 clients 100 clients Acc. Imps. Acc. Imps.

FedAvg 15.70±0.46 21.14±0.47 87.12±0.19 31.90±0.27 31.95±0.37 40.54±0.17 21.08 55.92±0.15 24.03
FedProx 15.66±0.36 21.22±0.47 87.21±0.13 31.94±0.30 31.97±0.24 40.53±0.26 21.16 56.18±0.65 24.19

FedAvg-C 49.88±0.11 16.21±0.05 91.38±0.21 49.82±0.11 47.90±0.12 — — — —
FedProx-C 49.84±0.02 16.36±0.19 92.03±0.19 49.79±0.14 48.02±0.02 — — — —

Per-FedAvg 39.39±0.30 16.36±0.13 87.08±0.26 44.31±0.20 36.07±0.24 30.90±0.28 5.83 48.68±0.36 4.40
FedRep 55.43±0.15 16.74±0.09 92.25±0.20 47.41±0.18 44.61±0.20 37.89±0.31 0.62 53.02±0.11 0.63
pFedMe 41.45±0.14 17.48±0.61 87.08±0.18 48.36±0.64 46.45±0.18 27.30±0.24 0.37 47.91±0.21 0.57
Ditto 50.62±0.02 18.98±0.05 91.89±0.17 54.22±0.04 52.89±0.22 40.75±0.06 8.60 56.33±0.07 3.46
FedAMP 48.42±0.06 12.48±0.21 83.35±0.05 44.39±0.35 40.43±0.17 28.18±0.20 0.19 48.03±0.23 0.34
FedPHP 48.63±0.02 21.09±0.07 90.52±0.19 52.44±0.16 49.70±0.31 40.16±0.24 4.47 54.28±0.21 3.76
FedFomo 46.36±0.54 11.59±0.11 91.20±0.18 42.56±0.33 38.91±0.08 — — — —
APPLE 48.04±0.10 24.28±0.21 84.10±0.18 55.06±0.20 52.81±0.29 — — — —
PartialFed 49.38±0.02 24.20±0.10 91.01±0.28 48.95±0.07 39.31±0.01 35.40±0.02 0.14 48.99±0.05 0.18

FedALA 55.75±0.02 27.85±0.06 92.45±0.10 55.61±0.02 54.68±0.57 — — — —

Table 4: The test accuracy (%) (and improvement (%)) on Tiny-ImageNet, AG News, and Cifar100.

Applicability of ALA
As the ALA module only modifies the local initialization in
FL, it can be applied to most existing FL methods. We ap-
ply ALA to the SOTA FL methods except for FedFomo and
APPLE (as they download multiple client models) without
modifying other learning processes to evaluate the effective-
ness of ALA. We report the accuracy and improvements on
Tiny-ImageNet and Cifar100 using the 4-layer CNN in de-
fault heterogeneous setting with s = 80 and p = 1.

In Table 4, the accuracy improvement for FedAvg and
FedProx is apparent, and the improvement for Per-FedAvg,
Ditto, and FedPHP is also remarkable. This indicates the ap-
plicability of ALA to the traditional FL and pFL methods.

However, the improvement to other pFL methods is rel-
atively small. In FedAMP, only the information in the im-
portant local models is emphasized through the attention-
inducing function with the generic information in unimpor-
tant models ignored, so ALA can hardly find the ignored in-
formation back without modifying other learning processes.
According to Table 1, the representation part mostly con-
tains generic information, which is desired by the client. It
leaves little room for ALA to take effect, but ALA still im-
proves FedRep by more than 0.60% in accuracy. pFedMe
learns a personalized model to approximate the local model
at each local training batch, so it benefits little (0.57% on Ci-
far100) from ALA. In PartialFed, the local aggregation hap-
pens in each training batch, so the initialized local model
generated by ALA is later re-aggregated by its strategy, thus
eliminating the effect of ALA.

Update Direction Correction
Compared to overwriting the local model with the down-
loaded global model, ALA can correct the update direc-
tion for the local model with the desired information in the
global model. We visualize the learning trajectory of the lo-
cal model on client #4 using the visualization method (Li
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Figure 4: 2D visualization of local learning trajectory (from
iteration 140 to 200) and the local loss surface on MNIST in
the pathological heterogeneous setting. The red circles and
green cubes represent the local model at the beginning and
end of each iteration, respectively. The black and blue tra-
jectories with the arrows represent FedAvg and FedALA,
respectively. The local models are projected to the 2D plane
using PCA. C1 and C2 are the two principal components
generated by the PCA.

et al. 2018). We deactivate the ALA for FedALA in the first
155 iterations and activate it in the subsequent iterations.

Without capturing the desired information in the global
model, the update direction of local model is misled by the
global model in FedAvg, as shown by the black trajectory in
Figure 4. Once the ALA is activated, the update direction of
local model is corrected to the local loss reducing direction,
as shown by the blue trajectory in Figure 4.

Conclusion
In this paper, we propose an adaptive and fine-grained
method FedALA in pFL to facilitate the local model training
with the received global model. The extensive experiments
demonstrate the effectiveness of FedALA. Our method out-
performs eleven SOTA methods. Also, the ALA module in
FedALA can improve other FL methods in accuracy.
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